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Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-
wake states can be an early condition that exacerbates these disorders. Therefore,
treating sleep-wake dysfunction may prevent or slow the development of these
diseases. Although many gene products are likely to be involved in the sleep-wake
disturbance, hypnotics and psychostimulants clinically used are limited in terms of
their mode of action and are not without side effects. Therefore, there is a growing
demand for developing new hypnotics and psychostimulants with high efficacy and
few side effects. Toward this end, animal models are indispensable for use in genetic
and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we
performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake
modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated
with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient
to identify drugs with specific modes of action. We were also able to identify behavioral
endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists
and between sympathomimetic and non-sympathomimetic psychostimulants. This
behavioral profiling can serve to identify genes related to sleep-wake disturbance
associated with various neuropsychiatric diseases and novel therapeutic compounds
for insomnia and excessive daytime sleep with fewer adverse side effects.

Keywords: zebrafish, behavior, profiling, hypnotics, psychostimulants, hypocretin

INTRODUCTION

Sleep-wake states are impaired in various neurological and neuropsychiatric disorders,
including AD (Coogan et al., 2013; Musiek et al., 2015; Peter-Derex et al., 2015),
Parkinson’s disease (Christensen et al., 2015; Latreille et al., 2015), depression (Saltiel and
Silvershein, 2015), schizophrenia (Dell’Osso et al., 2014), and autism spectrum disorders (ASDs;

Abbreviations: AD, Alzheimer’s disease; dpf, day per fertilization; fps, frame per second; HCL, hierarchical clustering; hcrt,
hypocretin; MDF, modafinil; MPD, methylphenidate; mpf, month per fertilization; PCA, principal component analysis; PML,
pemoline; TALEN, transcription activator-like effector nucleases; TRZ, triazolam; ZPD, zolpidem.
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Hollway and Aman, 2011). For example, AD patients exhibit
disturbances in the timing and duration of the sleep cycle,
primarily manifested as increased wakefulness at night and
increased sleep during the day. Poor sleep quality can be an
early sign of cognitive decline (Potvin et al., 2012). It has been
suggested that tangle formation in the suprachiasmatic nucleus
and cholinergic cells in basal forebrain may occur at early stages
of AD, which may lead to circadian rhythm disruption in AD
(Coogan et al., 2013). Furthermore, the sleep-wake disruption
appears to increase the levels of amyloid plaques and tau
aggregation in the brain (Rothman et al., 2013; Musiek et al.,
2015). Therefore, treating sleep-wake dysfunction might prevent
or slow the development of subsequent AD pathology and later
dementia (Musiek et al., 2015). It has also been demonstrated
that children with more severe cases of ASD are more likely to
develop sleep disorders (Hollway and Aman, 2011). The severity
of ASD symptom (i.e., deficits in social communication and
social interaction and restricted/repetitive behaviors) may serve
as vulnerability factors and predispose children with ASD to
insomnia when presented with environmental stressors such as
unpredictability in the environment and changes in their routines
(Hollway and Aman, 2011).

Addressing the primary cause underlying each disease
may be enough to counter the sleep-awake disturbance.
However, if patients continue to have sleep-awake disturbance,
hypnotics, and psychostimulants are considered for the
treatment of insomnia and excessive daytime sleep, respectively.
Hypnotics form a large group, including benzodiazepines
and non-benzodiazepines. Both benzodiazepines and
non-benzodiazepines interact with the same allosteric
benzodiazepine-binding site on GABA-A receptors to increase
their activity (Ramirez et al., 2013). They decrease sleep latency
(Mitchell and Weinshenker, 2010). However, they have side
effects including cognitive and psychomotor impairment,
rebound insomnia, anterograde amnesia, and increased risk of
motor collisions and falls (Equihua et al., 2013). The impairment
observed across benzodiazepine and non-benzodiazepine
compounds may be a result of the widespread expression
of GABA-A receptors throughout the brain (Equihua et al.,
2013; Ramirez et al., 2013). Psychostimulants consists of
sympathomimetic psychostimulants and non-sympathomimetic
psychostimulants (Banerjee et al., 2004). Sympathomimetic
psychostimulants promote wakefulness by enhancing
monoaminergic transmission by increasing the release and
inhibiting the reuptake of these neurotransmitters (Banerjee
et al., 2004; Sinita and Coghill, 2014). Non-sympathomimetic
psychostimulants promote wakefulness in the absence of the
other arousing effects typically seen with the sympathomimetic
drugs (Banerjee et al., 2004; Mitchell and Weinshenker, 2010).
Although the effects of sympathomimetic psychostimulants
on wakefulness are stronger than non-sympathomimetic
psychostimulants, sympathomimetic psychostimulants have
side effects, including excess locomotor activities (Kim, 2012),
sleep rebound (Schwartz, 2009), and high abuse liability
(Anderson et al., 2012). Therefore, there are growing demands
for developing new hypnotics and psychostimulants with high
efficacy and a low profile for side effects (Urban and Gao, 2014;

Dubey et al., 2015). To develop these novel hypnotics and
psychostimulants, the use of animal models is indispensable.
Although rodents have been the model of choice, screening many
compounds using rodents has several drawbacks including costs
and ethical considerations. Using alternative non-mammalian
animal models may relieve some of these pressures by allowing
testing of large numbers of subjects while reducing expenses and
minimizing the use of mammalian subjects (Nishimura et al.,
2015).

