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Abstract

Introduction Data are sparse about the potential health

risks of chronic low-dose contamination of humans by

uranium (natural or anthropogenic) in drinking water.

Previous studies report some molecular imbalances but no

clinical signs due to uranium intake.

Objectives In a proof-of-principle study, we reported that

metabolomics is an appropriate method for addressing this

chronic low-dose exposure in a rat model (uranium dose:

40 mg L-1; duration: 9 months, n = 10). In the present

study, our aim was to investigate the dose–effect pattern

and identify additional potential biomarkers in urine

samples.

Methods Compared to our previous protocol, we doubled

the number of rats per group (n = 20), added additional

sampling time points (3 and 6 months) and included sev-

eral lower doses of natural uranium (doses used: 40, 1.5,

0.15 and 0.015 mg L-1). LC–MS metabolomics was per-

formed on urine samples and statistical analyses were made

with SIMCA-P? and R packages.

Results The data confirmed our previous results and

showed that discrimination was both dose and time related.

Uranium exposure was revealed in rats contaminated for

9 months at a dose as low as 0.15 mg L-1. Eleven features,

including the confidently identified N1-methylnicoti-

namide, N1-methyl-2-pyridone-5-carboxamide and 4-hy-

droxyphenylacetylglycine, discriminated control from

contaminated rats with a specificity and a sensitivity

ranging from 83 to 96 %, when combined into a composite

score.

Conclusion These findings show promise for the elucida-

tion of underlying radiotoxicologic mechanisms and the

design of a diagnostic test to assess exposure in urine, in a

dose range experimentally estimated to be above a

threshold between 0.015 and 0.15 mg L-1.

Keywords Metabolomics � Chronic � Low dose �
Contamination � Uranium � N1-methylnicotinamide

1 Introduction

Characterizing the long-term biological effects associated

with exposure to chemical pollutants, such as drugs, pes-

ticides and radionuclides, proves to be rather complex

when it comes to chronic low-dose contamination. These

effects generally include several molecular events involv-

ing several metabolic pathways that induce low amplitude
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effects barely distinguishable from physiological variabil-

ity. Primary data obtained from cohorts weakly exposed to

chemical compounds regularly used in the chemical

industry and agriculture recently revealed biological effects

without any apparent phenotypic change or morbidity

(Bonvallot et al. 2013; Dudka et al. 2014). Unfortunately,

in this context the use of conventional clinical analysis

combined with univariate statistical analyses is unsuit-

able for identifying low-dose biological effects, both

because the body is an integrated system involving multi-

ple and interconnected forms of complex metabolic regu-

lation and because no phenotypic effect can be observed

within narrow time-windows, especially in the low-dose

ranges.

Among the various pollutants that have sparked societal

concern about the risks of low doses, radionuclides are

found dispersed in the environment, both naturally, since

they are present in the Earth’s crust, or from anthropogenic

sources, such as nuclear fuel cycles or military use

(MacKenzie 2000). The dispersion rate depends on their

origin (natural, accidental or post-accidental) and geo-

graphical location (Hu et al. 2010). Routes of human

exposure and contamination include skin injury, inhalation

and, often, the ingestion of low concentrations of

radionuclides through the food chain and spring water

consumption. Radionuclide toxicity is relatively well

described for the high-contamination dose ranges, which

are associated with characteristic pathological effects

(Kathren and Burklin 2008; Papadopoulou and Efthimiou

2009), but remains a controversial topic for low dose ran-

ges, because of the scarcity of investigations (Morgan and

Bair 2013). Nonetheless, the health consequences of

chronic low-dose exposure to radionuclides are an impor-

tant public issue because of their potential major societal

and political impact. In particular, uranium is naturally

present in the earth’s crust and can be found in drinking

water at various concentrations, depending on the geolog-

ical nature of the soil (UNSCEAR 2008). Additionally, a

major concern about uranium levels in drinking water is the

biological impact of chronic ingestion during sensitive

periods such as pregnancy, childhood and old age.

Some in vivo experimental studies in rodents chroni-

cally exposed with uranium report molecular imbalances

associated, for example, with the cholinergic pathway and

oxidative stress in the brain, with the cholesterol metabo-

lism and the liver xenobiotic metabolism, with inflamma-

tory mediators in the intestines and changes in the levels of

biological markers in the kidneys (Dublineau et al. 2014).

Others have investigated the ingestion of chronic low-dose

cesium 137 and natural uranium in rats and, more recently,

strontium 90 in mouse (Goudarzi et al. 2016; Grison et al.

2012, 2013). They pointed out specific metabolite finger-

print using a metabolomics approach. Metabolomics is a

post-genomic approach which allows an exhaustive anal-

ysis of all measured metabolites in a biological matrix,

reflecting the biological phenotype. Unfortunately, few

studies used metabolomics in the field of low doses ion-

izing radiations and, more particularly, in low dose

radionuclides intake (i.e. less than 10 publications since

2012). Therefore, the lack of scientific data justifies fol-

lowing this topic. In our previous studies (Grison et al.

2012, 2013), metabolomics analysis performed in rats

chronically contaminated with either natural uranium

(40 mg L-1) or cesium-137 (6500 Bq L-1) in drinking

water showed for the first time the relevance of metabo-

lomics in the field of chronic low dose radiotoxicology.

Indeed, unlike other analytical techniques, metabolomics

provided a discriminant fingerprint from urine of the con-

taminated group. These results open new perspectives but

have to be validated with other studies including new

cohorts, radionuclide dose–response and kinetic effect

before concluding about the ability of metabolomics to

cover the low dose ranges biological effect of radionuclide

intake.

The objective of this study is to determine both the

uranium concentration and the time required to observe a

metabolic disruption in rats using a metabolomics

approach. To investigate the dose–effect pattern of low-

dose chronic exposure and the metabolomic changes

induced, we used a toxicologically sensitive postnatal rat

model, sub- and chronically contaminated with natural

uranium in drinking water, from birth to adulthood. The

environmental conditions of population exposure through

drinking water (UNSCEAR 2008) were reproduced using

uranium concentrations ranging from the threshold set by

the WHO drinking-water guideline for uranium

(0.03 mg L-1) (Frisbie et al. 2013) to the triple of the

maximum environmental concentration measured in Fin-

nish groundwater (12.4 mg L-1) (Salonen 1994).

2 Materials and methods

2.1 Animals and contamination procedure

All experimental procedures were approved by the Animal

Care Committee of the Institute of Radioprotection and

Nuclear Safety (IRSN) and complied with French regula-

tions for animal experimentation (Ministry of Agriculture

Act No. 87-848, October 19, 1987, modified May 20,

2001).

