
materials

Article

Nanocrystalline SnO2 Functionalized with Ag(I)
Organometallic Complexes as Materials for Low Temperature
H2S Detection

Timofei Goncharov 1, Abulkosim Nasriddinov 1,2 , Anastasia Zubenko 3, Sergey Tokarev 3 , Tatyana Shatalova 2,
Nikolay Khmelevsky 4 , Olga Fedorova 3 and Marina Rumyantseva 2,*

����������
�������

Citation: Goncharov, T.;

Nasriddinov, A.; Zubenko, A.;

Tokarev, S.; Shatalova, T.;

Khmelevsky, N.; Fedorova, O.;

Rumyantseva, M. Nanocrystalline

SnO2 Functionalized with Ag(I)

Organometallic Complexes as

Materials for Low Temperature H2S

Detection. Materials 2021, 14, 7778.

https://doi.org/10.3390/ma14247778

Academic Editors: Gabriele Magna

and Capuano Rosamaria

Received: 27 November 2021

Accepted: 13 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Materials Science, Moscow State University, 119991 Moscow, Russia;
goncharov.t.a@yandex.ru (T.G.); a.f.nasriddinov@gmail.com (A.N.)

2 Chemistry Department, Moscow State University, 119991 Moscow, Russia; shatalovatb@gmail.com
3 A.N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia;

nastya.mutasova@yandex.ru (A.Z.); pergeybokarev@gmail.com (S.T.); fedorova@ineos.ac.ru (O.F.)
4 LISM, Moscow State Technological University Stankin, 127055 Moscow, Russia; khmelevsky@mail.ru
* Correspondence: roum@inorg.chem.msu.ru; Tel.: +7-495-939-5471

Abstract: This paper presents a comparative analysis of H2S sensor properties of nanocrystalline
SnO2 modified with Ag nanoparticles (AgNPs) as reference sample or Ag organic complexes (AgL1
and AgL2). New hybrid materials based on SnO2 and Ag(I) organometallic complexes were ob-
tained. The microstructure, compositional characteristics and thermal stability of the composites
were thoroughly studied by X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), Raman
spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS)
and Thermogravimetric analysis (TGA). Gas sensor properties to 2 ppm H2S demonstrated high
sensitivity, selectivity toward other reducing gases (H2 (20 ppm), NH3 (20 ppm) and CO (20 ppm))
and good reproducibility of the composites in H2S detection at low operating temperatures. The
composite materials also showed a linear detection range in the concentration range of 0.12–2.00 ppm
H2S even at room temperature. It was concluded that the predominant factors influencing the sensor
properties and selectivity toward H2S in low temperature region are the structure of the modifier
and the chemical state of silver. Thus, in the case of SnO2/AgNPs reference sample the chemical
sensitization mechanism is more possible, while for SnO2/AgL1 and SnO2/AgL2 composites the
electronic sensitization mechanism contributes more in gas sensor properties. The obtained results
show that composites based on nanocrystalline SnO2 and Ag(I) organic complexes can enhance the
selective detection of H2S.

Keywords: metal oxide gas sensor; nanocrystalline tin dioxide; Ag nanoparticles; Ag organometallic
complexes; H2S sensor; low temperature detection

1. Introduction

Hydrogen sulfide (H2S) is a colorless gas with an unpleasant smell of rotten eggs,
causes severe corrosion of metals and is explosive in a mixture with air in the range of 4–45%
vol. The main H2S sources are petroleum refining process, natural gas, geothermal sources,
bacterial breakdown of organic matter and industrial activities [1]. Hydrogen sulfide is a
toxic gas, affecting directly the human nervous and respiratory systems. People can sense
H2S with concentrations of 0.005–0.3 ppm; however, at concentrations higher than 100 ppm
the ability of smell might be lost, so H2S molecules dull the olfactory nerve and intoxication
can occur unexpectedly [1,2]. According to the recommendation of National Institute for
Occupational Safety and Health (NIOSH) of the USA the acceptable 10-min ceiling limit for
H2S in workplace air must not exceed 10 ppm. However, an 8-h threshold limit value (TLV)
of 1 ppm and a 15 min short-term exposure limit (STEL) of 5 ppm was recommended by
the American Conference of Governmental Industrial Hygienists (ACGIH). World Health
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Organization recommends a guideline value of 0.15 mg/m3 (0.1 ppm) with an averaging
time of 24 h [3].

