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Conditional generative adversarial networks
applied to EEG data can inform about the inter-
relation of antagonistic behaviors on a neural level
Amirali Vahid1, Moritz Mückschel 1, Sebastian Stober 2, Ann-Kathrin Stock1 & Christian Beste 1✉

Goal-directed actions frequently require a balance between antagonistic processes (e.g.,

executing and inhibiting a response), often showing an interdependency concerning what

constitutes goal-directed behavior. While an inter-dependency of antagonistic actions is well

described at a behavioral level, a possible inter-dependency of underlying processes at a

neuronal level is still enigmatic. However, if there is an interdependency, it should be possible

to predict the neurophysiological processes underlying inhibitory control based on the neural

processes underlying speeded automatic responses. Based on that rationale, we applied

artificial intelligence and source localization methods to human EEG recordings from N= 255

participants undergoing a response inhibition experiment (Go/Nogo task). We show that the

amplitude and timing of scalp potentials and their functional neuroanatomical sources during

inhibitory control can be inferred by conditional generative adversarial networks (cGANs)

using neurophysiological data recorded during response execution. We provide insights into

possible limitations in the use of cGANs to delineate the interdependency of antagonistic

actions on a neurophysiological level. Nevertheless, artificial intelligence methods can provide

information about interdependencies between opposing cognitive processes on a neuro-

physiological level with relevance for cognitive theory.
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Goal-directed behavior is central to coping with everyday
life demands. In many situations, we are confronted
with trade-offs between partly antagonistic adaptive

constraints1,2, and goal-directed behavior often requires a balance
or arbitration between antagonistic behaviors, termed “meta-
control” in current theoretical frameworks2–4. For example,
automated responding can be advantageous on the one hand
because it is fast and requires few cognitive resources to be carried
out5. On the other hand, automated response tendencies are
difficult to control or inhibit6, which is disadvantageous once that
behavior becomes inappropriate and needs to be inhibited7. This
illustrates that antagonistic processes show an interdependency
concerning what constitutes goal-directed behavior, as suggested
by metacontrol theoretical frameworks. Several lines of evidence
support this, e.g., showing that speeded habitual responding to
environmental demands makes the inhibition of these responses
more error-prone7–11. In Go/Nogo experiments, which allow
assessing this nexus, two categories of trials are presented: Go
trials, which require a speeded response to a stimulus, and Nogo
trials, which require the inhibition of that speeded response.
Whenever Go trials occur with high frequency, participants tend
to establish automated (speeded) response tendencies that are
particularly difficult to inhibit8–11. When assuming that this
interdependency is also reflected on the neural level, it should be
possible to predict the neural processes underlying inhibitory
control based on the neural processes underlying speeded auto-
matic responses. However, such insights into the nature of this
neural-level interdependency have lacked until now. Many
existing studies have analyzed the inter-relation or differences
between response execution (Go) and inhibition trials (Nogo) in
terms of their scalp topography and electroencephalography
(EEG) electrode site-specific effects12–14 and also functional
imaging studies often examine the difference (contrast) between
Go and Nogo trials15. While an inter-relation of Go and Nogo
trials is thus inherent to the data analysis strategy in many
existing studies examining response inhibition the fundamental
question of whether Go trial neurophysiological signal properties
can predict Nogo trial neurophysiological activity is quite elusive.
Specifically, it is unknown whether knowledge about the time
course of neurophysiological processes underlying one form of
goal-directed behavior (e.g., speeded responses execution) pro-
vides sufficient information to infer/predict the time course and
neurophysiological pattern of processes of an antagonistic form of
goal-directed behavior (e.g., response inhibition) has not been
answered.

