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Purpose: Fundus images are typically used as the sole training input for automated
diabetic retinopathy (DR) classification. In this study, we considered several well-known
DR risk factors and attempted to improve the accuracy of DR screening.

Metphods: Fusing nonimage data (e.g., age, gender, smoking status, International
Classification of Disease code, and laboratory tests) with data from fundus images can
enable an end-to-end deep learning architecture for DR screening. We propose a neural
network that simultaneously trains heterogeneous data and increases the performance
of DR classification in terms of sensitivity and specificity. In the current retrospective
study, 13,410 fundus images and their corresponding nonimage data were collected
from the Chung Shan Medical University Hospital in Taiwan. The images were classi-
fied as either nonreferable or referable for DR by a panel of ophthalmologists. Cross-
validation was used for the training models and to evaluate the classification perfor-
mance.

Results: The proposed fusionmodel achieved 97.96%area under the curvewith 96.84%
sensitivity and 89.44% specificity for determining referable DR from multimodal data,
and significantly outperformed the models that used image or nonimage information
separately.

Conclusions: The fusion model with heterogeneous data has the potential to improve
referable DR screening performance for earlier referral decisions.

Translational Relevance: Artificial intelligence fused with heterogeneous data from
electronic health records could provide earlier referral decisions from DR screening.
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Introduction

Certain factors, such as improper dietary habits,
have led to an increased prevalence of diabetes world-
wide. In 2019, the estimated global prevalence of
diabetes in adults was 9.3%.1 Between 2005 and 2014,
the prevalence of diabetes in the adult population (20
to 79 years) of Taiwan was reported to increase by
0.3% each year (from 7.15% to 10.10%), representing
approximately two million adults currently living with
diabetes.2 Among these adults, 25% also present with
diabetic retinopathy (DR),3 which can cause moder-
ate to severe vision impairment and even blindness.4
Moreover, 80% of those suffering from type 2 diabetes
develop DR within 10 years.5 However, DR-related
vision impairment and blindness can be prevented if
patients receive regular fundus examinations, which
can lead to early diagnosis and treatment.6,7 Poor
adherence to these preventative examinations has been
observed in Taiwan nevertheless, and this is believed to
be due to two primary reasons. First, as DR is a chronic
disease, most diabetic patients in the early stages of DR
are not aware of the condition. Second, there is a short-
age of ophthalmologists (approximately 7 per 100,000
people), andmost rural areas have a severe lack of these
specialists.8 These issues thus result in low screening
rates for DR.

To improve the adherence rate, several image-based
diagnostic techniques for DR have been developed.9–11
These techniques provide high classification perfor-
mance and can be used by diabetes clinicians for
early DR screening and referral, including those who
don’t have an ophthalmological background. Such
solutions have been designed to enable patients with
diabetes to obtain a prescription from their clinician
and complete an eye examination at the same clinic,
which in turn increases monitoring and regular follow-
ups. These techniques used more than 80,000 images
as part of their training models. In the product devel-
opment stage, researchers designing such models may
not need to collect such a large amount of image data
if they also had access to historical electronic health
records (EHRs), potentially reducing costs associated
with annotation and training times.

EHRs often contain information on vital signs,
laboratory results, clinical records, and previous
medical care, which have been widely used in medical
research and can be used to support a clinician’s
decision as part of early screening and diagno-
sis programs, or to predict disease progression and
risk factors.12,13 EHRs may provide complementary
features for image data, and increase model inter-
pretability. Several risk factors for DR, as determined

by previous cross-sectional studies, can be retrieved
from a patient’s EHR, such as age, gender, body mass
index (BMI), diabetes history, hypertension history,
glycosylated hemoglobin (HbA1c), and systolic blood
pressure.5,14–17 Additionally, characteristics associ-
ated with different countries and ethnicities should
be considered so clinicians may better understand
and improve the classification results of deep learning
models (e.g., the average HbA1c level may differ by
race/ethnicity).18 This broad scope of information
can lead to improvements in the performance and
robustness of models when compared with current
techniques that do not consider EHR information
when focusing on specific segments of a population.
It could improve screening performance and lead
to more precise medicine. Furthermore, a hybrid
model combining heterogeneous features from image
and nonimage data that extracts the most important
features could potentially provide a broader picture for
the outcome of interest.12