The concentration of toxic gases, including hydrogen sulfide, can be monitored indoors
and outdoors by different approaches [4]. Resistive type gas sensors based on wide-gap
semiconductor oxides as a sensitive layer are promising devices for real-time monitoring
of the environmental atmosphere and due to low cost, they can be commercially available
to a wide variety of consumers [4–6]. However, one of the main disadvantages is their
low selectivity. Different approaches were used in order to increase the selectivity and
sensitivity to hydrogen sulfide by various scientific groups: composites based on n-type
and p-type semiconductors [7–12], decoration and modification with catalytic phases and
nanoparticles [13–16], the morphology change [17–21]. The use of organic-inorganic hybrid
materials as gas sensors is a promisingly developing area and of particular interest [22–24].
Organometallic complexes being a receptor part of a gas sensor can reversibly react with
the gas phase. Moreover, they may improve the adsorption of analyte molecules and form
specific complexes [25]. The use of copper and silver as central cation can increase selective
interaction with H2S, since these elements have a high affinity for sulfur, which can lead to
significant decrease of the operating temperature [26,27].

This work is devoted to the study of the effect of Ag nanoparticles and silver organic
complexes on the gas sensor properties of nanocrystalline tin dioxide in H2S detection.
An enhanced sensitivity and selectivity to H2S was observed for composite materials in
comparison to pristine SnO2 sensor. H2S sensing mechanism depending on the nature of
modifier was discussed. The proposed composite materials are very promising for low
temperature detection of H2S gas at low concentration level.

2. Materials and Methods
2.1. Material Synthesis
2.1.1. Synthesis of Nanocrystalline SnO2

Nanocrystalline SnO2 was obtained by chemical precipitation method at the room
temperature. The precursor SnCl4·5H2O (10.00 g, 98%, Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in distilled water (100 mL). Then aqueous ammonia (1 M) was added
dropwise to the solution while stirring with a magnetic stirrer until pH ≈ 7. The obtained
precipitate was separated from the solution by centrifugation (3600 rpm, 3 min.), then was
thoroughly washed with 0.01 M solution of NH4NO3 (99%, Sigma-Aldrich) until complete
purification from chloride anions (test by the reaction with AgNO3). Final washing was
carried out with deionized water. The resulting pure precipitate of the α-stannic acid gel
was dried in drying chamber at 80 ◦C for 24 h. Final product was ground in an agate mortar
and then annealed at 300 ◦C for 24 h.

2.1.2. Synthesis of Ag Organic Complexes

All commercially available reagents and solvents were used without further purifica-
tion. Ligands L1 and L2 (Figure 1) were prepared as described earlier [28,29].

Complex [Ag2L1](NO3)2·2H2O: The solution of AgNO3 (14 mg, 0.081 mmol) in H2O
(2 mL) was added to the solution of L1 (21 mg, 0.0405 mmol) in MeOH (1 mL), and the
mixture was kept at room temperature without stirring for 5 h. After the formation of a
brown precipitate, the solution was decanted and evaporated in vacuo. The residue was
recrystallized from ethanol to obtain the complex. The complex yield was 60% and was
shortly named as AgL1.

Complex [Ag3L2](NO3)3·4H2O: The solution of AgNO3 (18 mg, 0.1061 mmol) in
H2O (2 mL) was added to the solution of L2 (21 mg, 0.03537 mmol) in MeOH (2.5 mL),
and the mixture was kept at room temperature without stirring for 6 h. The residue was
recrystallized from ethanol to obtain the complex. The complex yield was 50 % and was
shortly named as AgL2.
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Figure 1. The structures of L1 and L2 ligands.