Zebrafish use all neurotransmitters currently known to be
important for the regulation of sleep and wakefulness (Panula
et al., 2010; Chiu and Prober, 2013; Elbaz et al., 2013). Like
humans, zebrafish are diurnal and thus exhibit peak activity
during the light phase and increased quiescence during the
dark phase (Sorribes et al., 2013). It has been demonstrated
that zebrafish exhibit behaviors characteristic of sleep, including
having a quiescent state regulated by a circadian rhythm, reduced
sensory responsiveness, and homeostatic regulation (Zhdanova,
2006; Chiu and Prober, 2013; Sigurgeirsson et al., 2013). It has
also been demonstrated that the sleep-awake state of zebrafish can
be assessed using the swimming velocity (Zhdanova, 2006; Chiu
and Prober, 2013; Sigurgeirsson et al., 2013). Behavioral assays
in zebrafish have also been successfully used to assess changes
in sleep-awake states in response to pharmacological and genetic
interventions (Prober et al., 2006; Rihel et al., 2010; Sigurgeirsson
et al., 2011). However, there have been no studies comparing the
behavior of zebrafish treated with clinically used hypnotics and
psychostimulants.

The purpose of this study was to examine whether profiling of
zebrafish behavior could be used to classify sleep-wake modifiers
corresponding to their mode of action. We analyzed the number
of transition between rest and active states and the percentage
in the rest state based on their swimming velocity. We also
analyzed 12 behavioral endpoints comprised of four phenotypes
(distance moved, distance to center zone, frequency entering
center zone, and turn angle) at three mobility states (high,
medium, and lowmobility). Wewere able to demonstrate that the
behavioral profiling of zebrafish classified sleep-wake modifiers
based on their specific modes of action, suggesting that zebrafish
may be a useful tool to analyze the effects of chemicals and
genes on sleep-wake states and to develop novel hypnotics and
psychostimulants.

MATERIALS AND METHODS

Compounds
Triazolam, ZPD,MPD, andMDFwere purchased from Sigma (St.
Louis, MO, USA). TCS-1102 was purchased from Tocris (Bristol,
UK). PML was purchased from Tokyo Kasei (Tokyo, Japan).
These compounds were dissolved in dimethyl sulfoxide (Nacalai,
Kyoto, Japan) to make stock solutions.

Zebrafish Husbandry
Zebrafish (AB line from ZIRC) were maintained according to the
methods described by Westerfield (Westerfield, 2007) with some
modification. Briefly, zebrafish were raised at 28.5 ± 0.5◦C with
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a 14-h/10-h light/dark cycle. Embryos were obtained via natural
mating and cultured in 0.3× Danieau’s solution [19.3 mM NaCl,
0.23 mM KCl, 0.13 mM MgSO4, 0.2 mM Ca(NO3)2, 1.7 mM
HEPES, pH 7.2] until 10 days post-fertilization (dpf).

Generation of Hypocretin-KO Zebrafish
Transcription activator-like effector nucleases targeting exon 2
of the zebrafish hcrt gene were constructed using the Golden
Gate TALEN and TAL Effector Kit 2.0 (Addgene #1000000024;
Cermak et al., 2011) and YAMAMOTO Lab TALEN Accessory
Pack (Addgene #1000000030; Sakuma et al., 2013). Briefly, single
DNA-binding repeats were assembled into intermediate array
vectors. The assembled repeat arrays were subsequently inserted
into the final destination vectors, pCS2TAL3-DD and pCS2TAL3-
RR (Addgene #37275 and #37276; Dahlem et al., 2012).

The mRNA of TALEN was synthesized using mMessage
mMachine SP6 Kit (Life Technologies, Carlsbad, CA, USA). The
TALEN mRNAs (300 ng/mL each) were injected into two to
eight cell-stage embryos of zebrafish. After injection, the embryo
were cultured in 0.3× Danieau’s solution until 5 dpf and reared
on an artificial diet (Meito Suien, Nagoya, Japan) and Artemia
(Kitamura, Kyoto, Japan) at 28.5◦C under a 14-h light/10-h dark
period.

At 4 months post-fertilization (mpf), genomic DNA was
extracted from the F0 fins according to a previous report
(Ota et al., 2013). To detect TALEN-induced mutations, a
short fragment of the hcrt gene that included the target
site was amplified from genomic DNA using primers (5′-
gtctcccaacagaagctcca-3′ and 5′-cccactttacgtttgccaag-3′ ). Three-
step PCR was carried out: 45 cycles of 94◦C for 30 s, 60◦C for
30 s, and 68◦C for 30 s. The PCR products were electrophoresed
on 10% poly-acrylamide gels. The F0 fish in which the TALEN-
induced mutation was detected were crossed with the AB strain
to obtain F1 progeny. The F1 generation was reared and the
mutation was examined as described above. The PCR amplicons
were cloned into a pGEM-T Easy vector (Promega, Madison, WI,
USA) and the sequences were analyzed using the M13 forward
primer. An F1 female zebrafish and an F1 male zebrafish having
the same mutations in the hcrt gene were crossed to obtain F2
progeny. The F2 progeny were used for the behavior analysis.
After the behavior analysis, genomic DNA was extracted from
each zebrafish and the genotype and the sequence were examined
as described above.

Behavior Analysis
An overview of the behavior analysis in this study is shown in
Supplementary Figure S1. The behavioral test was performed
during the same time frame. Eighty-four zebrafish at 7 or 9 dpf
were placed individually into wells on a round 48-well plate
(10 mm diameter, 300 μL of 0.3× Danieau’s solution) at 1 pm.
The 48-well plate was placed in an incubator at 28.5◦C with
constant light (255 lx) from 1 to 3 pm. Then, the 48-well plate was
placed in Daniovision (Noldus, Wageningen, The Netherlands),
which was blocked from daylight and illuminated from below
with white light (255 lx) from 3 to 5 pm. The behavior of zebrafish
in each well was monitored by Daniovision with a resolution
of 1024 × 768 pixels at 25 frames per seconds (fps). After the

first monitoring, the 48-well plate was placed in an incubator at
28.5◦C with constant light (255 lx). At 6 pm, 300 μL of 0.3×
Danieau’s solution with or without compounds were added to
each well of the 48-well plate. Then, the 48-well plate was placed
in Daniovision and the behavior of zebrafish was monitored
with a resolution of 1024 × 768 pixels at 25 fps. In the second
monitoring, the light (255 lx) was turned on from 6 to 9 pm
(Zeitgeber time, ZT 0-3) and 7 am to 6 pm (ZT 13-24). Eight larva
were assigned to examine the effect of each concentration of the
compound. Two independent experiments were performed for
each compound.