As a deep learning hybrid model can handle data
obtained from different sources, it has been used in
multimodal data fusion for comprehensive analysis and
disease classification. A variety of different models
have been proposed, such as a deep learning multi-
modal combining cervical images and nonimage infor-
mation for cervical dysplasia diagnosis,19 a text-image
embedding network using both chest X-rays and free-
text clinical reports of radiological scans for thorax
disease classification,20 and a hybrid decision support
system combining a feedforward neural network, a
classification and regression tree, and a hybrid wavelet
neural network for the risk assessment of DR based
on fundus imaging and related EHR data.21 However,
previous studies have mostly neglected the integration
of fundus imaging and nonimaging information based
on end-to-end convolutional neural networks (CNNs)
for DR classification.

Previous studies mainly focused on the application
of model training to either image or nonimage data, a
knowledge gap remains concerning the development of
a hybrid CNN model combining these heterogeneous
datasets. To address this issue, we set out to design
a fusion model with an end-to-end neural network
which combines both CNN and multilayer perceptron
(MLP) for training heterogeneous data simultaneously
that could be used for early screening of DR sever-
ity classification. Our fusion model was designed to
minimize the total loss from heterogeneous data. In
this study, we developed an automated DR screen-
ing approach to distinguish between nonreferable DR
(NRDR) and referable DR (RDR) based on the Inter-
national Clinical Diabetic Retinopathy Disease Sever-
ity Scale.22 No apparent DR and mild nonprolifera-
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tive DR were defined as NRDR, whereas moderate
and severe nonproliferative and proliferative DR were
defined as RDR. Finally, we verified that the proposed
model balanced both image and nonimage information
to enhance interpretation and insight into DR classi-
fication, and then evaluated the results to determine
whether the proposed model could be better than a
single training source model.

Methods

Dataset

In this retrospective study between 2013 and
2018, we collected 13,410 fundus images from 6,566
patients with a history of diabetes at the Chung
Shan Medical University Hospital in Taiwan. All data
were anonymized before processing and analyzed. We
excluded data from grayscale, noncircular, and poor-
quality images during training and analysis. Images
were obtained from a digital nonmydriatic retinal
camera (ZEISS VISUCAM 200) with 45-degree fields
of view. The image resolutions ranged from 721 × 723
to 2846 × 4287 pixels, with 2055 × 2123 pixels as
the predominant resolution, which corresponded to
96% of the images. Each fundus image was diagnosed
clinically as either NRDR or RDR by a panel of
ophthalmologists based on the International Clinical
Diabetic Retinopathy Disease Severity Scale.22 This
study was approved by the Institutional Review Board
at the Chung Shan Medical University Hospital and
the Industrial TechnologyResearch Institute. Informed
consent was not required because of the retrospective
nature of the study and the fact that the subject data
used was not traceable to the patient.

We also used EHR data to support fundus image
classification. This data included the patients’ baseline
characteristics (birth, gender, smoking status, hyper-
tension, BMI, pulse, and blood pressure), labora-
tory test results (HbA1c, cholesterol, lipoprotein, total
cholesterol, triglyceride, creatinine, estimated glomeru-
lar filtration rate, blood glucose, and urine protein),
and disease history according to The International
Classification of Diseases (ICD) 9th or 10th revision.
Furthermore, we mapped the ICD codes into 136
categories for sparse dimension reduction based on the
chronic condition indicator using clinical classification
software (CCS).23 Figure 1 shows that the records of
birth, gender, and smoking status were collected once
during the first patient visit, however, most labora-
tory test results and details of several vital signs were
obtained from either the day before the imaging date
or on the date of imaging. Measuring the time differ-

Figure 1. EHR information, including the patient’s baseline charac-
teristics, laboratory test results, and historical ICD information.

ence between them, the meaning of the time slot was
considered. Historical ICD data was gathered before
the imaging date. The patient’s imaging age was then
calculated as the difference between the imaging date
and the date of birth.