2.1.3. Synthesis of Composite Materials

Composites based on nanocrystalline SnO2 and Ag nanoparticles (AgNPs) or Ag
organic complexes were obtained by impregnation method. Ag complexes and AgNO3
were dissolved in distilled water and added to the powder of SnO2 in portions of 10 µL.
After adding each portion, the mixture was thoroughly mixed and completely dried until
the solvent evaporated in a drying chamber at a temperature of 60 ◦C. This procedure was
repeated until the composite was completely prepared. SnO2 impregnated with AgNO3 so-
lution, was additionally annealed at 300 ◦C for 24 h. The amount of the introduced modifier
was calculated so that the Ag content in the composites was 1 at.%. The obtained composite
materials were named as SnO2/AgNPs, SnO2/AgL1 and SnO2/AgL2, respectively.

2.2. Materials Characterization

The phase composition of the nanocrystalline SnO2 was characterized by X-ray powder
diffraction (XRD) using DRON-4 diffractometer (Burevestnik, Moscow, Russia) with CuKα1
radiation (λ = 1.54059 Å) and Raman spectroscopy method. Raman spectra were recorded
on i-Raman Plus (BW Tek, Newark, DE, USA) spectrometer equipped with a BAC 151C
microscope in the range of 90–3500 cm−1 with a resolution of 4 cm−1. A green laser with
λ = 532 nm was used as a radiation source. The measurement of the specific surface
area of SnO2 was carried out by low-temperature nitrogen adsorption on Chemisorb
2750 (Micromeritics) equipment using the BET model (Brunauer, Emmett, Teller).

Elemental analysis of the Ag complexes was carried out on a Carlo Erba 1108 elemental
analyzer. Electrospray ionization mass spectrometry (ESI-MS) analysis was performed
using a Finnigan LCQ Advantage mass spectrometer equipped with an octopole ion-trap
mass-analyzer, an MS Surveyor pump, a Surveyor auto sampler, and a Schmidlin-Lab
nitrogen generator. 1H NMR spectra were recorded at 25 ◦C on Varian Inova 400 MHz
spectrometer. Chemical shifts were reported in parts per million (δ) relative to deuterated
solvent as an internal reference.

The elemental composition of composite materials was investigated on M1 Mistral
X-ray fluorescent spectrometer (Bruker Nano GmbH, Berlin, Germany) with the beam
energy of 50 keV. X-ray photoelectron spectra (XPS) were performed on the XPS system
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a hemispherical analyzer
and using monochromatic Al Kα radiation as X-ray source (1486.7 eV). Fourier transform
infrared (FTIR) spectroscopy was conducted to investigate the structural fragments of Ag
complexes on the surface of semiconductor tin dioxide. FTIR spectra were recorded from
KBr pellets (50.0 mg) mixed with the test sample (0.3–0.5 mg) on Perkin Elmer Spectrum
One spectrometer in the transmission mode in the range of 4000–400 cm−1 with a resolution
of 1 cm−1. Thermogravimetric analysis was carried out on a NETZSCH STA 449 device
(Netzsch-Gerätebau GmbH, Selb, Germany ) combined with a QMS-409 mass spectrometer,
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which was used to determine the range of thermal stability of the obtained composites.
The samples were heated in air current (30 mL/min) up to 500 ◦C at a heating rate of
10 ◦C/min.

Micro-hotplates with Pt-electrodes were used for gas sensing tests. The powders of
composites were mixed with ethanol to form a paste and then deposited in a form of thick
film on the surface of hotplates. The films were dried at 60 ◦C for 24 h and were annealed
at 150 ◦C for 3 h with heating rate of 1 ◦C/min.

The gas sensing experiments were performed in laboratory-equipped electronic mod-
ule at the temperature range of 150–25 ◦C. The sensors were exposed to various concentra-
tions of H2S gas in the range of 0.12–2 ppm, the concentration was controlled by mass flow
controllers. The flow of the analyzed gas was alternated with purified air at an interval of
30 min. The ratio of the resistance in pure air (Rair) and in detecting gas (Rgas) was defined
as the gas sensor signal S = Rair/Rgas.