The most likely reasons for this are that neurophysiological
data is noisy and that there are likely complex non-linear inter-
dependencies in the time course of the neural correlates16 of
cognitive processes involved in goal-directed behavior17,18. Using
only some aspects (parameters) or selected time points from the
neurophysiological data (e.g., amplitude information at specific
time points as it is the case in classical event-related potential
research) would be too simplistic, as such an approach would not
allow accounting for the time course of the neurophysiological
activity underlying goal-directed behavior. Deep learning models
are powerful tools to estimate the mapping between two groups of
multi-dimensional, non-linearly related variables or time courses
(i.e., X and Y). Unlike linear models such as linear regression,
there is no assumption about an existing (linear) relationship
between variables. By increasing the model’s capacity (i.e.,
number of layers and neurons) deep learning can estimate highly
non-linear interrelations. EEG data are highly non-linear and
non-stationary. Deep learning models are widely used in many
images and signal recognition and synthesizing tasks. The dis-
tribution of the images and signals is very high dimensional,
sparse, and among all features, there are significant correlations.

These properties cause learning the probability distribution
function (i.e., P data) is not possible. Therefore, we applied
conditional generative adversarial networks (cGANs) to human
EEG recordings from a Go/Nogo response inhibition experiment
to provide insights into the interdependency of neural processes
underlying antagonistic behavioral tendencies. A cGAN can
generate high-quality data not depending on an estimate of Pdata
directly. Instead, it estimates the ratio between Pdata and the
Pmodel. We hypothesized that the application of cGANs allows
generating the precise neurophysiological pattern and the entire
time course of neural activity during inhibitory control (i.e., EEG
signals during Nogo trials) based on neurophysiological data
from speeded response trials (i.e., EEG signals during Go trials)—
and vice versa. The generated neurophysiological pattern should
then show high similarities with recorded data. If this was the
case, applying artificial intelligence methods to EEG data could
inform cognitive science and provide information about the
principles underlying antagonistic classes of goal-directed beha-
vior on a neurophysiological level. This would not only further
our understanding of interdependencies between distinct cogni-
tive processes on a neural level, but it may in the long-range also
provide an opportunity to test the predictions of computational
modeling, inform future theories, and—potentially—allow for the
prediction of behavioral performance in various situations.

Results
Behavioral data. For descriptive data, the mean and the standard
error of the mean are given. The mean percentage of correct
responses in Go trials was 98.75% ± .07. The mean reaction time
on Go trials was 348.76 ms ± 2.2. False alarms occurred in
11.86% ± 0.54 of all Nogo trials. The values were computed using
IBM SPSS Statistics 27.

EEG correlates of response inhibition. ERP components of Go
and Nogo trials are shown in Fig. 1 for all electrodes.

For the P1 amplitudes at electrodes P7/P9 and P8/P10, a
repeated-measures ANOVA with the factors “condition” and
“electrodes” revealed a significant main effect of electrodes
(F(1254)= 39.36; p < 0.001; η2p= 0.134) showing that the P1
amplitude was smaller over the left hemisphere (5.35 µV/
m2 ± 0.28) than over the right hemisphere (7.43 µV/m2 ± 0.32).
The main effect of condition was not significant (F(1254)= 3.04;
p= 0.083; η2p= 0.012). Additionally, the interaction of condi-
tion × electrode yielded significance (F(1254)= 22.99; p < 0.001;
η2p= 0.083). As shown by Bonferroni-corrected post hoc t-tests,
P1 amplitudes differed between Go (7.66 µV/m2 ± 0.32) and
Nogo trials (7.21 µV/m2 ± 0.32) over the right hemisphere
(t(255)= 4.53; p < 0.001), but not over the left hemisphere (Go:
5.27 µV/m2 ± 0.28; Nogo: 5.42 µV/m2 ± 0.28; t(255)=−1.43;
p > 0.31).