The fusion data combining both imaging and
EHR information was further split randomly into
five distinct sets by anonymous subject identification
numbers for fivefold cross-validation. All models were
not trained using any of the patients included in the
testing set. The whole dataset comprised 9775 images
with NRDR (72.89%) and 3635 images with RDR
(27.11%). Note that a physician may perform multi-
ple fundus examinations for a patient on the same date,
then have a referral or nonreferral recommendation for
that patient in the real world. Therefore, to ensure a
fair decision we checked the patient’s every image taken
on the same date return to a ground truth, giving the
data comprised 7729 patients with NRDR (77.54%)
and 2239 patients with RDR (22.46%).

Preprocessing

Several well-known preprocessing techniques were
adopted to prepare quality data in the training process.
For image processing, the circular boundary of the
raw image was detected to circumscribe a square
about the image, then the nonretinal background was
cropped from the square boundary and the imageswere
resized to squares of 299 pixels. For nonimage process-
ing, improper data entry, symbols, texts, and outliers
were removed, zero imputation was used to replace
the missing value. Continuous data were normalized
and rescaled to between 0 and 1. One-hot encoding
was adapted to convert categorical data into a new
form. Besides, we created the new variables for EHR
data, which is raw data transformation. The difference
between the imaging date and the date of examination
data (laboratory test and vital signs) was mapped into
a categorical format. Lab data were transformed into a
normal or an abnormal group based on the criteria of
the hospital.
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Data Fusion

Before we moved on to the fusion architecture with
heterogeneous data, we considered a logistic regres-
sion model (LR) as a baseline for training the nonim-
age data and compared it with the other algorithms,
such as principal component analysis (PCA) with a
logistic regression classifier, gradient boosting (GB),
eXtreme Gradient Boosting (XGB), and MLP. Note
that MLP was employed to detect RDR with CNN
architecture for improving overall performance based
on multimodal data in the proposed fusion model.

Widespread adoption of EHRs may result in diffi-
culties with the practical application of the fusion
model. As fundus imaging is typically used by special-
ists for DR severity screening, and several DR risk
factors are associatedwith the onset and progression of
DR, it is reasonable to assume that a correlation exists
between fundus imaging and DR risk factors. A classi-
fier we employed for risk factor selection was GB.24
This is where the negative gradient of the loss function
is used as a measurement of the previous round of base
learners. In a new base learner, the loss in the previous

round is corrected by fitting the negative gradient. In
the final output, the variable influences from EHRs
were further standardized and summed up to 100%.
XGB was also considered for risk factor selection,
however, it heavily relies on the features of the time
difference in our case, and the time difference implies
the physician’s judgment and patient’s revisit frequency.
It varies depending on the hospital. We favored GB
for practical use, in which the selected variables were
the common features. The importance scores for EHR
variables were presented in the next section. Conse-
quently, three compositions of EHRs were used during
the training and testing process to understand the
influence of the compositions on model performance.
First, all EHR data was applied; second, the important
features were selected based on GB; third, the EHR
data was used, except for the CCS information. It is
possible that when one classifies for DR who ignore
CCS because that information may not represent the
complete physical condition of the patient.

As seen in Figure 2, we developed an image
model (M0) that used a deep CNN inspired by
Inception-v425 and three nonimage models (M1–M3)

Figure 2. The workflow of the (a) image model (M0), (b) the nonimage models (M1–M3), and (c) the fusion models (M4–M6) for DR
screening.
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that used MLP with all inputs from all EHR data,
important EHR data, or all EHR data without CSS,
respectively. Specifically, we repeated fully connected
layers with batch normalization for constructing the
MLP network. We also proposed several end-to-end
fusion models (M4–M6) combining both image data
and the different compositions of the EHRs for early
DR screening (Fig. 2). Feature vectors from twohetero-
geneous branches were concatenated before two fully
connected layers and a two-way softmax layer. Finally,
this model was used to classify the patient’s case as
either NRDR or RDR.

Using data from Chung Shan Medical Univer-
sity Hospital, we trained the neural network models
(M0–M6) and optimized the softmax loss function
to minimize the overall loss using stochastic gradi-
ent descent. The network was designed with an input
size of 278 (all EHR features) or its subset combina-
tion and a hidden size of 1024 for nonimage models.
We used the images with a resolution of 299 × 299
pixels as the input for image and fusion models. The
output was characterized by a 2-class DR severity
grade for the tested data. The remaining hyperparam-
eters in the fusion models were defined as follows:
mini-batch of 16, L2 regularization with a factor
of 0.00004, a momentum of 0.1, dropout probabil-
ity of 20, and initial learning rate of 0.001, which
automatically decreased by a factor of 30 in each
epoch.