The recorded video images were subjected to Ethovision XT11
(Noldus) to measure the behavior of zebrafish in each well. For
the first monitoring, total distance moved and turn angle were
measured. Turn angle represents the change in direction of the
center point of the animal between two consecutive samples. If
the distance moved and turn angle of zebrafish showed greater
than two standard deviations from the median of the 48 samples,
the zebrafish was excluded from further analysis. For the second
monitoring, the mean velocity for each 6 s, total distance moved,
distance to center zone (2 mm radius circle) of the well, frequency
entering the center zone, turn angle, andmobility were measured.
Mobility is calculated by taking every pixel identified as the
subject and comparing it between the current image and the
previous one. If all the pixels are the same, there is zero mobility.
If all the pixels are different, there is 100% mobility. In this study,
we defined 5–35, 35–65, and 65–95% as low, medium, and high
mobility.

Velocity data were exported from Ethovision to a text edit
file and imported into a custom-made program using R. The
data were divided into 6-s bouts (comprising 150 measurements
each). If 10 or more successive bouts (equal to or over 60 s) had
a mean velocity for each bout below a defined threshold, it was
designated as rest state (Supplementary Figure S2). In contrast,
if the mean velocity of a bout was equal to or over the threshold
among 10 successive bouts, it was designated as active state. We
also measured the number of transition between the rest and
active states. The percentage in the rest state and the number
of transition between rest and active states were calculated for
each hour or each period (L1; ZT 0-3, D; ZT 3-13, L2; ZT 13-24).
We analyzed the velocity data changing the threshold. When we
used 0.5 mm/s as the threshold, the percentage in the rest state
during dark period was significantly higher than those during
light periods. However, the number of transition between rest
and active states during dark period was not significantly higher
than those during light periods, suggesting that using 0.5 mm/s
as the threshold may be too stringent. When we used 0.2 mm/s
as the threshold, both the number of transition between rest and
active state and the percentage in the rest state during dark period
were significantly higher than those during light periods, which
is consistent to previous studies using zebrafish (Yokogawa et al.,
2007; Elbaz et al., 2012). Therefore, we decided to use 0.2 mm/s
as the threshold in this study.

The data for total distance moved, the mean distance to the
center zone, the frequency entering the center zone, and the mean
absolute turn angle for each period (L1, D, and L2) were also
measured for the time showing high, medium, or low mobility.
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The means were compared by analysis of variance using Prism
6 (Graphpad, La Jolla, CA, USA). Alpha was set at 0.05 and
the Dunnett’s multiple comparisons test was used for post hoc
analyses when significant effects were found.

For HCL and PCA, the data for each behavioral endpoint
were normalized to the controls and constituted a feature vector.
HCL was performed with the Multiexperiment Viewer (Howe
et al., 2011) using the Covariance value with average linkage as
the metric. PCA was performed using Bioconductor (Gentleman
et al., 2004) and “rgl” package (Adler et al., 2014).

RESULTS

ZPD was more Effective at 9 dpf than 7
dpf
It has been demonstrated that rest-like behavior in zebrafish
can be defined as the duration of non-movement and that
rest-like behavior can be used as a measure of sleep states
(Rihel et al., 2010; Sigurgeirsson et al., 2011). Therefore, we first
assessed the effects of clinically used hypnotics on the number
of transitions between rest and active states and the percentage
in the rest states observed in zebrafish. An overview of the
behavior analysis is shown in Supplementary Figures S1 and
S2, and the experimental detail is described in the methods
section.

We first examined the effects of ZPD, one of the most
widely prescribed hypnotics, on the transition between rest and
active states of zebrafish from 7 to 8 dpf. The transition was
significantly increased by ZPD in D (2.5 μM) and L2 (2.5 and
5 μM) but not in L1 (Figures 1A,B and Supplementary Table
S1). We next examined the effects of ZPD on the transition
of zebrafish from 9 to 10 dpf. As shown in Figures 1C,D,
the transition was significantly increased by ZPD in L1,
D and L2 at 1.25 μM (Figures 1C,D and Supplementary
Table S1).

We then examined the effects of ZPD on the percentage in
the rest state of zebrafish at between 7 and 8 dpf (Figures 2A,B
and Supplementary Table S2) and between 9 and 10 dpf
(Figures 2C,D and Supplementary Table S2). The effects of ZPD
were the same as those on the transition between rest and active
states.

These results suggest that ZPD may increase the percentage
in the rest state by decreasing the duration of the wake state
in zebrafish (Supplementary Figure S2C, Pattern 2), which is
similar to the effect of ZPD in mammals (Greenblatt and Roth,
2012; Berdyyeva et al., 2014). These results are also consistent
with previous results showing the increase of sensitivity to ZPD
during development in rats (Wall, 2005; Chudomel et al., 2009).
Therefore, we decided to examine the effects of sleep/awake
modifiers on zebrafish from 9 to 10 dpf.