Sprague–Dawley rats, 12 weeks old and 16 days preg-

nant, were obtained from Charles River Laboratories

(L’Arbresle, France). They were housed individually and

maintained in a 12 h light/12 h dark cycle (regular cycle) at

21 �C and 50 % humidity, with access ad libitum to a
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standard rodent pellet diet and water. After weaning,

female offspring and mothers were euthanized. Male off-

spring were housed, each paired with a rat from a different

mother (assigned by randomization).

Rats were contaminated through their drinking water

(Supplemental Fig. 1): natural uranium (NU) in a solu-

tion of uranyl nitrate hexahydrate (UO2(NO3)2,6H2O)

was prepared to four final uranium concentrations of 40

(E dose); 1.5 (D dose); 0.15 (C dose) and 0.015 mg L-1

(B dose) (daily uranium intake: 1; 0.04; 0.004 and

0.0004 mg/rat/day) and dissolved in mineral water.

These doses ranged from triple the highest uranium

concentration of 12.4 mg L-1 found naturally, in well

water in Finland (Salonen 1994), to half of the WHO

2011 drinking-water guideline for uranium, defined as

equal to 0.030 mg L-1 (Frisbie et al. 2013). Natural

uranium (Olympic) was obtained from CERCA (Pier-

relatte, France). Control animals drank uncontaminated

mineral water (A dose). The specific activity of the NU

was 2.42 9 104 Bq g-1, and its isotopic composition

was 238U = 99.307 %, 235U = 0.688 %, and 234U =

0.005 %. Mothers of the offspring in the treated group

were also exposed to NU through drinking water from

birth to euthanasia (mothers of the control rats received

uncontaminated mineral water). Until weaning, off-

spring were theoretically contaminated by mother’s

milk [human offspring receive approximately 5 % of the

mother’s daily dose (Wappelhorst et al. 2002)]. We

monitored the food and water intake of both groups

weekly throughout the contamination period.

2.2 Collection of organs and biofluids

When rats were 3, 6 and 9 months old, they were placed in

metabolic cages (in the morning, one per cage), with access

to a rodent ground pellet diet and water (contaminated or

not) ad libitum. Urine was collected twice a day for 48 h,

with sodium azide (0.01 %) added to prevent bacterial

growth (Griffin et al. 2001), and refrigerated at ?4 �C. All

samples for each rat were pooled, mixed, and centrifuged;

supernatants were frozen at -80 �C. Rats were then moved

back to conventional cages (one per cage) with food and

drink ad libitum until the evening to reduce stress. At

9 months old, rats were euthanized. To control the diet

cycle, food was removed in the evening until the next

morning. Five hours before euthanasia, around 12 g of

standard rodent pellet food was added directly to each cage

to normalize food intake for all rats. Four hours later, rats

were anesthetized by inhalation of 5 % isoflurane (Abbot

France, Rungis, France) before an intracardiac puncture to

collect blood, in heparinized tubes. Whole blood was

centrifuged (5000 rpm) and plasma supernatants were

immediately frozen at -80 �C. Kidneys were dissected on

ice, weighed, deep-frozen in liquid nitrogen, and stored at

-80 �C until uranium quantification.

2.3 Biological and uranium analyses

2.3.1 Measurement of biochemical panel of markers

An automated spectrometric system (Konelab 20 from

Thermo Electron Corporation, Cergy-Pontoise, France)

was used for biochemical measurements of thawed urine

samples, with the manufacturer’s biological chemistry

reagents and protocols. The markers measured in urine

included amylase, calcium, uric acid, creatinine, glucose,

phosphorus, total proteins and urea.

2.3.2 Measurement of natural uranium organ

contamination

Samples were mineralized (Ejnik et al. 2000) and analyzed

for their uranium content by ICP-MS (XSERIE 2, Thermo-

electron, France). A multielement standard solution (Analab,

France) was used to optimize experimental conditions and

apparatus parameters to obtain the best signal/noise ratio for
238U. In all solutions likely to be analyzed (biological samples

or calibration solutions), bismuth 209 was added as an

internal standard at 1 lg L-1. Six standard solutions for the

calibration curve (0, 0.005, 0.01, 0.1, 0.5, and 1 lg L-1) were

freshly prepared by dilution of a standard solution at

10 mg L-1 in 2 % nitric acid (NORMATOM for trace metal

analysis, VWR Prolabo). A linear relation—count number

(iU) = f([iU])—was calculated for each isotope, i = [235;

238] with [iU] equal to the isotope concentration in lg L-1.

Isotopy and dosage reliability were regularly verified with

standard solutions (6 quality controls at different concentra-

tions and isotopy distributed throughout the analysis). Blank

samples were run every five samples to check the stability of

the background and to prevent potential contamination. For
238U, the detection and quantification limits were respectively

0.5 10-3 and 1.5 10-3 lg L-1, and for 235U, 0.01 10-3 and

0.03 10-3lg L-1. The limits for 238U were applied to total

uranium.

2.3.3 Renal dose estimation (9 months postnatal)

The radiation yield and energy emitted during the nuclear

transformation of the isotopes forming NU come from

ICRP (1983). Alpha particles and Auger and internal

conversion electrons were assumed to be locally absorbed

in the target organ. Photons were transported with the code

MCNPX in a voxel phantom of an adult male rat from the

same strain. Given the preponderant concentration of NU

in kidneys and the small fraction of energy emitted as

penetrating radiation, kidney irradiation by NU from the
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rest of the body was ignored because negligible. The

absorbed dose rate to the kidney was thus determined at

9 months of age based on the kidney concentration of NU

and kidney mass (Table 1, panel A) and assuming a

homogeneous concentration of NU throughout the entire

9 months.

2.3.4 Statistical analysis

Values of the biochemical and clinical parameters were

reported as means ± standard errors of the means (SEM).

The control and contaminated groups were compared with

Student’s t test in normal populations or the rank sum test

in non-normal populations. Statistical significance was

defined by a P value less than 0.05. Statistical analyses

were performed with SigmaStat statistical software (SPSS,

Paris, France).

2.4 Metabolomic analyses

2.4.1 Sample preparation and LC–MS analyses

Urine samples were diluted with ultrapure water (1:4, v/v)

before analysis. After centrifugation for 15 min at

11,000 rpm and 4 �C, 100 lL of thawed urine was mixed

and shaken for 1 min with 300 lL of LC–MS (liquid

chromatography-mass spectrometry) grade water. After a

second centrifugation for 5 min at 3000 rpm, 50 lL of

supernatant was transferred into HPLC vials and stored at

-80 �C prior to analysis.