For the N1 amplitudes at electrodes P7/P9 and P8/P10, the
ANOVA showed a main effect of electrode (F(1254)= 101.92;
p < 0.001; η2p= 0.286) indicating that the N1 amplitude
was larger (i.e., more negative) over the left hemisphere
(−11.11 µV/m2 ± 0.36) than over the right hemisphere
(−7.05 µV/m2 ± 0.35). All other effects were not significant
(F < 2.77; p > 0.096). The N2 amplitude at electrode Cz was
significantly larger (i.e., more negative) in Nogo trials
(−7.09 µV/m2 ± 0.39) than in Go trials (−3.9 µV/m2 ± 0.32),
as indicated by a significant main effect of condition
(F(1254)= 143.92; p < 0.001; η2p= 0.362)) in the correspond-
ing ANOVA. The frontocentral P3 amplitude at electrode FC1
was significantly larger (i.e., more positive) in Nogo trials
(8.25 µV/m2 ± 0.54) than in Go trials (1.86 µV/m2 ± 0.38), as
indicated by the ANOVA (F(1254)= 259.61; p < 0.001;
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η2p= 0.505). The ANOVA for the parietal P3 amplitude at
electrode P1 (parietal P3) also showed a significant main effect
of condition (F(1254)= 19.71; p < 0.001; η2p= 0.072), indicating
that the parietal P3 amplitude was more positive in Go trials
(9.26 µV/m2 ± 0.33) than in Nogo trials (8.32 µV/m2 ± 0.34).

GANs generate EEG correlates of inhibition in early time
windows. After normalization of Go and Nogo EEG data, the Go
data was fed into the cGAN in the time window from 0 to
1000 ms. Figure 2a shows the cGAN-generated Nogo signal based
on the Go signal (i.e., the Nogo is conditioned on the Go signal)
in comparison to the measured (real) Nogo signal for all
electrodes.

As can be seen, there is a high visual similarity between the
cGAN-generated and the real Nogo signal in all channels. The
time window from stimulus onset until response execution is of
particular interest for this analysis because it encompasses
traditionally investigated neurophysiological correlates of percep-
tual processing, attentional control, response selection, and motor
response execution. Cluster-based permutation tests with 1000
random draws were used to compare the measured and the
cGAN-generated Nogo signal. The test compared all electrodes at
all time points from 0 to 1000 ms. The test results are shown in
Fig. 2b, where they have been temporally aggregated in 50 ms
steps. No significant clusters were obtained in the N2 time
window (i.e., from 271 to 291 ms). As shown in Fig. 3a, b, by
visual inspection, a close visual correspondence of generated and
real Nogo signal in the time window of the N2 at frontocentral
sites: The generated signal closely matches the real signal in
shape as well as in amplitude. The permutation test showed no
differences at a cluster coinciding with the N2 time window.
Bayesian single-sample t-tests in that time window (for pooled
electrodes Cz, FCz, FC1, FC2, FC3, FC4, as revealed by a
significant cluster in the P3 time range, see further below) yielded
a mean Bayes factor BF10 (i.e., evidence for H1 over H0) of 2.42
(±0.47; 0.2713–0.2913 ms), suggesting only anecdotal evidence for
an amplitude difference, despite the large sample size of N= 255
participants. Additionally, there was only a nominal mean effect
size of d= 0.17 (±0.01) for the difference between the generated
and real signal. The close resemblance between the cGAN-
generated and the measured Nogo signal in the N2 time window
was further corroborated by the results of the sLORETA source
localization (see Fig. 3c), where the sources (BA24) for the cGAN-
generated Nogo signal are also similar to the sources found for
the measured Nogo data.