Data Analysis

To assess whether the EHR features in the NRDR
and RDR groups were statistically different, we
performed a two-sample test for equality based on
functions in the R software (i.e., prop.test for categor-
ical variables and t-test for continuous variables).
The mean values of the numerical EHR features
included the 2.5 and 97.5 percentiles, which formed the
95% confidence intervals. Bonferroni’s correction26 was
used for multiple comparisons, where a P value below
0.0022 (= 0.05/23) was considered statistically signifi-
cant given the 23 tested hypotheses.

In terms of model performance evaluation, we
calculated the accuracy, area under the receiver operat-
ing characteristic curve (AUC), sensitivity, and speci-
ficity for DR classification. Accuracy was defined
as the proportion of images correctly classified out
of the total number of evaluated images. Sensitiv-
ity was defined as the proportion of RDR images
correctly detected. Specificity was defined as the
proportion of NRDR images correctly detected.
DeLong test27 was used to compare various AUCs
of two receiver operating characteristic curves. An

assessment consensus from three ophthalmologists
was considered the gold standard and was used
as the reference for performance evaluation of the
models. The higher predictive RDR probability of
images on the same imaging date from one patient
was chosen to support a referral decision for that
patient.

Results

Baseline, Laboratory Tests, and Historical ICD
Information in EHRs

Table 1 summarizes the characterization of diabetic
patient cases as NRDR or RDR. There were 7729 and
2239 patients classified as NRDR and RDR, respec-
tively. We analyzed the differences between the NRDR
and RDR groups. Hyperglycemia determined based
on ICD code was present in 88% and 72% of the
patients from the NRDR and RDR groups, respec-
tively. In contrast, the HbA1c level in the RDR group
was significantly higher than that in the NRDR group.
This shows that the ICD code may report the partial
healthy status of the patients, and likewise, hyper-
tension and hyperlipidemia between the two groups
revealed a similar pattern versus SBP and cholesterol.
We used the two-sample test for equality with Bonfer-
roni’s correction for multiple comparisons, confirming
that most EHR features were statistically significant
(P < 0.0022) between the two groups. Note that the
data length differs according to the EHR parameters
as they often suffer from missing values. No signifi-
cant differences were observed between groups regard-
ing BMI, DBP, HDL, LDL, TG, creatinine, and PRO
24 h.

Nonimage model M2 trained with the important
EHR data (Table 2) selected based on GB. LR and
M2with important EHRproduced similar AUC scores
with a nonsignificant P value (= 0.1927) (Table 3).
Besides, there was a statistically nonsignificant differ-
ence in AUCs for the nonimage models M1 and
M2 (P value of 0.1949). This evidence shows that
the sum of 80% of the importance score (Table 2)
is a reasonable selection for defining the important
EHR data. These important EHR data were consid-
ered as complementary information in the fusion
model.

Model Performance

Table 3 shows the performance results from the
baseline model (LR), machine learning models (PCA,
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Table 1. Demographic and Clinical Characteristics of EHR Parameters in the Two Groups