Hypnotics and hcrt-KO Increased the
Rest State of Zebrafish
We then assessed the effect of TRZ, a common benzodiazepine
hypnotic, TCS-1102, a dual antagonist of hcrt receptor (Bergman

et al., 2008), and hcrt-KO on the transition between rest
and active states of zebrafish. We generated hcrt-KO zebrafish
using TALEN (Supplementary Figure S3). TRZ significantly
increased the transition during L1 and D at all concentrations
(Figures 3A,B and Supplementary Table S1). TCS-1102 did
not cause significant effects on the transition (Figures 3C,D
and Supplementary Table S1). hcrt-KO significantly increased
the transition during L1 (Figures 3E,F and Supplementary
Table S1).

We then assessed the effect of TRZ, TCS-1102, and hcrt-KO
on the percentage in the rest state. TRZ significantly increased the
percentage during L1 and D at all concentrations (Figures 4A,B
and Supplementary Table S2). TCS-1102 significantly increased
the percentage during L2 at 1.25 μM (Figures 4C,D and
Supplementary Table S2). hcrt-KO significantly increased
the percentage during D (Figures 4E,F and Supplementary
Table S2).

These results suggest that TRZ may increase the percentage in
the rest state by decreasing the duration of wake state in zebrafish
(Supplementary Figure S2C, Pattern 2), which is similar to the
effect of TRZ in mammals (Keighley et al., 1980). The results also
suggest that TCS-1102 increase the percentage in the rest state in
L2 by decreasing and increasing wake and rest state, respectively,
in zebrafish (Supplementary Figure S2C, Pattern 3). The results
also indicate that hcrt-KO may increase the percentage in the
rest state in D by decreasing and increasing wake and sleep state,
respectively (Supplementary Figure S2C, Pattern 3). hcrt-KO also
increased the transition between sleep and rest states without
affecting on the percentage in the rest state, suggesting that hcrt-
KOmay decrease the duration of rest and wake states in zebrafish
(Supplementary Figure S2C, Pattern 4). These results suggest
that both GABA-A modulators and blocking hcrt signaling may
increase sleep state and that hcrt-KO may cause an increase in
transition between sleep and awake states in zebrafish as observed
in mammals (Baumann and Bassetti, 2005; Baier et al., 2011).

Psychostimulants Decreased the Rest
State of Zebrafish
We then examined the effect of clinical psychostimulants on
the transition between rest and active states of zebrafish. The
transition in L2 was significantly decreased by MPD at 5 μM
(Figures 5A,B and Supplementary Table S1), PML at 25 and
50 μM (Figures 5C,D and Supplementary Table S1) and MDF
at 50 μM (Figures 5E,F and Supplementary Table S1). MDF at
25 and 100 μM also significantly increased the transition in L1
(Figures 5E,F and Supplementary Table S1).

We also examined the effect of clinical psychostimulants
on the percentage in the rest state of zebrafish. The percentage
in L2 was significantly decreased by MPD (Figures 6A,B
and Supplementary Table S2), PML (Figures 6C,D and
Supplementary Table S2) and MDF (Figures 6E,F and
Supplementary Table S2). MDF also significantly increased
the percentage in L1 (Figures 6E,F and Supplementary Table S2).
These effects were the same as those in the transition between
rest and active states. MPD at 2.5 μM in L1 and D (Figures 6A,B
and Supplementary Table S2) and MDF at 100 μM in D also
significantly increased the percentage, whereas PML at 25 μM
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FIGURE 1 | Effects of zolpidem on the transition between rest and active states of zebrafish from 7 to 8 dpf and 9 to 10 dpf. The number of transition
states of zebrafish treated with zolpidem from 7 to 8 dpf (A) and from 9 to 10 dpf (C) are shown for each hour. The number of transitions of zebrafish treated with
zolpidem from 7 to 8 dpf (B) and from 9 to 10 dpf (D) are shown during L1 (ZT 0-3), D (ZT 3-13), and L2 (ZT 13-24). The data are represented as means with the
standard error of mean. #p < 0.05 vs. control.

significantly decreased the percentage in D (Figures 6C,D and
Supplementary Table S2).

These results suggest that these psychostimulants may
decrease the percentage in the rest state in L2 by increasing the
duration of the wake state in zebrafish (Supplementary Figure
S2C, Pattern 5), which is consistent with the effect of these
psychostimulants in mammals (Nicholson and Pascoe, 1990;
Edgar and Seidel, 1997; Lahti et al., 2009). The reasons why MPD
and MDF increased the percentage in the rest states in L1 and D
are currently unknown. Taken together, these results suggest that
MPD, PML and MDF may decrease sleep state by increasing the
awake state in zebrafish as observed in mammals (Banerjee et al.,
2004; Sinita and Coghill, 2014).

Behavioral Profiling of Zebrafish Treated
with Hypnotics
It has been demonstrated that GABA-A receptor modulators can
promote sleep with the impairment of locomotor performance,
whereas hcrt receptor antagonists can promote sleep without
locomotor impairment (Steiner et al., 2011; Ramirez et al., 2013).

Therefore, we examined whether behavioral profiling could
distinguish GABA-A receptor modulators and hcrt receptor
antagonists.

We first classified zebrafish behavior into three groups based
on their mobility: high, medium, and low. We then measured
four behavioral endpoints, the Distance Moved (DM), Distance
to the Zone in the center of the well (DZ), Frequency of
entering the center Zone (FZ), and Turn Angle (TA) in the time
showing each mobility, resulting in 12 measured endpoints (four
behavioral endpoints at three mobility states).

We examined the effect of ZPD (Figure 7, Supplementary
Table S3-1), TRZ (Figure 8, Supplementary Table S3-2),
TCS-1102 (Figure 9, Supplementary Table S3-3), and hcrt-KO
(Figure 10, Supplementary Table S3-4) on the 12 endpoints.