Differences between GAN-generated and measured data in late
time windows. Opposed to earlier time windows reflecting
inhibitory control sub-processes (i.e., the N2 time window), sig-
nificant mid-central electrode clusters were obtained in the time
window of the frontocentral P3 component (i.e., from 350 to
400 ms) at electrodes Cz, FCz, FC1, FC2, FC3, and FC4, as well as
slightly smaller significant clusters from 400 to 450 ms (p < 0.013)
(see Fig. 4a, b). After limiting the analysis to the mean activity of
the time window from 350 to 400 ms, permutation tests con-
firmed that the mean amplitudes of the measured and cGAN-
generated Nogo signal were significantly different in this time
window (one positive cluster of mid-central electrodes; p < 0.001).
Figure 3a presents a comparison of the measured (real) and
cGAN-generated Nogo signal pooled over the electrodes con-
tained in the significant clusters observed in the frontocentral P3
time window (i.e., Cz, FCz, FC1, FC2, FC3, and FC4). By visual
comparison, the maximum amplitude of the cGAN-generated
Nogo signal appears to be slightly smaller than the measured
signal, whereas the overall shape of the waveform is quite similar.
Bayesian t-tests conducted for each sample at the pooled elec-
trodes revealed a mean BF10 > 100 (1.07 × 1016 ± 5.33 × 1015) in
the time window from 324 to 504 ms overlapping with the P3
time window. A BF10 > 100 indicates robust evidence for ampli-
tude differences between the real Nogo and the generated Nogo
signal. However, the large sample size used here (n= 255) was
necessary for cGANs and facilitated detecting differences that are
very small and possibly only trivial and without biological
meaning19–21. In this regard, it is essential that the observed
amplitude differences showed only small to medium effect sizes
(mean d= 0.40 ± 0.02). When conducting source localization
analyses examining the source of the frontocentral P3 in the
measured data and the cGAN-generated data, the two analyses
revealed overlapping activations in the anterior cingulate cortex
(BA24) (Fig. 3c). Thus, there are noteworthy similarities between
the measured and the cGAN-generated data regarding the func-
tional neuroanatomical sources despite the observed amplitude
differences. Further contrasting the cGAN-generated and
the measured Nogo data in the P3 time window revealed
that amplitude differences in that time window were due to
activation differences in the left anterior insular cortex (BA13)
(Nogoreal > Nogogenerated).

The cluster-based permutation tests also showed significant
clusters from 650 to 750 ms and from 850 to 1000 ms after
stimulus onset. Here, primarily parieto-occipital electrode sites
were revealed. However, these differences occur after the response
and are therefore outside of the crucial time window for response

Fig. 1 Event-related potentials (ERP) for Go and Nogo trials. P1 and N1 ERPs are depicted at electrodes P7/P9 and P8/P10. N2 ERP is depicted at
electrode Cz, P3 ERP at electrode Cz, and PO1. Go trial EEG data are depicted in green color, Nogo data in blue color. Additionally, scalp topography plots
show voltage distribution at the time point of the respective ERP peak. Timepoint zero denotes the time point of stimulus onset.
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Fig. 2 The generated Nogo signal at all electrodes. a Real (blue) and generated (red) Nogo trial EEG data as well as the difference of Real and generated
Nogo EEG signal (purple). The x-axis denotes time in ms from stimulus onset, y-axis signal amplitude. b Results of cluster-based permutation analysis
comparing real and generated Nogo signal, aggregated in 50ms steps. Electrodes showing significant differences in the respective time step are marked by
an asterisk, positive differences by a black, and negative differences by a white asterisk. Colors denote amplitude differences. The figures show normalized
amplitudes.
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selection processes. The signal in the late post-response time
windows is likely to exhibit high variability due to overlap with
successive trials, which probably impairs the performance of
the cGAN.

GAN shows weaker performance generating Go data from
Nogo data. Even though the generated Go signal visually
resembles the real Go signal remarkably well, there seem to be

more overall visual differences between the real and generated Go
signal than between the real and generated Nogo signal (see
Fig. 4a). This was corroborated by a cluster-based permutation
test comparing the cGAN-generated and real Go signal, showing
significant clusters (p < 0.05) in 17 out of 20-time epochs (50 ms)
(see Fig. 4b). In contrast, significant clusters for comparing gen-
erated and real Nogo signals were observed only in 7 out of 20-
time epochs. This shows that the cGAN performed better in