To ensure reproducible and robust data acquisition

(Dunn et al. 2011), the 300 samples (5 doses at each of 3

time points for each of the 20 rats) were analyzed as 5

smaller analytical batches of 60 samples. Each of the

randomized batches followed a typical injection order: a

blank sample (LC–MS grade water) was injected four

times at the start, then a pooled sample (a mixture of all

samples) was injected ten times; thereafter every fifth

injection was inserted a pool quality control (QC) sample

(made up with small aliquot of the samples of all series)

throughout the batch series.

The samples were analyzed on an Agilent 1200 RRLC

coupled to a Bruker micrOTOF ESI-hybrid quadrupole-time

of flight mass spectrometer (Wissembourg, France), both

devices driven by the Compass 1.3 SR 1 for micrO-

TOF/maXis software (Bruker Daltonics). The LC conditions

were: injection volume, 5 lL; autosampler temperature, 4 �C;

column type, EC 100/2 Nucleodur C18 pyramid (Macherey–

Nagel, Les Ulis, France); particle size, 1.8 lm; column

length, 100 mm; column internal diameter, 2 mm; column

temperature, 40 �C; solvent flow, 0.4 mL min-1 (solvent A:

95 % water, 5 % acetonitrile, 0.1 % formic acid, and solvent

B: 95 % acetonitrile, 5 % water, 0.1 % formic acid); and

gradient, 3 % B for 1 min, 3–30 % B for 7 min, 30–95 % B

for 1 min, 95 % B for 1 min, 95–3 % B for 1 min, and 3 %

B for 4 min (running time: 15 min). The MS conditions were

as follows: acquisition mode, positive electrospray ionization

(ESI?) and full scan 50–1500 m/z; capillary voltage, 4.5 kV;

capillary temperature, 200 �C; cone voltage, 40 V; drying gas

flow, 9.5 L min-1; and nebulizing gas pressure (nitrogen),

2.9 bar; calibration, internal with injection of sodium formate

acetate at the beginning of every run.

2.4.2 Data preprocessing and filtering

LC–MS raw data were exported to ‘‘.cdf’’ file format with

the manufacturer’s DataAnalysis software (Bruker, Wis-

sembourg, France) and preprocessed with the freely

available XCMS software, including the CAMERA script

(Smith et al. 2006). Peak picking was performed with the

‘centWave’ method (‘peakwidth’ parameter reduced to

3–15 s to fit UPLC performances, and ‘snthresh’ to 5 to

detect more peaks), retention time correction with the

obiwarp method (‘profStep’ reduced to 0.1 m/z as recom-

mended for QTOF mass spectrometers), peak grouping

with the ‘bw’ and ‘mzwidth’ parameters reduced respec-

tively to 5 and 0.025, and gap filling with the default

parameters.

Raw data quality was checked by principal component

analysis (PCA), with SIMCA-P ? 12.0 software (Umet-

rics, Umeå, Sweden), both for each single batch and for all

batches together. The presence of any individual outlier

was ruled out. Signal drift over time was quite weak within

batches and unsurprisingly higher between them. Signals

were corrected for both drifts with the Van der Kloet al-

gorithm (a linear model) (van der Kloet et al. 2009)

embedded into an R script (generous gift from Jean-Fran-

çois Martin, INRA AXIOM METATOUL, Toulouse,

France).

Data normalization was followed by a filtering step

based on the coefficient of variation of variable intensity in

the pooled sample (cutoff set at 20 %), which reduced the

number of variables from 2583 to 1736 (67 % remaining).

The removal of variables detected before 24 s (mostly from

the calibration solution) left the dataset with 1718 vari-

ables. Finally, the data were log10-transformed and Pareto-

scaled before the statistical analysis (Martin et al. 2015).

2.4.3 Statistical analyses

Multivariate statistical analyses were performed with either

SIMCA-P ? 12.0 software (Umetrics, Umeå, Sweden) or

R packages (base, pRoc, HDMD). Partial least squares

discriminant analysis (PLS-DA) models were validated by

CV-ANOVA (threshold for significance set at 0.05) and by

permutation tests (200 permutations, test passed for R2Y
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and Q2Y value decreased, below zero for Q2Y one). Three

‘‘blocs’’ of statistical analyses and features selection were

applied to the preprocessed and filtered matrix (Supple-

mental Fig. 2), aiming at (1) compare the present cohort to

a previous one, (2) distinguish the time point effect from

the dose effect, and (3) investigate finely the dose effect.

2.4.3.1 Discrimination between controls and rats con-

taminated at the E-dose (40 mg L-1) after 9 months The

aim was to compare the results obtained in the present

cohort with those obtained in our previous cohort in 2013

(Grison et al. 2013), to check its reproducibility. PLS-DA

was performed on a subset of the filtered dataset including

the control rats (n = 20) and the E-dose contaminated rats

(n = 19; 1 sample lost) at 9 months. The most discrimi-

natory metabolites were then selected, according to their

‘variable importance in projection’ (VIP) score of the PLS

algorithm. The top 95 of these, having the highest VIP

score, were retained for comparability with the number of

variables selected in our previous cohort (and was again

equivalent to 1.5\VIP score\ 2.4) (Grison et al. 2013).

2.4.3.2 Separate analyses of time-point and dose effects

At this second step of our statistical analysis we performed

ANOVA-PCA (APCA) on the overall dataset. Indeed, we

investigated two contamination factors simultaneously: the

duration (time-point effect) and the level (dose effect). As

for the multivariate data, depending on several factors, we

used APCA, which is a powerful tool to evaluate signifi-

cant factors of an experimental design and select the

principal features associated with each factor (Harrington

et al. 2005; Zwanenburg et al. 2011; Climaco Pinto et al.

2008). Briefly, it decomposed the original matrix into

effect matrices (time-point effect, dose effect, dose 9 -

time-point interaction effect) and a matrix containing the

residual error. Each effect matrix was calculated as the

average of the variables at each level of the corresponding

factor, and the residual matrix as the difference between

the original matrix and the sum of the effect matrices.