3. Results and Discussion
3.1. Characteristics of Nanocrystalline SnO2

XRD analysis established that obtained nanocrystalline SnO2 is single phase. The XRD
pattern corresponds to the tetragonal cassiterite structure (ICDD 41–1445) (Figure 2a). The
average crystallites size calculated from the broadening of the most intense peaks using
Scherer equation was equal to 3–4 nm. The specific surface area of nanocrystalline tin
dioxide is 138 ± 5 m2/g.
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The Raman spectrum of SnO2 is shown at Figure 2b. Tetragonal rutile structure of SnO2
is described by three characteristic vibrational modes Eg (470.0 cm−1), A1g (624.3 cm−1)
and B2g (772.1 cm−1). The A1g and B2g modes are related to symmetric and asymmetric
Sn–O stretching orthogonally to the c-axis, respectively. The Eg mode is attributed to the
motion of O anions along the c-axis [30,31]. The widest band at 553.7 cm−1 is associated
with in-plane oxygen vacancies of the nanocrystalline SnO2 [32,33]. The bands at 296.9 and
345.3 cm−1 are related to the Eu mode and associated with transformation of an IR to
Raman active modes [34].

3.2. Characteristics of Composite Materials

The 1H NMR and ESI-MS spectra for AgL1 and AgL2 complexes are shown in Figures
S1–S4, respectively. The results of elemental analysis showed that the composition of the
ligand to metal is (1:2) for AgL1 and (1:3) for AgL2 complexes, respectively. At the same
time, there is only one (1:1) complex for AgL1 and there are two complexes (1:1) and (1:2)



Materials 2021, 14, 7778 5 of 13

(ligand: metal) for AgL2 according to ESI-MS analysis. During recording procedure of the
ESI-MS spectra, the test sample heats up to about 120–150 ◦C. It can be assumed, that at this
temperature, the complex with the composition of the ligand to metal (1:2) still exists in the
AgL2 sample, but in the AgL1 it seems to have fallen apart. Therefore, up to 100 ◦C AgL1
is present on the surface in the form of a (1:2) complex (maybe partially (1:1)), and after
100 ◦C, only (1:1) remains. AgL2 is present up to 100 ◦C in the form of (1:3) (with possible
impurities of (1:2) and (1:1)), which decomposes to (1:2) with increasing temperature. That
is why, the (1:2) complex of the AgL2 is more stable than that of the AgL1.

The elemental composition of the surface of composite materials based on nanocrys-
talline SnO2 is shown in Table 1. It can be seen that the silver content in the composites is
close to the set value of [Ag]/([Ag] + [Sn]) = 1 at.%. These values were averaged, taken
from three different areas of the sample. At the same time, the primary values were also
close to each other, which indicates a uniform distribution of the Ag complex molecules
and AgNPs on the surface and effective sensitization.

Table 1. The elemental composition of materials.

Sample SnO2/AgNPs SnO2/AgL1 SnO2/AgL2

[Ag]/([Ag] + [Sn]), at.% 1.06 ± 0.01 1.01 ± 0.01 0.98 ± 0.01

[Sn]/([Ag] + [Sn]), at.% 98.94 ± 0.10 98.99 ± 0.10 99.02 ± 0.10

Composite materials SnO2/AgNPs, SnO2/AgL1 and SnO2/AgL2 were studied using
Raman spectroscopy (Figure 2b). The low-frequency region in composites arises from
vibration modes of SnO2 nanoparticles. The Raman spectra of SnO2/AgL1 and SnO2/AgL2
contain wide bands, at frequencies of 1342 cm−1, 1563 cm−1 and 1350 cm−1, 1574 cm−1,
respectively. The bands at 1563 cm−1 and 1573.9 cm−1 are assigned to the symmetric
stretching vibration of the C=C bonds in Py and phenyl (in case of L1) rings [35]. The
bands near 1350 cm−1 are associated with the vibration of the C=C and C=N bonds of
the Py rings [36,37]. Raman bands observed near 1300–1180 cm−1 are due to in-plane
deformations vibrations of ring C–H bond [38,39]. A decrease in the intensity of the bands
related to tin dioxide indicates its predominant surface coating with Ag organic complexes,
while for AgNPs these peaks are much more intense.