Characteristic NRDR RDR P Value

Number of samples 7729 2239 —
Age, mean ± SD (years) 57.40 ± 13.66 58.89 ± 12.76 0.0001
Sex, female (%) 3478 (45.00) 1109 (49.53) 0.0002
Smoking, at least once (%) 2033 (26.31) 448 (20.01) < 0.0001
Hypertension, yes (%) 4510 (58.35) 1200 (53.60) < 0.0001
Hyperglycemia, yes (%) 6822 (88.26) 1605 (71.69) < 0.0001
Hyperlipidemia, yes (%) 4474 (57.89) 999 (44.62) < 0.0001
BMI, mean ± SD 25.95 ± 4.69 25.53 ± 4.42 0.0023
Pulse, mean ± SD (bpm) 83.71 ± 12.71 85.73 ± 14.03 < 0.0001
SBP, mean ± SD (mmHg) 132.85 ± 17.52 137.56 ± 21.64 < 0.0001
DBP, mean ± SD (mmHg) 76.30 ± 11.66 77.23 ± 13.79 0.0054
HbA1c, mean ± SD (%) 7.16 ± 1.15 7.65 ± 1.26 < 0.0001
Cholesterol, mean ± SD (mg/dl) 170.18 ± 35.58 173.58 ± 37.81 0.0011
HDL, mean ± SD (mg/dl) 42.17 ± 10.11 41.67 ± 10.28 0.099
LDL, mean ± SD (mg/dl) 93.59 ± 28.34 96.04 ± 30.82 0.0039
TC/HDL, mean ± SD 4.09 ± 1.18 4.23 ± 1.24 0.0006
TG, mean ± SD (mg/dl) 132.90 ± 65.26 135.71 ± 66.70 0.1350
Creatinine, mean ± SD (mg/dl) 0.84 ± 0.24 0.86 ± 0.26 0.0071
eGFR, mean ± SD (mL/min/1.73 m2) 91.73 ± 27.42 84.66 ± 31.84 < 0.0001
PBG, mean ± SD (mg/dl) 187.88 ± 76.62 215.37 ± 87.04 < 0.0001
FBG, mean ± SD (mg/dl) 140.86 ± 33.40 146.58 ± 41.56 < 0.0001
PRO random, mean ± SD (mg/dl) 83.88 ± 92.60 153.53 ± 134.06 < 0.0001
PRO 24 h, mean ± SD (mg/dl) 47.62 ± 75.28 96.76 ± 86.81 0.0021

SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high density lipoprotein; LDL: low-density lipoprotein;
TC/HDL: total cholesterol/high density lipoprotein; TG: triglyceride; eGFR: estimated glomerular filtration rate; PBG: postpran-
dial blood glucose; FBG: fasting blood glucose; PRO random: random urine protein; PRO 24 h: 24-hour urine protein.

GB, and XGB), image model (M0), three non image
models (M1–M3) with different EHR compositions
(i.e., all EHR data, the important EHR data, or all
EHR data without CCS), and three fusion models
(M4–M6) with different EHR compositions for DR
classification. In the evaluation metrics (accuracy,
specificity, sensitivity, and AUC), AUC is used to
compare overall performance with regard to these
models, and the performance of the fusion models was
better than that of the image model and the nonim-
age models. We also evaluated the influence of EHR
composition onmodel performance and found that the
AUCs for the models were 80% for LR and 78% to
81% for GB/M1/M2 (P value > 0.005), and that M3
which disregards CCS information showed the lower
AUC (P value < 0.0001), which suggests that histori-
cal CCS information is critical when not using fundus
image information. For the image model (M0), the
values of the evaluation metrics are between those of
the nonimage models and the fusion models. Since the
image data included direct information on the fundus,

DR determination without using image information
tended to predict NRDR in nonimage models, thus
resulting in lower sensitivity. Further increases in AUC
values were observed when the image and non-image
data were combined. Fusion models (M4–M6) showed
significant results in improving the performance of
M0. Similar AUCs were observed in the fusion models.
Hence, the important EHR data may provide enough
information and theremay not be a need to use all EHR
data for classification. Overall, using fusion models,
which use heterogeneous data from both nonimage
data and images to classify DR severity, improved
overall performance (Fig. 3).

Models that were used to compare the performance
included hybrid decision support systems,21 and the
best performing proposed fusion model was M5. Our
model yielded results with an accuracy of 91.29%,
sensitivity of 96.84%, specificity of 89.44%, and AUC
of 97.96%.Overall, the proposedmodel performedwell
in terms of AUC compared with the results of the
Skevofilakas et al. previous study (Table 4).
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Table 2. The Sum of 80% of the Feature Importance
Score

EHR Feature Score

CCS 6.7 0.1334
CCS 3.3 0.0981
Age 0.0618
eGFR 0.0453
HbA1c 0.0451
FBG 0.0330
Creatinine 0.0299
SBP 0.0285
BMI 0.0266
PBG 0.0259
TC/HDL (category: normal) 0.0235
HDL 0.0212
DBP 0.0211
Height 0.0184
CCS 13.8 0.0179
TG 0.0178
LDL 0.0176
Pulse 0.0167
TC/HDL (category: N/A) 0.0157
FBG (time slot: <15 days) 0.0153
Cholesterol 0.0144
TC/HDL 0.0140
Weight 0.0126
CCS 1.3 0.0102
Hyperglycemia 0.0101
TC/HDL (time slot: N/A) 0.0083
Smoke (at least once) 0.0076
PRO random 0.0069
CCS 3.2 0.0065