Fig. 3 The generated Nogo signal at pooled electrodes Cz, FCz, FC1, FC2, FC3, and FC4. a Pooled and EEG signal for real Nogo and generated Nogo signal
(top). Cohen’s effect sizes are based on a t-test comparing each sample point between generated and real Nogo signal (middle). Bayes factor bf01 (gray)
and bf10 (green) for each sample point compared between generated and real Nogo signal. The dotted purple line depicts bf10 with a cut-off value of 30
(i.e., values above 30 were set to 30). Gray boxes indicate the time window of the N2 and the P3. b Real (blue) and generated (orange) Nogo signal as well
as real Go signal (dotted gray) at pooled electrodes Cz, FCz, FC1, FC2, FC3, and FC4. The blue and orange shadings indicate the standard deviation.
Timepoint zero denotes the time point of stimulus onset. Gray boxes indicate time windows of N2 and P3 analysis. Topography plots showing the voltage
distribution are given for real and generated Nogo signals in the N2 peak time windows and in the P3 time window. Colors denote amplitude differences.
c Results of sLORETA analysis. In the N2 time window, comparing the Nogo real signal against zero, sLORETA revealed sources in BA24. Comparing the
generated Nogo signal against 0, sources in BA24 were found. For the P3 time window, comparing the real Nogo signal against 0 showed sources in BA24.
Comparing the generated Nogo signal against 0, sources in BA24 and BA31 were revealed. Contrasting real and generated Nogo signal, sLORETA revealed
sources in BA13. The figures show normalized amplitudes. For the sLORETA, t-values are given.
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Fig. 4 The generated Go signal. a Real (dark green) and generated (light green) Nogo trial EEG data as well as the difference of Real and generated Go EEG
signal (blue). The x-axis denotes time in ms from stimulus onset, y-axis normalized signal amplitude. b Results of cluster-based permutation analysis
comparing real and generated Go signal, aggregated in 50ms steps. Electrodes showing significant differences in the respective time step are marked by an
asterisk, positive differences by a black, and negative differences by a white asterisk. Colors denote amplitude differences. The figures show normalized
amplitudes.
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generating Nogo trials from recorded Go trials than, conversely,
in generating Go trials from recorded Nogo trials.

We applied the same cGAN architecture on a Simon task
paradigm data published by Vahid et al.18, a sample consisting of
N= 186 healthy adult participants. The results can be found in
the supplemental material (Supplemental Fig. 1). These results
show that the same cGAN architecture as applied for the
Go/Nogo task was less well able to generate a signal in the
Simon Task.

Discussion
The goal of the current study was to examine whether artificial
intelligence methods (i.e., a cGAN) can provide information
about the interrelation of partly antagonistic behavioral tenden-
cies on a neurophysiological level when applied to EEG data. It
was not intended to develop and estimate the performance of a
new GAN in comparison to other machine learning procedures.
Instead, the study was motivated by the cognitive theory that
complementary and antagonistic instances of goal-directed
behavior are located on opposing ends of a continuum. Com-
putational principles (parameters) may relate neurophysiological
processes of partly antagonistic classes of goal-directed
behavior2–4. Therefore, it was necessary to the information of
one condition (i.e., Go or Nogo) as input for the cGAN and not
an arbitrary or random signal as an input, which is done in
conventional GANs. Using a random signal in a GAN, it is not
possible to study the question of whether it is possible to predict
Nogo trial neurophysiological activity using information from Go
trials (and vice versa). For that reason, we chose to use EEG data
from a well-defined experimental paradigm measuring clearly
defined antagonistic behaviors as an example and input for the
cGAN; i.e., we focused our analysis on the interplay between
executing a speeded response and the ability to inhibit such a
response using a Go/Nogo task. We used a well-established GAN
architecture22 whose performance was already validated in var-
ious experiments22 with identical hyperparameters and network
architecture as used in the current study. The modification
changed all convolution and pooling layers from two dimensions
into one dimension to be applicable for the EEG signal.