Figure 3 represents the FTIR spectra of composite materials. The wide band at
605 cm−1 corresponding to stretching vibrations of Sn–O bonds is present on all spec-
tra [40,41]. The wide band with a peak at 3425 cm−1 at the region of 3600–3000 cm−1 and
sharp band at 1636 cm−1 indicate the presence of adsorbed water, which refers to the OH
valence and stretching vibrations, respectively [41]. A vibrational mode corresponding to
the nitrate groups is observed at the frequency of 1380 cm−1 [41]. This is due to the fact that
during synthesis, tin dioxide was washed with ammonium nitrate to remove chloride ions
and subsequently nitrate ions remain on the sample in small quantities. However, it can be
observed that the intensity of the NO3

− ion vibrational mode is quite high in complexes
with aza-crown compounds, and this is directly related to the presence of a nitrate counter
ion in the composition of the complexes.

The XP spectra of the pure SnO2 and composite materials are shown in Figure 4.
Two components of the O1s spectra locating at 530.9–530.5 eV and 532.0–532.2 eV are
attributed to lattice oxygen (Olat) and adsorbed (Oads) oxygen species/hydroxyl ions (O−,
O2− and OH−), respectively [42].
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Figure 4. X-ray photoelectron spectra of the pure SnO2 and composite materials for O1s (a) and Ag3d (b) core level
binding energies.

The deconvolution of the Ag3d spectrum of the SnO2/AgL1 composite showed that
silver is present in both metallic state Ag0 (368.3 eV) and oxidized state Ag+ (367.6 eV) that
indicates a partial reduction of silver in sensitization process. However, the binding energy
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of 367.7 eV of the Ag3d spectrum of the SnO2/AgL2 composite is assigned only to Ag+,
while AgNPs are attributed to metallic state (368.2 eV) [42–44].

Silver in organic complexes should be in the chemical state of +1. According to the
1H NMR and ESI-MS analysis for AgL1 and AgL2 complexes and its discussion above, it
was concluded, that the (1:2) complex of the AgL2 is more stable than that of the AgL1.
Moreover, cyclic voltammogram analysis showed that there are a lot of free or weakly
bounded silver cations in AgL1 and AgL2 complexes (Figures S5–S7). Therefore, it can be
assumed that the partial reduction of silver in the AgL1 complex may be a consequence of
the interaction with the metal oxide matrix.

The results of thermogravimetric analysis (TGA) for SnO2/AgL1 composite are shown
in Figure 5. TGA and MS data for the other composite have similar character. The
analysis showed that in the temperature range of 50–175◦C, evaporation of adsorbed water
occurs, which is proven by an increase in the ionic current associated with H2O (m/z = 17,
m/z = 18). Aza-crown compounds begin to decompose at a temperature of 180–200 ◦C, as
evidenced by the release of CO2 (m/z = 12, m/z = 44) and NO (m/z = 30), accompanied
by an exothermic effect.
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Figure 5. Thermal analysis (a) and mass spectrometry curves (b) of SnO2/AgL1 composite.

3.3. Gas Sensor Properties

Figure 6a represents the temperature dependence of the sensors’ resistance on a
dynamic change of the gas phase composition (30 min–pure air, 15 min–2 ppm H2S in air).
The study of sensor properties at the constant concentration of 2 ppm H2S was performed
from 150 ◦C to 25 ◦C, since heating above 150 ◦C will lead to thermal destruction of organic
compounds according to TGA results. All sensors exhibit n-type behavior: resistance
decreases during exposure to the reducing gas (H2S) and returns to initial value during
pure air pulse. A decrease in the operating temperature leads to the increase in the baseline
resistance. Moreover, in contrast to pristine SnO2, composite materials exhibit a stable and
well reversible sensor signal.

The analysis of the temperature dependences of sensor signal (Figure 6b) showed that
sensitization of tin dioxide with Ag organic complexes leads to the appearance of a sensor
signal at low temperatures. The temperature of the maximum sensor signal decreases
down to 100 ◦C, and the sensor signal itself increases more than 2 times, in comparison to
pristine SnO2, which exhibits a significant signal at a higher temperature.
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The nature of the sensor signal is associated with interaction between chemisorbed
oxygen species with reducing gas and is based on surface-depletion model [45]. In pure
air atmosphere the oxygen molecules adsorb on and interact with the SnO2 surface by
transferring electrons from the conduction band (reactions 1–2). The resulting depletion
layer leads to an increase in the resistance of the material (Figure 6a). The predominant oxy-
gen ionic species will be O2

-, since the operating temperature is above 150 ◦C [45,46]. The
resistance of the sensors decreases due to the reaction of H2S molecules with chemisorbed
oxygen (reaction 3); electrons localized on chemisorbed oxygen are released, pass into the
conduction band of the semiconductor, which leads to a decrease in the electrical resistance
of the samples.