Clinical records (CCS 1.3 [viral infection], CCS 3.2 [diabetes
without complications, e.g., hyperglycemia or glycosuria],
CCS 3.3 [diabetes with complications, e.g., chronic kidney
disease or macular edema], CCS 6.7 [eye disorders, e.g.,
cataract or glaucoma], and CCS 13.8 [connective tissue
disease]).

Discussion

In the current study, we proposed the combination
of heterogeneous information to enhance the perfor-
mance of binary DR screening. Very few previous
studies have addressed data combinations, such as
EHR information and fundus images, via a CNN.12 As
several medical records are associated with DR, as well
as the fact that wemust consider a patient’s comprehen-
sive information to increase data diversity, we devised
an automated data fusion architecture that is jointly

trained end-to-end and optimized through backprop-
agation. The resulting fusion model performed better
than a model that used only fundus images. Therefore,
the nonimage information could further enhance the
diagnosis of RDR when there is a lack of imaging
features. Comparing with nonimage model M1, M3
without CCS showed a lower AUC of 72% compared
to the non-image model M1. It suggests that histori-
cal CCS information is critical when not using fundus
image information. However, fusion model M6 slightly
increases an AUC of 0.3% when comparing with M4;
it may imply that the CCS information somehow inter-
feres with the image information training. Overall,
three fusionmodels with variations in the EHRcompo-
sition used exhibited similar performance for all evalu-
ationmetrics. Hence,M5with the important EHRdata
is enough for DR classification if the model is simulta-
neously trained with image data.

Several EHR datasets have been studied and the
features can be expressed on the anatomical region of
the fundus image, such as age, smoking, and HbA1c.28
Rather than use the image data, the nonimage informa-
tion provided a moderate contribution for DR classi-
fication. The nonimage model M1 with full EHR
data yielded temperate performance with an AUC of
79%. This finding suggests that a nonimage model can
reasonably estimate the risk of a diabetic patient devel-
oping RDR, leading to the prevention of referral delay
if a patient cannot be photographed, which is the case
for certain conditions, such as cataracts.

A previous study achieved a classification accuracy
of 98% using a hybrid decision support system to
detect the presence of DR; this study combined
information from fundus images and an EHR.21
However, the influence of EHR information was
unclear. In the current study, we strengthened and
verified the proposed fusion model for RDR detec-
tion and compared the fusion model results with
those of independent image/nonimage models.
Moreover, we examined the risk factors to better
understand the contribution of EHR features and to
achieve a more robust classification of the model’s
performance.

The present study had various limitations that must
be addressed. Considering the correlation between
two eyes from one patient as a paired input of
architecture may improve the prediction performance.
In particular, we found that the fusion model M5
expressed a moderate positive correlation between
the predictive RDR probabilities from the left and
right eye of the same patient (Spearman correla-
tion coefficient = 0.4025). Besides, further progress
is required concerning an analysis of time-dependent
factors from laboratory tests and dimension reduction
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Table 3. Performance Comparison for DR Classification
Model Data Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) P Value