Adding the effect matrices to the residual matrices pro-

duced two separate matrices: the ‘‘time-point matrix’’,

which was the sum of the time-point factor and the residual

error, and the ‘‘dose matrix’’, the sum of the dose factor,

the dose*time-point interaction factor, and the residual

error. PCA was then performed on each matrix to select the

features most associated with each effect (cut-off was set at

2 standard deviations for absolute value of loading, which

corresponds to the level of significance used for a standard

normal distribution). As Harrington et al. point out, the

dominant factor should appear on the first component of

the PCA while the other components explain the residual

errors. Nonetheless, the biological variation in metabo-

lomics data may be greater than the experimental variation,

so that the significant factor might be found on the second

or any subsequent PCA component. This was the case for

the dose matrix. To overcome this weakness, we used the

method for selective reduction of residual variability pro-

posed by Climaco Pinto et al. (2008) to identify features

associated with the dose effect. Finally, to check the

robustness of each feature selection (i.e., for time-point

effect and for dose effect), 3 PLS-DA models were built

separately: one based on the time-point effect matrix and

two based on the dose effect matrix. The first PLS-DA was

built on all classes, i.e., the control group and all four

contamination doses, one low (E: 40 mg L-1 of drinking

water) and three very low (B: 0.015 mg L-1; C:

0.15 mg L-1; D: 1.5 mg L-1), while the second PLS-DA

model was built on all classes except that receiving the E

dose, i.e., on the control group and the three very low-dose

groups.

2.4.3.3 Dose effect according to contamination duration

and selection of the most discriminant features The third

and last step of our statistical analysis aimed at refining our

investigation of the dose effect (without the confounding

factor of the duration in itself, but keeping the dose along with

the dose 9 time-point interaction factors) and was based on

the features selected in APCA (supplemental Fig. 2). 16 PLS-

DAs were performed on the dose effect matrix to search

for any discrimination between the control group and

each contaminated group, i.e. B-dose (0.015 mg L-1), C-

dose (0.15 mg L-1), D-dose (1.5 mg L-1) and E-dose

(40 mg L-1) contaminated rats, separately (main character-

istics of these PLS-DA models are listed in Table 2, panel B).

The existence of such discrimination was checked regardless

of the time-points, or after 3, 6 and 9 months of contamination.

For six out of the sixteen models, the most discriminatory

features were selected by their VIP score (set at [1.2, in

accordance with our previous studies): control vs. B-dose

(0.015 mg L-1) contaminated rats at all time points (model 1,

Table 2, panel B), control vs. C-dose (0.15 mg L-1) con-

taminated rats at all time points (model 5, Table 2, panel B),

control vs. D-dose contaminated rats at all time points (model

9, Table 2, panel B), control vs. E-dose (40 mg L-1) con-

taminated rats after 3 months of contamination (model 14,

Table 2, panel B), control vs. E-dose (40 mg L-1) contami-

nated rats after 6 months of contamination (model 15,

Table 2, panel B), and control vs. E-dose (40 mg L-1) con-

taminated rats after 9 months of contamination (model 16,

Table 2, panel B). Using Venn diagrams (Oliveros 2007), the

lists of selected features were compared to each other to check

for common features: on one hand, we compared the selected

features for the three very low-dose groups (models 1, 5 and 9)

and, on the other, the selected features for the E-dose

(40 mg L-1) group after 3, 6 and 9 months of contamination

(models 14, 15 and 16).
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Finally, the features thus selected were used to estimate

composite scores able to distinguish each dose from the

others to the possible extent. Four scores were calculated:

one for all time points and one for each single time point

(3, 6 and 9 months). These were built as linear combina-

tions of the features and loadings estimated in the PLS-DA

regression predicting the discrimination between the con-

trol group and each contaminated group. The distribution

of the composite score was graphically represented with

boxplots across each experimental group, both including all

three time points and separately (at 3, 6 and 9 months). To

test the robustness of the predictions, Receiver Operating

Characteristic curves (ROC) and Area Under the Curve

(AUC) were computed between the control and each

contaminated groups, for all time points, and separately (at

3, 6 and 9 months).

2.4.4 Metabolite identification

For the most discriminant features, a tentative annotation

was performed with MZedDB (http://www.maltese.dbs.

aber.ac.uk:8888/hrmet/index.html) (Draper et al. 2009)

from the chemical formulas generated from the accurately

measured masses (accuracy \10 ppm) and isotopic pat-

terns, calculated with Bruker DataAnalysis software.

According to the putative identifications returned, 20

standard molecules were purchased. L-lysine (L5501-1G,

CAS 56-87-1), N6-methyl-L-lysine hydrochloride (04685-

Table 2 Characteristics of PLS-DA models

Cohort (number of variables in

the matrix)

Components

number

Observations

number

R2Y (%) Q2Y (%) CV-ANOVA

Panel A

Grison et al. (2013) (1376) 2 20 91.9 55.2 9.40e-03

Grison et al. (2013) (95) 2 20 88.9 74.2 4.60e-04

Present article (1718) 3 39 95.5 75.2 1.70e-06

Present article (95) 2 39 88.0 80.2 7.77e-12

Discrimination Model Components number Observations number R2Y (%) Q2Y (%) CV-ANOVA

Panel B

A vs. B

All time points 1 2 120 26.9 16.7 2.23e-05

3 month 2 0 40 – – –

6 month 3 0 40 – – –

9 month 4 0 40 – – –

A vs C

All time points 5 2 120 57.3 40.3 6.42e-10

3 month 6 0 40 – – –

6 month 7 2 40 46.6 16.7 0.0340864

9 month 8 2 40 51.6 30.3 0.00127167

A vs D

All time points 9 3 120 53.2 33.3 6.04e-05

3 month 10 2 40 61.8 33.5 0.0105006

6 month 11 0 40 – – –

9 month 12 0 40 – – –

A vs E

All time points 13 3 117 76.7 69.6 2.44e-23

3 month 14 3 39 81.4 58.3 0.00698012

6 month 15 2 39 81.5 64.4 6.87e-07

9 month 16 3 39 83.7 70.3 4.00e-05

Panel A Models discriminating the control rats from those contaminated for 9 months at the dose 40 mg L-1 in the present study and in our

previous proof-of-principle study

Panel B Analyses performed on the ‘‘dose matrix’’ after feature selection (126 variables) to investigate the dose effect; models are discriminating

the control from the contaminated rats for each dose (dose B: 0.015 mg L-1; dose C: 0.15 mg L-1; dose D: 1.5 mg L-1; dose E: 40 mg L-1)

after 3, 6 and 9 months of contamination and all time-points together
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100MG, CAS 7622-29-9), (-)-epinephrine (E4250-1G, CAS