As shown in Figure 7 and Supplementary Table S3-1, ZPD
significantly affected DM and FZ at high mobility and DM, FZ,
and TA at medium and low mobility. DM in L1 and/or L2
were significantly decreased by ZPD at high, medium, and low
mobilities. FZ was also significantly decreased by ZPD in L1, D,
and L2 at high and medium mobility and L1 at low mobility.

Frontiers in Pharmacology | www.frontiersin.org 5 November 2015 | Volume 6 | Article 257

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Nishimura et al. Pharmacologically profiling zebrafish sleep-awake states

FIGURE 2 | Effects of zolpidem on the rest state of zebrafish from 7 to 8 dpf and 9 to 10 dpf. The rest state of zebrafish treated with zolpidem from 7 to 8
dpf (A) and from 9 to 10 dpf (C) are indicated as percentage of total behavior during each hour. The rest state of zebrafish treated with zolpidem from 7 to 8 dpf (B)
and from 9 to 10 dpf (D) are shown as percentage in L1 (ZT 0-3), D (ZT 3-13), and L2 (ZT 13-24). The data are represented as means with the standard error of
mean. #p < 0.05 vs. control.

TA was significantly increased by ZPD in L1, D, and L2 at low
mobility and L1 at mediummobility.

As shown in Figure 8 and Supplementary Table S3-2, TRZ
significantly affected DM and FZ at high and medium mobility
and TA at low mobility. DM in L1 and D were significantly
decreased by TRZ at high and medium mobility. FZ were
also significantly decreased by TRZ in D at high and medium
mobility. TA was significantly increased by TRZ in L1 and D at
low mobility.

The decrease of DM in L1 at high mobility, the decrease of
FZ in D at high and medium mobility, and the increase of TA
in L1 and D at low mobility were common between the effects
of ZPD and TRZ, suggesting that these behavioral endpoints
may be related to the effects of hypnotics targeting GABA-A
receptors.

As shown in Figure 9 and Supplementary Table S3-3, TCS-
1102 significantly affected DZ in D at mediummobility.

As shown in Figure 10 and Supplementary Table S3-4, there
were no significant changes in the 12 endpoints among hcrt+/+,
hcrt+/–, and hcrt–/– zebrafish.

These results suggest that the GABA-A modulator may
promote sleep with the impairment of locomotor performance,
whereas blocking the hcrt signaling may promote sleep with little

impairment of locomotor performance in zebrafish as observed
in mammals (Steiner et al., 2011; Ramirez et al., 2013).

Behavioral Profiling of Zebrafish Treated
with Psychostimulants
It has been demonstrated that sympathomimetic
psychostimulants can increase wakefulness causing
autonomic arousal and psychomotor agitation, whereas non-
sympathomimetic psychostimulants can promote wakefulness in
the absence of the other arousing effects typically seen with the
sympathomimetic psychostimulants (Banerjee et al., 2004). MPD
and PML are representative sympathomimetic psychostimulants,
whereas the pharmacodynamics of MDF as a psychostimulant
has not been fully elucidated. Therefore, we examined the
effect of MPD (Figure 11, Supplementary Table S3-5), PML
(Figure 12, Supplementary Table S3-6), and MDF (Figure 13,
Supplementary Table S3-7) on the 12 endpoints.

As shown in Figure 11, Supplementary Table S3-5, DM in L1
at high andmediummobility was significantly increased byMPD.

As shown in Figure 12 and Supplementary Table S3-6, DZ
was significantly decreased by PML. At high mobility, DZ was
significantly decreased by PML in D and L2. At medium and low
mobility, DZ was significantly decreased by PML in L2.
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FIGURE 3 | Effects of triazolam, TCS1102, and hcrt knockout on the transition between rest and active states of zebrafish. The number of transitions of
zebrafish treated with triazolam (A), TCS1102 (C), and hcrt knockout (E) from 9 to 10 dpf are shown during the hour. The number of transitions of zebrafish treated
with triazolam (B), TCS1102 (D) and hcrt knockout (F) from 9 to 10 dpf are shown during L1, D, and L2. The data are represented as means with the standard error
of mean. #p < 0.05 vs. control.

As shown in Figure 13 and Supplementary Table S3-7,
there was no significant change in the 12 endpoints induced
by MDF.

These results suggest that sympathomimetic psychostimulants
such as MPD and PML may increase wakefulness with changing
locomotor performance, whereas MDFmay increase wakefulness
without impairments of locomotor performance in zebrafish as
observed in mammals (Banerjee et al., 2004)

Clustering of Zebrafish Behavior
Distinguished Sleep-wake Modifiers
based on their Mode of Action
We finally examined whether behavioral profiling in zebrafish
treated with sleep-wake modifiers could be used to distinguish
the modes of action of different modifiers. Using the quantitative
data matrix from 42 endpoints (14 behavioral endpoints in L1,
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FIGURE 4 | Effects of triazolam, TCS1102, and hcrt knockout on the rest state of zebrafish. The rest state of zebrafish treated with triazolam (A), TCS1102
(C), and hcrt knockout (E) from 9 to 10 dpf are shown as percentage of total behavior. The rest state of zebrafish treated with triazolam (B), TCS1102 (D), and hcrt
knockout (F) from 9 to 10 dpf are shown as percentage in L1, D, and L2. The data are represented as means with the standard error of mean. #p < 0.05 vs. control.

D, and L2) analyzed for the sleep-wake modifiers, we performed
HCL analysis, which has been used in transcriptome analysis to
classify the samples based on the expression profile (Nishimura
et al., 2007). As shown in Figure 14A, the HCL of the Z score
of each behavioral endpoint clearly distinguished hypnotics and
psychostimulants. Moreover, the HCL was able to classify sleep
modifiers targeting GABA-A signaling (ZPD and TRZ) and hcrt
signaling (TCS-1102 and hcrt-KO).