O2(gas) → O2(ads) (1)

O2(ads) + e− → O−2(ads) (2)

β·H2S(gas) + 3O−αβ → β·SO2(gas) + β·H2O(gas) + 3α·e− (3)

Sensor properties of the obtained nanocrystalline SnO2 and composite materials were
also studied in the concentration range of 0.12–2.00 ppm H2S in dry air. The measurements
were carried out with an increase of the concentration of the target gas. Figure 7 shows
the dependence of the sensor signal on H2S concentration at constant temperatures of
25 ◦C and 100 ◦C, which is well linearized in double logarithmic coordinates. In both cases
composite materials exhibit enhanced sensor response. The modified composites are able
to detect H2S even at room temperature in sub-ppm concentration range.

The response time (tres) was determined as the time required to reach 90% of the
maximum sensor signal during exposure to 2 ppm H2S in 15 min and the recovery time
(trec) was determined as the time required for 90% of the sensor response change after
removal of the H2S from the gas phase and during exposure to pure air in 30 min (Figure 8).
This method of measuring the tres and trec, which is slightly differ from the traditional one
when saturation is fully reached, was used for a comparative analysis of the kinetics of the
interaction of analyte-gas molecules with samples under specified conditions. It can be seen
that the response time values correlate with the values of the sensor signal for all samples
in the entire temperature range, which indicates the importance of the kinetic component
of the interaction of the material with the gas phase. The shorter the response time, the
faster the reaction proceeds and, accordingly, the higher the sensor signal. However, at
each temperature, the recovery time is approximately the same for all samples.
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Figure 8. Response time and recovery time of nanocrystalline SnO2 and composite materials toward
exposure to 2 ppm H2S gas at the temperature range of 25–150 ◦C.

Selectivity of the samples was investigated toward four different reducing gases–H2S
(2 ppm), H2 (20 ppm), NH3 (20 ppm) and CO (20 ppm) (Figure 9). The temperature at
which the maximum sensor signal to H2S was observed is 100 ◦C, therefore, the selectivity
toward interfering gases was investigated also at 100 ◦C. Moreover, the composites showed
a significant sensor signal at room temperature only for H2S. It can be seen that composite
materials selectively detect H2S even at room temperature, while the temperature of the
maximum sensor signal for other gases was much higher, and their concentration was
10 times higher.

The enhanced response of the composite materials to H2S gas in comparison to
pristine SnO2 might be due to several factors. On the one hand, one could assume the
above-mentioned mechanism based on H2S interaction with chemisorbed oxygen, but
this mechanism is not able to explain the selectivity enhancement. On the other hand,
the results obtained by the XPS method indicate that the concentration of chemisorbed
oxygen is 2 times higher in pristine SnO2 and SnO2/AgNPs composite in comparison to
SnO2/AgL1 and SnO2/AgL2 composites (Figure 4a). However, the sensor signal of the
latter, on the contrary, is 2 times higher than that of the pristine SnO2 and SnO2/AgNPs
composite. Comparing XPS results with sensor measurements, we can conclude that the
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predominant factors influencing the sensor properties and selectivity toward hydrogen
sulfide in low temperature region are the structure of the modifier and the chemical state
of silver in it.
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Figure 9. Sensor signal toward H2S (2 ppm), H2 (20 ppm), NH3 (20 ppm) and CO (20 ppm) for
different samples.

SnO2/AgNPs composite contains metallic silver nanoparticles dispersed on SnO2
surface. In this case, Ag NPs act as catalytic additives; therefore, chemical sensitization is
more likely. After dissociative adsorption of the oxygen molecules on the surface of AgNPs
their spillover on the SnO2 surface is occurs. The produced oxygen species can actively
oxidize H2S molecules, leading to the increase in sensor response [47].