51-43-4), 4-pyridoxic acid (P9630-25MG, CAS 82-82-6),

3-methoxytyramine hydrochloride (65390-250MG, CAS

1477-68-5), methyl hippurate (S750115-100MG, CAS

1205-08-9), suberic acid (S5200-5G, CAS 505-48-6),

4-methylcathecol (M34200-5G, 452-86-8), 2-phenylethanol

(77861-250ML, 60-12-8), L-alpha-lysophosphatidylcholine

type I from egg yolk (L4129-25MG, CAS 9008-30-4),

sebacic acid (283258-5G, CAS 111-20-6), and linoleic acid

(L1376-500MG, CAS 60-33-3) were purchased from Sigma-

Aldrich (L’Isle D’Abeau Chesnes, 38297 St. Quentin Fal-

lavier, France). 1-Methylnicotinamide (3-carbamoyl-1-

methylpyridinium chloride, M0375-5G, CAS 1005-24-9),

N-tigloylglycine (T1260-100MG, CAS 35842-45-6), 2-hy-

droxy-n-octanoic acid (H0592-5G, CAS 617-73-2), and

trans-2-octenoic acid (O0004-10ML, CAS 1871-67-6) were

purchased from TCI Europe (Boerenveldseweg 6, Haven

1063, 2070 Zwijndrecht, Belgium). N1-Methyl-2-pyridone-

5-carboxamide (TLCN-0621-10MG, CAS 701-44-0), rac N-

formiminoglutamic acid (TRC-F735500-100MG, 816-90-

0), and 3-methylcrotonyl Glycine (TRC-M294540-50MG,

CAS 33008-07-0) were purchased from LGC Standards (6

rue Alfred Kastler, BP 83076, 67123 Molsheim cedex,

France). 4-Hydroxyphenylacetylglycine (EN300-65253-

1G, CAS 28116-23-6) was purchased from Enamine Ltd

(Vestienas iela 2b, 1035 Riga, Latvia). All standard mole-

cules were solubilized in water/acetonitrile (50:50), except

linoleic acid, which was solubilized in chloroform, and

injected at a concentration of 10 mg L-1. Experimental

samples displaying the highest intensity for each discrimi-

nant feature were selected, and both standard molecules and

experimental samples underwent MS and MS/MS experi-

ments. MS conditions were the same as for initial acquisi-

tions; MS/MS parameters were: isolation width, 0.8; cell

(collision) energy, 15, 20, 25 and 30 eV; acquisition factor,

1. Full MS and MS/MS spectra were compared between

standard molecules, experimental samples and spectral

databases (mainly HMDB, Metlin and MassBank) for final

metabolite identification.

3 Results

3.1 Effect of chronic low-dose exposure

on biochemical and clinical parameters

Both consumption of drinking water and food and body

weight gain were monitored once a week throughout the

experiment and did not differ between control and con-

taminated rats. The whole body and one kidney (on the

same side for each animal) were weighed at euthanasia for

all rats and did not differ significantly between groups. The

volume of urine collected during the 48-h period before

sacrifice (25 mL on average) and the relative weight of the

kidneys were statistically homogeneous (Table 1, panels A,

B). Several biochemical markers were also assessed in urine

samples, including ions and kidney markers. Except for

slight (but within the physiological range) modifications in

some concentrations in the contaminated rats, no significant

difference between the groups was observed (Table 1, panel

B). These results confirm our previous observations for the

E-dose (40 mg L-1) after 9 months of contamination (Gri-

son et al. 2013). Our data also confirm that uranium accu-

mulates in the kidney at a rate equivalent to that we reported

previously. Furthermore, our measurements of the rate of

uranium accumulation in the kidneys were correlated to the

uranium concentrations in the drinking water. Thus, for

example, at 9 months of age and for the E-dose of

40 mg L-1, the absorbed dose rate in the kidneys of the

contaminated rats was estimated at 5.4 9 10-7 Gy day-1,

corresponding to a maximum dose absorbed by the kidneys

at sacrifice as low as 0.15 mGy (assuming a constant intake

of NU throughout the entire 9-month period).

3.2 Discrimination between control and E-dose

(40 mg L21) contaminated rats after 9 months

The PLS-DA of the control and E-dose (40 mg L-1) con-

taminated rats at 9 months produced a highly validated and

robust model (CV-ANOVA = 1.70e-06, R2Y = 96 %,

Q2Y = 75 %) that very clearly discriminated between the

groups (Table 2, panel A). This intergroup variation was

largely captured by the first component (40 % of total

variance) (Fig. 1a). The selection of the 95 most discrim-

inant features enhanced the CV-ANOVA (7.77e-12) and

the Q2Y (80 %) values (Table 2, panel A). These results

reproduced our previous findings and confirmed that

untargeted metabolomics in urine is an appropriate

approach for exploring low-dose uranium radiotoxicology.

The characteristics of the PLS-DA models were quite

similar (Grison et al. 2013) between the proof-of-principle

(Grison et al. 2013) and the present validation cohorts, with

an increase in CV-ANOVA and Q2Y values that appear to

be explained by the doubling of the cohort size (Table 2,

panel A). When we looked specifically at the LC–MS ID of

the 95 most discriminant features in both cohorts (Fig. 1),

we found that 7 of those were common. In particular, a

previously identified metabolite, N1-methylnicotinamide

(m/z 137), ranked 13th according to its VIP score in the

validation cohort.

3.3 Separate analyses of time-point effect and dose

effect

PCA of the time-point matrix showed that component 2

characterized the time-point effect, mostly represented by
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121 variables (2SD corresponded to absolute value of

loadings[0.045). PLS-DA of the selected features showed

a validated, robust discrimination between the samples

collected at 3, 6 and 9 months (CV-ANOVA \0.001,

R2Y = 90 %, Q2Y = 87 %) (data not shown). This strong

effect is unsurprising and probably associated more with

the aging of the rats than with the duration of their

contamination.
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Fig. 1 Comparison between the present and a previous cohort.

Discriminations were performed between the control rats (A group)

and the rats contaminated at the dose 40 mg L-1 for 9 months (E

group). Loading scatter plots from the partial least-square discrim-

inant analysis (PLS-DA) were based on the 95 most discriminant

features. a Present cohort; variable selection was performed on the

preprocessed and filtered matrix (1718 variables; VIP scores [2.4).

b Cohort from Grison et al. (2013); variable selection was performed

on the preprocessed and filtered matrix (1376 variables; VIP scores

[1.8)
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PCA of the dose matrix showed that components 11 and

12 characterized the dose effect, with 126 variables highly

associated with it (2SD corresponded to absolute value of

loadings [0.040). PLS-DA of the selected features for all

experimental doses (Fig. 2a) was validated (CV-ANO-

VA = 1.1e-20, R2Y = 19 %, Q2Y = 14 %) and showed

a mild dose effect, but a clear shift between the low and the

very low doses on the first principal component (describing

14.6 % of the total variance). The second PLS-DA of

the selected features for all but the E dose (Fig. 2b) was

also validated (CV-ANOVA = 4.0e-12, R2Y = 15 %,

Q2Y = 9.5 %); it too showed a mild dose effect, but
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Fig. 2 Partial least-square discriminant analysis (PLS-DA) per-

formed on the ‘‘dose matrix’’ after feature selection (126 variables);

classes were: A,control; B contamination dose of 0.015 mg L-1; C

0.15 mg L-1; D 1.5 mg L-1; E 40 mg L-1. a Loading scatter plot

from the model built on all experimental doses. b Loading scatter plot

from the model built on all experimental doses but the E one
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marked discrimination between the control and contami-

nated groups for the second principal component (de-

scribing 7.4 % of the total variance). Both PLS-DAs

showed good discrimination between the control and

C-dose (0.15 mg L-1) contaminated rats (on PC2 and PC1

in the first and second models, respectively). These results

highlighted a difference between the low (E: 40 mg L-1)

and very low (B: 0.015 mg L-1, C: 0.15 mg L-1 and D:

1.5 mg L-1) doses; we therefore analyze their data

separately.