We also performed PCA to examine whether the behavioral
profiling could distinguish hypnotics based on their mode
of action. PCA has also been widely used in transcriptome

analysis to classify the samples, but it uses a different algorithm
than HCL (Nishimura et al., 2007). As shown in Figure 14B,
PCA of the Z score in our analysis using behavioral profiling
of zebrafish treated with hypnotics revealed that principal
component (PC) 1mainly differentiated GABA-Amodifiers from
the hcrt receptor antagonist/hcrt-KO. FZ at high mobility in D
negatively contributed to the PC1 (Supplementary Table S4-1).
In D, FZ at high mobility negatively correlated with TA at low
mobility (r = −0.923) and positively correlated to FZ at medium
mobility (r = 0.977; Supplementary Table S5). These endpoints
were significantly affected by ZPD (Figure 7 and Supplementary
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FIGURE 5 | Effects of methylphenidate, pemoline, and modafinil on the transition between rest and active states of zebrafish. The number of transitions
of zebrafish treated with methylphenidate (A), pemoline (C), and modafinil (E) from 9 to 10 dpf is indicated during the hour. The number of transitions of zebrafish
treated with methylphenidate (B), pemoline (D), and modafinil (F) from 9 to 10 dpf is indicated as during L1, D, and L2. The data are represented as means with the
standard error of mean. #p < 0.05 vs. control.

Table S3-1) and TRZ (Figure 8 and Supplementary Table S3-2).
These results suggest that FZ at high mobility in D may be a key
behavioral endpoint for distinguishing the GABA-A modulator
and the hcrt receptor antagonist.

We also examined whether PCA of behavioral profiling could
distinguish psychostimulants based on their mode of action.
As shown in Figure 14C, PCA of the Z score of behavioral
profiling of zebrafish treated with psychostimulants revealed
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FIGURE 6 | Effects of methylphenidate, pemoline, and modafinil on the rest state of zebrafish. The rest state of zebrafish treated with methylphenidate (A),
pemoline (C), and modafinil (E) from 9 to 10 dpf is indicated as percentage of total behavior during the hour. The rest state of zebrafish treated with methylphenidate
(B), pemoline (D), and modafinil (F) from 9 to 10 dpf is indicated as percentage in L1, D, and L2. The data are represented as means with the standard error of
mean. #p < 0.05 vs. control.

that PC2 mainly distinguished representative sympathomimetic
psychostimulants (e.g., MDF and PML) and MDF. DM at high
mobility in D negatively contributed to PC2 (Supplementary
Table S4-2). DM at high mobility in D was significantly
affected by PML although multiple comparisons between the
controls revealed no significant change by PML (Figure 12
and Supplementary Table S3-6). DM at high mobility in

D was positively correlated to DM at high mobility in L1
(r = 0.550; Supplementary Table S5), which was significantly
increased by MPD (Figure 11 and Supplementary Table
S3-5). These results suggest that DM at high mobility in L1
and D may be key behavioral endpoints for distinguishing
representative sympathomimetic psychostimulants and
MDF.
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FIGURE 7 | Behavioral profiling of zebrafish treated with zolpidem. The behavior of zebrafish treated with zolpidem from 9 to 10 dpf are classified into three
groups based on their mobility. Distance moved (A), distance to zone (B), in-zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each
mobility classification. The data are represented as means with the standard error of mean. #p < 0.05 vs. 0 μM.
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FIGURE 8 | Behavioral profiling of zebrafish treated with triazolam. The behavior of zebrafish treated with triazolam from 9 to 10 dpf were classified into three
groups based on their mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each
mobility. The data were represented as means with the standard error of mean. #p < 0.05 vs. 0 μM.

DISCUSSION

In this study, we demonstrated that behavioral profiling
of zebrafish treated with clinically used hypnotics or

psychostimulants between 9 and 10 dpf can be used to classify
these drugs based on their mode of action. We also identified
behavioral endpoints distinguishing sleep-wake modifiers based
on their mode of action.
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FIGURE 9 | Behavioral profiling of zebrafish treated with TCS-1102. The behavior of zebrafish treated with TCS-1102 from 9 to 10 dpf was classified into three
groups based on their mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each
mobility classification. The data are represented as means with the standard error of mean. #p < 0.05 vs. 0 μM.

Behavioral Profiling of Zebrafish
between 9 and 10 dpf can be Used to
Classify Sleep-wake Modifiers
It has been demonstrated that behavioral profiling of zebrafish
can be used to classify neuroactive compounds based on their
mode of action (Rihel and Schier, 2013; Stewart et al., 2015).
Kokel et al. (2010)performed a high-throughput screen of
14,000 compounds using photomotor response of zebrafish
at 2 dpf and demonstrated that profiling the photometer
response classified these compounds based on their mechanisms
of action. Rihel et al. (2010) used an automated rest/wake
behavioral assay to monitor the activity of zebrafish treated
with small molecules from 4 to 7 dpf and demonstrated
that behavioral profiling can reveal conserved functions

of psychotropic molecules and predicted the mechanisms
of action of poorly characterized compounds. However, to
our knowledge, there have been no studies demonstrating
the effects of clinically used benzodiazepines (i.e., TRZ,
estazolam, quazepam, flurazepam, temazepam), Z-drugs
(i.e., ZPD, eszopiclone, and zaleplon), and sympathomimetic
psychostimulants (e.g., MPD and PML) on sleep-wake states of
zebrafish larva.

In this study, we demonstrated that the hypnotic effects of
ZPD at 9 dpf was stronger than that at 7 dpf. It has been
demonstrated that the sensitivity to ZPD was increased during
development in rats (Wall, 2005; Chudomel et al., 2009). The
action of benzodiazepine site agonists depends on the subunit
composition of GABA-A receptors (Wall, 2005; Chudomel et al.,
2009). ZPD has selectivity for GABA-A receptors of the form
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FIGURE 10 | Behavioral profiling of hcrt-KO zebrafish. The behavior of hcrt-KO zebrafish from 9 to 10 dpf were classified into three groups based on their
mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each mobility classification. The
data are represented as means with the standard error of mean.