The situation with SnO2/AgL1 and SnO2/AgL2 composites is slightly different, since
there is also Ag+. Therefore, the electronic sensitization mechanism is typical for them,
which involves the exchange of electrons between the modifier and the nanocrystalline
semiconductor. The electronic potential of the redox couple Ag+/Ag0 is 5.3 eV below the
vacuum level. The energy band of SnO2 will be bent until the Fermi energy of SnO2 (4.9 eV)
is pinned at the energy level of this redox couple in order to achieve electronic equilibrium.
As a result the electron-depleted region is emerged. In the atmosphere of H2S (reducing
gas) the equilibrium of Ag+/Ag0 is more likely shifted to Ag0. Therefore, EF(SnO2) is
pinned at the level of the Ag work function (4.5 eV), as a result the conductivity of SnO2
will be increased. Matsushima et al. have showed that the electronic sensitization mecha-
nism contributes more in gas sensor properties of the Ag-SnO2 system than the chemical
sensitization mechanism [48]. That’s why SnO2/AgL1 and SnO2/AgL2 composites show
higher sensor response to H2S in comparison to SnO2/AgNPs composite.

On the other hand, SnO2/AgL1 and SnO2/AgL2 composites have different sensor
responses toward H2S. It can be observed from the Figure 6b, that SnO2/AgL1 composite
has higher response up to 100 ◦C; however, above 100 ◦C SnO2/AgL2 composite shows the
best results among the samples. As it was mentioned above, up to 100 ◦C AgL1 is present
in the form of a (1:2) complex (maybe partially (1:1)), and after 100 ◦C, only 1:1 remains.
AgL2 is present up to 100 ◦C in the form of (1:3) (with possible impurities of (1:2) and (1:1)),
which decomposes to (1:2) with increasing temperature. It means, that the complex with
(1:2) composition is more preferable for H2S detection. This may be due to steric effects
that allow silver in this complex to reversibly change its oxidation state depending on the
environment. Ag has a high affinity for sulfur. When H2S molecules interact with silver,
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a bridging bond can be formed in which one sulfur atom is attached to two silver atoms.
Therefore, in this case, the close location of two silver atoms in the complex (1:2) will be
more advantageous for increasing the adsorption energy during the formation of a bond
with sulfur (reaction 4) [49].

H2S(ads) + 2Ag(s) +
1
2

O−2(ads) → Ag2S(s) + H2O(gas) + e− (4)

4. Conclusions

In summary, highly selective and sensitive materials were obtained for H2S detection
at low operating temperatures. SnO2 was used as a matrix of the sensitive layer and was
prepared by chemical precipitation method. Ag nanoparticles (AgNPs) or Ag organic
complexes (AgL1 and AgL2) were used as surface modifiers. Modified composites were
obtained by impregnation method.

Sensing performance was studied in the temperature range of 150–25 ◦C. It was found
that modification with Ag organic complexes leads to shift of the operating temperature vs.
lower temperature region and sensor signal to H2S was increased more than two times. It
was observed that the response times exactly coincide with the values of the sensor signal
for all samples in the entire temperature range that indicates the importance of the kinetic
component of interaction of the material with the gas phase. The modified composites are
able to detect H2S at sub-ppm concentration level even at room temperature. Selectivity of
the sensors was tested towards four types of reducing gases. The results showed a highly
selective behavior of the composites to H2S.

It was concluded that the predominant factors influencing the sensor properties and
selectivity toward H2S in low temperature region are the structure of the modifier and the
chemical state of silver. Thus, in the case of SnO2/AgNPs reference sample, the chemical
sensitization mechanism is more possible, while for SnO2/AgL1 and SnO2/AgL2 compos-
ites the electronic sensitization mechanism contributes more in gas sensor properties.
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of the ligand L2 with Ag+ in D2O, Figure S5: Cyclic voltammogram of AgL1 complex, Figure S6:
Cyclic voltammogram of AgL2 complex, Figure S7: Cyclic voltammogram of AgClO4.
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