3.4 Dose effect according to contamination duration

and selection of most discriminant features

Our first observation regarding the dose effect was that the

higher was the dose, the greater was the robustness of the

discrimination. This was assessed by the R2Y and Q2Y

values of the models built on all time points (models 1, 5, 9

and 13, Table 2, panel B), which were all validated

according to their CV-ANOVA (p values ranging from

2.23e-05 to 2.44e-23 for the B and E doses, respec-

tively). Indeed, when increasing the dose of contamination,

the observed variance (R2Y value) of the model increased

(27, 57, 53 and 77 %, for the B (0.015 mg L-1), C

(0.15 mg L-1), D (1.5 mg L-1) and E (40 mg L-1) doses,

respectively), as did the predicted variance (Q2Y value)

(17, 40, 33 and 70 % for the B (0.015 mg L-1), C

(0.15 mg L-1), D (1.5 mg L-1) and E (40 mg L-1) doses,

respectively).

We thereafter focused on the effect of the contamination

duration for the E-dose. We observed that the discrimina-

tion between control and contaminated rats for this low

dose started as a strong trend from 3 months of contami-

nation onward (model 14, Table 2, panel B; R2Y = 81 %,

Q2Y = 58 %) and increased with contamination duration

after 6 months (model 15, Table 2, panel B; R2Y = 82 %

and Q2Y = 64 %), and after 9 months (model 16, Table 2,

panel B; R2Y = 84 % and Q2Y = 70 %). We selected the

features most strongly associated with NU contamination

after 3, 6 and 9 months (23, 34 and 29 features selected,

respectively; data not shown), and compared the selection

lists to each other to check for a set of features associated

with NU contamination whatever the duration: 14 features

were common to at least 2 contamination durations (Fig. 3,

features in the ‘‘Low dose’’ group).

Thirdly, we scrutinized the effect of the contamination

duration for the other lower doses. Except for the C-dose

contamination, the data did not show results as easy to

interpret as those obtained for the E-dose (0.15 mg). No

supervised discrimination was achieved for the B-dose

(0.015 mg) contamination whatever the duration (models

2, 3 and 4, Table 2, panel B). It remains unclear whether

this result is explained by the too-low dose level or by too

few observations, since discrimination was achieved on the

model built with all time points (model 1, Table 2, panel

B). For the C-dose (0.15 mg) contamination, a trend

towards discrimination appeared after 6 months of con-

tamination (model 7, Table 2, panel B; R2Y = 47 %,

Low dose Common Very low doses

M652T412 M153T45 M184T46
M303T180 M210T88 M121T324

M107T177 M360T183
M107T88 M496T669

M140T67
M158T67
M185T80
M196T67

M310T291
M162T342
M164T312

Low dose Common Very low doses

M143T33 M137T29
M143T493
M175T285
M209T622
M321T436
M235T286
M237T437

starlortnocnidesaercniselbairaVstardetanimatnocnidesaercniselbairaV

Low dose Very low doses Low dose Very low doses

Fig. 3 Selection of the most robust features associated with low- and

very low-dose exposure to natural uranium. Using Venn diagrams, the

14 features associated to the E-dose contamination whatever the

duration of the contamination (‘‘Low dose’’ group) were compared to

the 22 features associated to any of the other doses of contamination

(B, C and D) when pooling all time points together (‘‘Very low dose’’

group)
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Q2Y = 17 %) and was stronger after 9 months (model 8,

Table 2, panel B; R2Y = 52 %, Q2Y = 30 %). For the

D-dose (1.5 mg) contamination, a trend was observed after

3 months (model 10, Table 2, panel B; RY2 = 62 %,

Q2Y = 34 %), but was no longer observed after 6 or

9 months of contamination (models 11 and 12, Table 2,

panel B, respectively). To smooth the inconstancy of the

time effect, we then considered all the time points together

to seek for discriminating features of contamination

(models 1, 5 and 9, Table 2, panel B). There were 31

features highly responsible for discriminating the control

group from the B-dose (0.015 mg L-1) group (model 1),

26 from the C-dose (0.15 mg L-1) group (model 5), and 28

from the D-dose (1.5 mg L-1) group (model 9). Among

those features, 22 were common to at least 2 contamination

doses (Fig. 3, features in the ‘‘Very low doses’’ group).

To achieve a robust feature selection, we compared the

14 features associated to the E-dose contamination what-

ever the duration (Fig. 3, group ‘‘Low dose’’) to the 22

features associated to the other doses of contamination

when pooling all time points together (Fig. 3, group ‘‘Very

low doses’’). Eleven features were common to both groups,

4 of which were increased in contaminated rats (Fig. 3,

table on the left, middle column) and 7 were increased in

control rats (Fig. 3, table on the right, middle column).

When compared to control rats, 4 ROC-AUCs were

computed for each of these 11 features the most associated

with chronic low and very-low dose natural uranium con-

tamination: (Supplemental Table 1). Of the 11 features, 10

had at least one ROC-AUC value [70 %, 6 of the 11

[80 %.

Finally, we used these 11 most robust discriminant

features to build four composite scores: one for all time

points and one for each single time point (3, 6 and

9 months). The PLS-DA models computing the com-

posite scores were estimated (R2Y = 19.2 % and

Q2Y = 14.3 % for the one build at all time points) and

validated (CV-ANOVA\0.001 and a highly convincing

permutation test). As the boxplots show, composite

scores discriminated well between the control and con-

taminated groups, both for all time points (Fig. 4a) and

for each single time point (Supplemental Fig. 2). The

ROC curves and their AUC further demonstrated the

robustness of these composite scores (Fig. 4b; Supple-

mental Fig. 2). All ROC-AUC values were greater than

81.5 (the B dose after 3 months of contamination). The

best composite scores were observed for the C (94.8 %)

and E (96.1 %) doses for all time points. The composite

score even predicted discrimination between the control

and contaminated groups at almost 100 % (ROC-

AUC = 99.2 %, Supplemental Fig. 2) for the E dose

after 9 months of contamination.