α1βxγ2 (where x is 1, 2, or 3; Rudolph and Mohler, 2004). In
rats, although the α1 subunit is present at birth, the expression of
α1 is increased between postnatal days 14 and 21 (Poulter et al.,
1992), which corresponds to around 10 dpf in zebrafish (Jomaa
et al., 2014). Expression of α6 subunits can modify ZPD action by
changing the proportion of α1βxγ2, α6β2/3γ2, and α1α6β2/3γ2
(Minier and Sigel, 2004). The increased sensitivity of ZPD from
9 to 10 dpf may be related to the expression level of α1 and α6
subunits. A study of spatial and temporal expression patterns of
α1 and α6 subunits in the zebrafish brain during the development
remains to be performed.

Using zebrafish larva at a relatively late stage for chemical
screening has several advantages. The neuronal system, including
the neural circuits and blood–brain barrier, is more mature
than in the early stage so it is likely to increase the sensitivity

and selectivity to chemicals targeting the central nervous system
(Watanabe et al., 2012; Nishimura et al., 2013, 2015). The
repertory of behavior is also increased during development
(Kalueff et al., 2013; Nishimura et al., 2015; Stewart et al., 2015).
However, using zebrafish larva at a relatively late stage decreases
the throughput of chemical screening. The developmental stage
used in chemical screens involving zebrafish should be chosen
depending on the application (Rennekamp and Peterson, 2015).

Behavioral Endpoints Distinguishing
Hypnotics based on their Mode of
Actions
In this study, we demonstrated that GABA-A receptor
modulation was different following treatment with an hcrt
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FIGURE 11 | Behavioral profiling of zebrafish treated with methylphenidate. The behavior of zebrafish treated with methylphenidate from 9 to 10 dpf was
classified into three groups based on mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are
indicated for each mobility classification. The data are represented as means with the standard error of mean. #p < 0.05 vs. 0 μM.

receptor antagonist vs. hcrt-KO by FZ at high mobility during
night conditions. This was negatively correlated to TA at
low mobility and positively correlated to FZ at medium
mobility.

Mobility is calculated by taking every pixel identified as the
subject and comparing the value between the current image
and the previous one. Therefore, mobility may be correlated to
distance per movement for each endpoint related to wakefulness
(Tejada et al., 2011). In rats, waking states can be divided into
three different states, namely an awake exploratory behavior
state when rats are actively moving, a grooming state when rats
show grooming behavior, and an awake resting state when rats
are immobile (Manabe et al., 2011). These findings motivated
us to classify zebrafish behavior into three (high, medium, and
low) mobility states and to analyze behavioral endpoints at each
mobility state. Electroencephalography (Afrikanova et al., 2013)
and/or optogenetics (Rihel and Schier, 2013) may reveal the exact

relationship between these mobility states and wakefulness in
zebrafish.

Behavioral profiling revealed that FZ at high mobility during
the night was significantly decreased in zebrafish treated with
ZPD and TRZ but not treated with TCS-1102 and hcrt-KO. FZ at
high mobility during the night was positively correlated to DM at
high mobility during night conditions. These results suggest that
the decrease of FZ at high mobility during the night conditions
may be related to the impairment of locomotion induced by
ZPD and TRZ. These results are consistent with previous reports
showing that the GABA-A receptor modulator can promote
sleep with impairment of locomotor performance, whereas hcrt
receptor antagonists and hcrt-KO can promote sleep without
locomotor impairment (Kaur et al., 2008; Steiner et al., 2011;
Elbaz et al., 2012; Ramirez et al., 2013).

The behavioral profiling also revealed that TA at low mobility
during the night was significantly increased in zebrafish treated
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FIGURE 12 | Behavioral profiling of zebrafish treated with pemoline. The behavior of zebrafish treated with pemoline from 9 to 10 dpf were classified into three
groups based on their mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each
mobility classification. The data are represented as means with the standard error of mean. #p < 0.05 vs. 0 μM.

with ZPD and TRZ but not treated with TCS-1102 and hcrt-KO.
In rodents, TA in the peripheral zone indicates non-locomotor
movements of the body (Ruan et al., 2015), suggesting that
both ZPD and TRZ may increase non-locomotor movement
of the body at low mobility during the night. It has been
demonstrated that ZPD producedmuscle twitching and spasticity
during hypnosis in GABA-A receptor α1 –/– mice (Kralic et al.,
2002). The mechanism accounting for the increase of TA remains
to be elucidated.

Zolpidem had greater effects than TRZ in the transition
between rest and active states and the percentage in the rest
state. The concentrations of ZPD used in this study were 10
times higher than those of TRZ. The EC50 of ZPD and TRZ on
the α1β2γ2 GABA-A receptor were 78 and 52 nM, respectively
(Sanna et al., 2002). The greater effect of ZPD on the transition

between rest and active states and the percentage in the rest state
over those in TRZ suggest that the α1β2γ2 GABA-A receptor may
be involved in these endpoints.