LR All EHR 73.68 (72.82, 74.54) 71.70 (63.83, 73.57) 74.27 (73.30, 75.24) 80.01 (79.11, 80.91)
PCA All EHR 72.39 (71.51, 73.27) 69.79 (67.58, 71.40) 73.18 (72.19, 74.17) 80.24 (79.35, 81.13) 0.8701
GB All EHR 83.08 (82.34, 83.82) 38.72 (36.70, 40.74) 96.52 (96.11, 96.93) 81.21 (80.34, 82.08) 0.4788
XGB All EHR 83.18 (82.45, 83.91) 37.02 (35.02, 39.02) 97.16 (96.79, 97.53) 81.90 (81.05, 82.75) 0.0293
MLP (M1) All EHR 79.32 (78.52, 80.12) 52.55 (50.48, 54.62) 87.43 (86.69, 88.17) 79.17 (78.25, 80.09 0.6257
MLP (M2) Important EHR 78.67 (77.87, 79.47) 53.83 (51.77, 55.89) 86.20 (85.43, 86.97) 77.69 (76.73, 78.65) 0.1927
MLP (M3) All EHR w/o CCS 71.80 (70.92, 72.68) 56.60 (54.55, 58.65) 76.40 (75.45, 77.35) 72.09 (71.01, 73.17) < 0.0001
Inception-v4 (M0) Image 88.42 (87.79, 89.05) 88.93 (87.63, 90.23) 88.25 (87.53, 88.97) 94.63 (94.22, 95.04)
MLP + Inception-v4 (M4) All EHR + image 91.24 (90.69, 91.79) 94.43 (93.48, 95.38) 90.18 (89.52, 90.84) 97.45 (97.18, 97.72) < 0.0001
MLP + Inception-v4 (M5) Important EHR + image 91.29 (90.74, 91.84) 96.84 (96.12, 97.56) 89.44 (88.75, 90.13) 97.96 (97.72, 98.20) < 0.0001
MLP + Inception-v4 (M6) All EHR w/o CCS + image 93.12 (92.62, 93.62) 86.79 (85.39, 88.19) 95.24 (94.77, 95.71) 97.74 (97.49, 97.99) < 0.0001

The 95% confidence interval is listed in parentheses. Bonferroni’s correction was used for multiple comparisons, where a P
value of AUC difference for the baseline model (LR) and the other model below 0.005 (= 0.05/10) was considered statistically
significant given the 10 tested hypotheses (including the DeLong test to compare AUCs for M1 and M2 with a corresponding
P value of 0.1949).

Table 4. Assessment of Benchmark Comparison
Benchmark Data Type Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Skevofilakas et al.21 Image and EHR data 55 diabetic patients Hybrid decision support system 98 100 98 —
Proposed model M5 Image and EHR data 6566 diabetic patients MLP+CNN 91.29 96.84 89.44 97.96

of the ICD codes. Patients may not have a complete
set of tests from every visit to the physician, such
that properly collecting and handling medical histo-
ries over time becomes very important. For example, a
series of blood sugar control levels should be consid-
ered for DR research, including HbA1c, FBG, and
PBG. However, instead of using longitudinal EHRs
with a learned medical feature embedding matrix,29
we only used the most recent record of laboratory
results from the EHR information in the fusion model.
From a clinical practice perspective, it is convenient
if only a few EHR features are required for data
fusion with the image model to enhance DR screen-
ing, such that this simplification can be an area of

Figure 3. The relationship among the area under the receiver
operating characteristic curves.

future research. On the other hand, we did not collect
patient visual acuity, which represents their functional
status. In this study, we only collected systemic param-
eters and gross anatomical changes (fundus image) for
the fusion model. Further studies considering long-
term follow-up from the early RDR and the effects
of receiving prompt treatment may increase model
usefulness.

Overall, the proposed neural network architecture
for fusing images and related EHR information enables
early diagnosis of RDR. The proposed fusion model
can enhance classification performance and support a
diagnosis by specialists. Themodel supports the combi-
nation of complementary image and nonimage data.
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16. Saleh E, Błaszczyński J, Moreno A, et al. Learning
ensemble classifiers for diabetic retinopathy assess-
ment. Artif Intell Med. 2018;85:50–63, doi:10.
1016/j.artmed.2017.09.006.

17. Oh E, Yoo TK, Park EC. Diabetic retinopa-
thy risk prediction for fundus examination using
sparse learning: a cross-sectional study. BMCMed
Inform Decis Mak. 2013;13(1):106, doi:10.1186/
1472-6947-13-106.

18. AmericanDiabetes Association. Classification and
diagnosis of diabetes: standards of medical care
in diabetes—2018.Diabetes Care. 2018;41(Supple-
ment 1):S13–S27, doi:10.2337/dc18-S002.

19. Xu T, Zhang H, Huang X, Zhang S, Metaxas
DN. Multimodal deep learning for cervical dys-
plasia diagnosis. In: Joskowicz L, Unal G, Wells
W, eds. Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2016. Vol. 9901.
2nd ed. Cham: Springer; 2016:115–123, doi:10.
1007/978-3-319-46723-8_14.