Panel A Panel B

Model AUC (%)

A vs. B 82.8

A vs. C 94.8

A vs. D 83.1

A vs. E 96.1

Boxplot Dose A Dose B Dose C Dose D Dose E

Q1 0.37 0.02 -0.03 0.03 -0.01

Median 0.48 0.18 0.07 0.14 0.07

Q3 0.56 0.36 0.20 0.29 0.18

Mean 0.48 0.20 0.10 0.15 0.09

Fig. 4 Composite score built for all time points with the 11 features

most associated with exposure to natural uranium (A control;

B,contamination dose of 0.015 mg L-1; C 0.15 mg L-1; D

1.5 mg L-1; E 40 mg L-1) a Boxplots. b ROC curves and area

under the ROC curves (AUC)
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3.5 Identification of the most discriminant features

associated with chronic low-dose contamination

by natural uranium

We analyzed and tested 20 standard molecules for a match

with the 11 top discriminant features common to all doses,

and with the next 14. Five features were identified as

existing metabolites: 3 among the 11 most discriminant

features (N1-methylnicotinamide, N1-methyl-2-pyridone-

5-carboxamide, and 4-hydroxyphenylacetylglycine) and 2

of the other 14 (L-alpha-lysophosphatidylcholine and

4-pyridoxic acid). Identifications were confirmed according

to high resolution retention time, accurate mass of parent

ion, molecular formula based upon accurate m/z and iso-

tope pattern, accurate mass tandem mass spectrum and,

when available, matches to spectral libraries (Supplemental

Fig. 3–7). According to the newly proposed scoring system

for reporting metabolite identification (Sumner et al. 2014),

these molecules all had score values higher than 11, which

is the value proposed for confident identification (when not

taking spectral libraries into account).

N1-methylnicotinamide was detected as [M1?] (m/

z 137.07) in both standard solution and experimental

sample at 29–30 s. Fragmentation spectra were superim-

posable and showed a major fragment at m/z 94.06 (Sup-

plemental Fig. 3). This metabolite was previously

identified in our proof-of-principle study (Grison et al.

2013). Such a fragmentation spectrum was recorded in the

Human Metabolome Database (HMDB00699).

N1-Methyl-2-pyridone-5-carboxamide was detected as

[M ? H] (m/z 153.06), along with its sodium adduct (m/

z 175.05), in both the standard solutions and experimental

samples at 50–53 s. Fragmentation spectra were superim-

posable and showed a major fragment at m/z 108.04

(Supplemental Fig. 4). No spectral data were available in

databases.

4-Hydroxyphenylacetylglycine was detected as

[M ? H] (m/z 210.08), along with its sodium and potas-

sium adducts (m/z 232.06 and 248.03, respectively), in both

the standard solution and experimental sample at

123–126 s. Fragmentation spectra were superimposable

and showed a major fragment at m/z 107.05, as recorded in

the Human Metabolome Database (HMDB00735) (Sup-

plemental Fig. 5). Both [M ? H] and its fragment were in

the top 11 discriminant features.

L-alpha-Lysophosphatidylcholine from egg yolk (with

its usual fatty acid contents of approximately 66 % pal-

mitic and 33 % stearic acids) was detected as [M ? H] (m/

z 496.34), along with its sodium adduct (m/z 518.32), in

both the standard solution and experimental sample at

672–676 s. Both peaks had similar split shapes, corre-

sponding to the isomerization of the molecule. Fragmen-

tation spectra were superimposable and showed two major

fragments at m/z 104.10 and 184.07, corresponding to

choline and phosphorylcholine, respectively (Supplemental

Fig. 6). Such losses are described for phosphatidylcholine

(Metlin spectra for MID182) but no spectra was available

for LysoPC.

Finally, 4-pyridoxic acid was detected as [M ? H] (m/

z 184.06), along with a small peak corresponding to water

loss (m/z 166.06), in both the standard solution and

experimental sample at 60–61 s. Fragmentation spectra

were superimposable and showed three major fragments at

m/z 166.05, 148.04 and 138.05, as recorded in the Human

Metabolome Database (HMDB00017) (Supplemental

Fig. 7).

4 Discussion

Although some molecular studies report biological effects

after exposure to low doses of chemical compounds dis-

persed in the environment (Xu et al. 2013; Bonvallot et al.

2013; Rochester 2013; Dudka et al. 2014), few have

described the biological mechanisms underlying the effects

of radionuclides. The metabolomic approach appears rel-

evant for improving knowledge in this field: it is very

sensitive and holistic, because it measures the end products

of the metabolism, close to the individual phenotype. With

regards to the peculiar issue of radionuclides intake,

additional studies performed with cesium 137 or strontium

90 have also described specific metabolic profiles that

demonstrated the interest of untargeted metabolomics in

the field of radioprotection (Goudarzi et al. 2016; Grison

et al. 2012, 2013). Furthermore, studies performed in the

field of external ionizing radiations found similar interests

(Goudarzi et al. 2014; Johnson et al. 2012). Targeted

studies focused on several biological parameters, but not on

the whole metabolome, also reported molecular imbalances

consistent with the present metabolomics results (Dublin-

eau et al. 2014).

The overall aim of this study was to discover markers of

low-dose exposure to uranium. Our initial goal, therefore,

was to confirm our previous results, namely the biological

response of rats to chronic low-dose contamination

(40 mg L-1) for 9 months (Grison et al. 2013). As previ-

ously shown in the first cohort, our metabolomic approach

enabled robust discrimination of exposed from control

animals, even though standard clinical analyses revealed no

significant differences between them. This confirms the

analytical robustness of metabolomics in the field of low

doses exposure.

The second goal of this study was to assess the minimal

dose required to detect a measurable biological effect of

uranium contamination in urine. We observed a shift in the

metabolic profiles of the rats at a dose as low as
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0.15 mg L-1 (‘‘C dose’’). It should be noted that this dose is

only 5 times higher to the maximum dose recommended by

the 2013 WHO drinking-water guideline (0.03 mg L-1) and

that it is able to induce a measurable metabolic disruption

after 9 months of contamination, and after only 6 months for

the highest contamination dose tested (40 mg L-1). This

could suggest that the threshold for a dose effect in urine in

our experimental model would lie between 0.015 and

0.15 mg L-1. This analytical approach thus appears to be

quite suitable for studies focused on low and very low doses

of environmental pollutants such as radionuclides. Indeed,

this work showed that metabolomics is able to identify con-

taminated rats despite normal level of clinical chemical

markers. At the ‘‘D-dose’’ (1.5 mg L-1), our approach no

longer discriminated between the control and contaminated

groups at 6 or 9 months, although it had done so after

3 months of exposure. This nonlinear effect observed could

constitute the threshold of response above which physiolog-

ical tolerance is impaired, and below which biological

response is related only to non-detrimental exposure. Such a

dose dependent cellular adaptive mechanism has been

described for both low doses (Calabrese 2004) and low-dose

irradiation (Tang and Loke 2015). However, this issue must

be deepened in future work to allow conclusions.