The hcrt-KO zebrafish showed the increase of the transition
between rest and active states and the percentage in the rest state.
It has been well known that blocking hcrt signaling can cause the
increase of state transition and the decrease of wake duration in
mammals (Baumann and Bassetti, 2005; Baier et al., 2011). Based
on these findings, we think that these behavioral changes might
show symptoms of narcolepsy. It has also been demonstrated that
exposure to light during the night increased locomotor activity in
hcrt neuron-ablated zebrafish in contrast to the decrease in wild-
type siblings (Elbaz et al., 2012). Sound stimulus during day also
caused hypersensitive response in hcrt neuron-ablated zebrafish
in contrast to the reduction of locomotor activity in wild-type
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FIGURE 13 | Behavioral profiling of zebrafish treated with modafinil. The behavior of zebrafish treated with modafinil from 9 to 10 dpf was classified into three
groups based on mobility. Distance moved (A), distance to zone (B), in zone frequency (C), and turn angle (D) at L1, D, and L2 periods are shown for each mobility
classification.

siblings (Elbaz et al., 2012). We currently examine whether the
hcrt-KO zebrafish we developed in this study can show these
behaviors.

Behavioral Endpoints Distinguishing
Psychostimulants
In this study, we demonstrated that representative
sympathomimetic psychostimulants MPD and PML were
differentiated from MDF by DM at high mobility during L1 and
D. In children, placebo-controlled studies have demonstrated
that MPD increased motor activity at sleep onset (Ironside
et al., 2010). In contrast, MDF increased wakefulness at the
expense of slow-wave and paradoxical sleep with no increase
in locomotor activity in hamsters (Webb et al., 2006). These
reports may be consistent with our results demonstrating the
significant increase of DM at high mobility in L1 by MPD and

the significant increases of the number of transition between
rest and active and the percentage in the rest state during
L1 without significant effects on DM by MDF. These results
suggest that DM at high mobility may be useful to distinguish
representative sympathomimetic psychostimulants from other
psychostimulants.

We demonstrated that the number of transition between
rest and active states and the percentage in the rest state of
zebrafish treated with MPD, PML, or MDF were significantly
decreased in L2. However, the concentrations of MDF showing
the decrease were very narrow. It has been demonstrated
that sleep-promoting ventrolateral preoptic (VLPO) neurons
are inhibited by dopamine via activation of α2 noradrenergic
receptors and the noradrenergic inhibition of VLPO neurons is
potentiated by MDF (Cornil et al., 2002; Gallopin et al., 2004;
Vetrivelan et al., 2014). Although mammals have three subtypes

Frontiers in Pharmacology | www.frontiersin.org 17 November 2015 | Volume 6 | Article 257

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Nishimura et al. Pharmacologically profiling zebrafish sleep-awake states

FIGURE 14 | HCL and PCA of behavior of zebrafish treated with sleep/awake modifiers. (A) HCL of behavior of zebrafish treated with sleep/awake
modifiers. Z scores of each behavioral endpoint were subjected to HCL using Spearman correlation with average linkage. (B) PCA of behavior of zebrafish treated
with hypnotics and hcrt-KO. Z scores of each behavioral endpoint were subjected to PCA. (C) PCA of behavior of zebrafish treated with psychostimulants. Z scores
of each behavioral endpoint were subjected to PCA.

of α2 noradrenergic receptors (α2A, α2B and α2C), zebrafish have
five distinct α2 noradrenergic receptors (α2A, α2B, α2C, α2Da,
and α2Db), which may make the zebrafish a2-adrenergic system
more complicated (Ruuskanen et al., 2005) and may account for
why the MDF effect is not dose-dependent.

Advantages and Disadvantages of
Behavioral Profiling in Zebrafish
Zebrafish can absorb a wide range of chemicals from the
medium in which they swim. Zebrafish also exhibit a number
of simple and complex neurobehavior which appear to be
comparable at a functional level with human behavior. Because
zebrafish are prolific and small, various neurobehaviors of
larval zebrafish can be tracked in multi-well plates using
automated and commercially available video-tracking systems.
These tracking systemsmake it possible to undertake a systematic
and objective analysis of zebrafish behaviors and to yield the
statistical power necessary to detect subtle but significant changes
in the behaviors in response to pharmacological and genetic
interventions (Nishimura et al., 2015).

It has been demonstrated that zebrafish possessed orthologs
for 86% of 1318 human drug targets (Gunnarsson et al.,

2008). However, there can be interspecies differences in
the pharmacodynamics. For example, dopamine D1 receptor
agonists have opposite efficacies in zebrafish andmammals (Rihel
et al., 2010). In this study, we demonstrated that TCS-1102
increased the percentage in the rest state. However, the effect was
only observed in L2 at 1.25 nM. In contrast tomammals that have
two hcrt receptors (Hcrtr1 and Hcrtr2), zebrafish has only one
hcrt receptor with 60 and 70% identity to mammalian Hcrtr1 and
Hcrtr2, respectively (Prober et al., 2006). The difference in the
amino acid sequence of the zebrafish hcrt receptor may account
for the relatively low sensitivity to the hcrt receptor antagonist in
this study.

Despite these disadvantages, phenotype-based screening using
zebrafish have successfully discovered novel therapeutic drugs
and identified novel uses for existing drugs (MacRae and
Peterson, 2015) and used for screening side effects of clinical
drugs (Kanungo et al., 2014). Therefore, the profiling of zebrafish
neurobehavior may be one of the screening systems that can
detect both therapeutic and side effects of drugs with high
sensitivity. Integration of the screening using zebrafish and the
detailed characterization using rodents may minimize risks in the
animal-human extrapolation (Sogorb et al., 2014).

Frontiers in Pharmacology | www.frontiersin.org 18 November 2015 | Volume 6 | Article 257

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Nishimura et al. Pharmacologically profiling zebrafish sleep-awake states

In summary, we demonstrated that behavioral profiling of
zebrafish from 9 to 10 dpf could classify sleep-wake modifiers
based on their mode of action. Because zebrafish are highly
amenable to genome editing and chemical screening, behavioral
profiling can be useful in identifying genes related to sleep-
wake disturbance associated with various diseases and novel
therapeutic compounds for insomnia and excessive daytime sleep
with low toxicity profiles.
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