20. Wang X, Peng Y, Lu L, Lu Z, Summers RM.
TieNet: text-image embedding network for com-
mon thorax disease classification and reporting in

http://doi.org/10.1016/j.diabres.2019.107843
http://doi.org/10.1016/j.jfma.2019.06.016
http://doi.org/10.1001/jamaophthalmol.2014.859
http://doi.org/10.1016/S2214-109X(17)30393-5
http://doi.org/10.1038/s41598-018-32916-y
http://doi.org/10.1016/j.media.2017.04.012
http://doi.org/10.1007/s11517-017-1638-6
http://doi.org/10.4172/2155-9570.1000485
http://doi.org/10.1167/iovs.16-19964
http://doi.org/10.1001/jama.2016.17216
http://doi.org/10.1371/journal.pone.0217541
http://doi.org/10.1167/tvst.9.2.13
http://doi.org/10.1109/JBHI.2017.2657802
http://doi.org/10.1186/s40662-015-0026-2
http://doi.org/10.1016/j.artmed.2017.09.006
http://doi.org/10.1186/1472-6947-13-106
http://doi.org/10.2337/dc18-S002
http://doi.org/10.1007/978-3-319-46723-81014


Deep Learning for Diabetic Retinopathy Screening TVST | August 2021 | Vol. 10 | No. 9 | Article 18 | 10

chest X-Rays. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition. 2018:9049–9058, doi:10.1109/
CVPR.2018.00943.

21. Skevofilakas M, Zarkogianni K, Karamanos BG,
Nikita KS. A hybrid Decision Support System for
the risk assessment of retinopathy development as
a long term complication of Type 1 Diabetes Mel-
litus. 2010 Annu Int Conf IEEE Eng Med Biol Soc
EMBC’10. 2010:6713–6716, doi:10.1109/IEMBS.
2010.5626245.

22. AAO. International clinical diabetic retinopa-
thy disease severity scale, https://docplayer.net/
20784048-International-clinical-diabetic-retinopat
hy-disease-severity-scale-detailed-table.html. Pub-
lished 2002.

23. Healthcare Cost and Utilization Project. Beta
chronic condition indicator (CCI) for ICD-10-
CM, https://www.hcup-us.ahrq.gov/toolssoftware/
chronic_icd10/chronic_icd10.jsp. Published 2019.
Accessed May 3, 2019.

24. Friedman JH. Stochastic gradient boosting. Com-
put Stat Data Anal. 2002;38(4):367–378, doi:10.
1016/S0167-9473(01)00065-2.

25. Szegedy C, Ioffe S, Vanhoucke V, Alemi A.
Inception-v4, Inception-ResNet and the impact
of residual connections on learning. In: arXiv
preprint arXiv:1602.07261, 2016, https://arxiv.org/
abs/1602.07261.

26. Nahler G, Nahler G. Bonferroni correction. In:
Dictionary of Pharmaceutical Medicine. Vienna:
Springer; 2009, doi:10.1007/978-3-211-89836-9_
140.

27. Delong ER, Delong DM, Clarke-Pearson DL.
Comparing the areas under two or more correlated
receiver operating characteristic curves: a nonpara-
metric approach. Biometrics. 1988;44(3):837–845.

28. Poplin R, Varadarajan AV., Blumer K, et al.
Prediction of cardiovascular risk factors from
retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018;2(3):158–164, doi:10.1038/
s41551-018-0195-0.

29. Che Z, Cheng Y, Sun Z, Liu Y. Exploiting
convolutional neural network for risk predic-
tion with medical feature embedding. In: arXiv
preprint arXiv:1701.07474, 2017, https://arxiv.org/
abs/1701.07474.

http://doi.org/10.1109/CVPR.2018.00943
http://doi.org/10.1109/IEMBS.2010.5626245
https://docplayer.net/20784048-International-clinical-diabetic-retinopathy-disease-severity-scale-detailed-table.html
https://www.hcup-us.ahrq.gov/toolssoftware/chronic10icd10/chronic10icd10.jsp
https://doi.org/10.1016/S0167-9473(01)00065-2
https://arxiv.org/abs/1602.07261
http://doi.org/10.1007/978-3-211-89836-910140
http://doi.org/10.1038/s41551-018-0195-0
https://arxiv.org/abs/1701.07474