The third objective of our study was to identify a panel

of urinary features highly associated with chronic exposure

to low doses of natural uranium with the ultimate aim of

discovering potential biomarkers of exposure. According to

the results of the present study and to those of a recent

study (Bonvallot et al. 2013), metabolomics confirms its

relevance in the field of low dose environmental exposures

to find new biological markers of low dose chronic expo-

sure. By using the top-ranked features shared in the dif-

ferent statistical models discriminating control and

contaminated rats (for all contamination doses and dura-

tions), we were able to select 11 features independently of

doses (Fig. 3). To evaluate the possibility of using them as

biomarkers of uranium exposure, we assessed their

robustness by calculating their ROC curves and AUC

values. The latter ranged from 58 to 80 %, which is good

but not good enough to assure the use of these features

alone as a diagnostic biomarker. On the other hand, the

composite score built on these 11 features had AUC values

ranging from 83 to 96 % (depending on the dose), which is

more than satisfactory and suggests the value of using a

combination of a few biomarkers instead of just one to

develop a diagnostic test of exposure. As an example, this

methodological approach was recently applied successfully

to insulin resistance and prediabetes (Cobb et al. 2013).

Such a diagnostic test for uranium exposure would be

valuable, not only for screening exposed populations, but

also for monitoring immediate and persistent metabolic

changes among them, as a tool for early diagnosis of any

disorders or even any risk of pathology induced by this

chronic low-dose exposure.

Of course, the use of these features is not sufficient to

build a diagnostic test because this requires identifying and

quantifying metabolites. Accordingly, we confidently

identified 5 metabolites (scores of 11), including N1-

methylnicotinamide (NMN), N1-methyl-2-pyridone-5-car-

boxamide (NMPC), and 4-hydroxyphenylacetylglycine.

The latter is involved in tyrosine metabolism and its con-

centration increases in the urine of contaminated rats (1.5

times on average). NMN and NMPC are involved in the

metabolism of nicotinate and nicotinamide; urinary con-

centration of NMPC (the oxidation product of NMN)

increases with contamination (1.5 times on average) while

NMN concentration decreases (4.2 times on average). Our

previous cohort study had already identified NMN (Grison

et al. 2013), the concentration of which varied in the same

direction. NMN clearance by kidneys is known to decrease

in experimental renal failure (affecting the renal tubule)

induced by chemical substances such as uranium nitrate,

injected in rats at an acute high dose of 5 mg kg-1 (Shim

et al. 1984). Another study reported a cortical uptake of

NMN in rats after a single uranium nitrate injection at

doses of 6, 1 and 0.5 mg kg-1 (Hirsch 1972). Recently,

NMN was proposed as an endogenous probe for the eval-

uation of organic cation secretion in proximal tubules and

of drug interactions with renal organic cation transporters

(Ito et al. 2012; Müller et al. 2015). Moreover, uranium

ingested chronically through drinking water at a dose of

40 mg L-1 accumulates primarily in the proximal tubules

during the first 12 month and thereafter can be detected in

all other segments of the nephron (Tessier et al. 2012).

Finally, it has been reported that a single high dose of

uranium (10 mg kg-1 in rats) causes structural damage to

the renal proximal tubules (Haley et al. 1982). In this as in

our previous study (Grison et al. 2013), NMN concentra-

tion decreased in the urine of the chronically contaminated

rats, although these studies used lower doses of uranium

than those cited above. In our experiments, the contami-

nated rats ingested on average only 1.7 mg day-1 kg-1

through drinking water (40 mg L-1) and no more than

0.4 % of it goes to the blood compartment. As with pre-

vious acute higher doses, chronic low-dose contamination

by uranium also appears to decrease NMN renal clearance.

One hypothesis to explain this reduction in the urinary

concentration of NMN might be that uranium interacts with

the renal secretion mechanisms of organic cation (Sup-

plemental Fig. 8): uranium intake at a very low dose

appears able to modify organic cation clearance without

any renal tubular toxicity. This result might be interpreted

as an early functional disorder in the kidneys that might

lead to later morbidity. It also raises the question of the risk

of drug-uranium interactions, which might lead to the onset
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of nephropathies. As a significant example of a possible

functional effect in kidney, another study based on the

effects of acetaminophen administration to rats chronically

exposed to depleted uranium (Gueguen et al. 2007) has

showed an increase of this last in plasma of rats exposed

with uranium. According to our present hypothesis, this

observation could be a consequence of drug-uranium

interaction in kidneys, therefore changing the pharma-

cokinetics of acetaminophen. In any case, this observation

seems to support the utility of these metabolites as sentinels

for detecting early kidney disorders induced by uranium

contamination, before any clinical signs appear. This study

also demonstrates the interest of an omics approach to

discover markers associated with biological low dose

effects, such as the discovery of NMN as a candidate

marker of renal function in the case of uranium intake. In

conclusion, metabolomics studies focusing on the effects of

either ionizing radiation or radionuclides intake has

revealed, specific signatures of such exposures (Goudarzi

et al. 2016; Grison et al. 2013; Johnson et al. 2012; Grison

et al. 2012; Lestaevel et al. 2016). The present study adds

further evidence that untargeted metabolomics could be a

powerful approach to investigating low-dose ionizing and

chemical effects in the field of radiotoxicology and might

be successfully extended to molecular epidemiological

studies assessing radiological hazards. This work must be

completed with additional experimental studies (i) to test

additional biological matrices, (ii) to validate the nonlinear

dose–effect response observed in urine and (iii) to examine

major confounding factors such as species, gender and age

(Clayton and Collins 2014; Slupsky et al. 2007). Our

experimental study suggests the possibility of developing a

diagnostic test sufficiently sensitive to screen and monitor

populations exposed chronically to very low doses of

radionuclides likely to cause subtle biological effects. It

would also help to answer societal questions about envi-

ronmental exposures and low-dose risks. The results dis-

played also allowed to provide some explanations with

regards to the biological mechanisms triggered by low dose

uranium exposure and even the risk of adverse effects in

organ function. Finally, it could also help to provide epi-

demiological data to improve public health regulation and

thereby contribute to updating future health standards.
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