The results show that neural processes underlying partially
antagonistic classes of goal-directed behavior can be related to
each other. Time-resolved neurophysiological processes under-
lying one instance of goal-directed behavior (i.e., the speeded
execution of a response) contain sufficient information to gen-
erate time-resolved neurophysiological processes of the antag-
onistic class of goal-directed behavior /cognitive process (i.e.,
response inhibition). In previous research, several lines of evi-
dence have shown that response inhibition is associated with a
ubiquitously occurring complex in the EEG N2 and P3 time
window14,23. Notably, the response inhibition data generated
based on real response execution data revealed strong similarities
with real inhibition-related data in the N2 time window. This was
further underlined by an analysis of the EEG sensor data as well
as source reconstruction analyses. The latter showed highly
similar activations for the generated and the real data in the
anterior cingulate cortex. This is particularly noteworthy as
sLORETA source localization depends on the input from all
recorded electrodes. This evidences that the application of GAN
methods did not only allow to generate remarkably similar data
patterns at traditionally investigated electrodes sites but instead
for all of the investigated electrodes.

However, still, we found amplitude differences between the real
data and the GAN-generated data in the P3 time window. It has
been suggested that the Nogo-N2 and Nogo-P3 components
reflect different cognitive sub-processes involved in response

inhibition14 also having partially different neurobiological
correlates24,25. While neurophysiological modulations in the
Nogo-N2 time window have been suggested to reflect conflict
monitoring or pre-motor inhibition processes, modulations in the
Nogo-P3 time window have been suggested to reflect the motor
inhibition itself14. This suggests that the information contained in
Go trials is limited. Not all cognitive sub-processes involved in
response inhibition can be approximated equally well based on the
neurophysiological dynamics exhibited during speeded respond-
ing. Interestingly, this would match the common interpretation
that the Nogo-N2 reflects the (pre-)motor inhibition of an auto-
mated Go response tendency (i.e., directly relates to the Go pro-
cess). In contrast, the Nogo-P3 either reflects motor inhibition
itself or an evaluation thereof (i.e., might be more strongly related
to the processes associated with inhibition than with the prepotent
Go response tendency itself)24,26,27. Nevertheless, source locali-
zation analysis again revealed highly similar sources in the anterior
cingulate cortex for the generated and the real Nogo data in the P3
time window. This suggests that the dynamics of neuronal activity
can generally be mapped sufficiently well, even though the
dynamics of speeded responses do not allow to precisely predict
the strength of neuronal activation in response inhibition for every
neurophysiological time point and hence for every response
inhibition subprocess. This poses the question of which of the
Nogo-P3-associated processes cannot be predicted based on Go
trials? Contrasting the cGAN-generated and real Nogo amplitudes
in the Nogo-P3 time window with source localization analysis
revealed activation differences in the left anterior insular cortex
(BA13) (Nogoreal > Nogogenerated). Meta-analyses have shown
the insular cortex to play an essential role in sensorimotor
and cognitive processes28,29, especially in evaluative but also
inhibitory processes during cognitive control30–32. Such evaluative
aspects have also been suggested to be evident during response
inhibition and are most likely reflected in the Nogo-P3 time
window14,24,27,33, but this suggestion has also been questioned
based on data from response interruption34. Still, it is well possible
that the cGAN cannot capture such evaluative aspects coded in
neurophysiological data because they neither arise nor directly
relate to the processes of automated response tendencies reflected
in the Go trial data. Another potential reason is that the experi-
ment used a skewed distribution of Go and Nogo trials to induce a
strong response tendency and thus to impose high demands on
response inhibition processes8–11. The high frequency of Go
trials makes responding somewhat automated8–11 and puts less
emphasis on the execution of a controlled response. This lack of
controlled/evaluative aspects in the Go trial neurophysiological
signal likely makes it much harder, if not impossible, for the
cGAN to generate neurophysiological data that reflects exactly
these processes in Nogo trials and points towards the limitations
of such methods in the context of cognitive neurophysiology.
Considering this, it is also important to note that even though
cGAN application allowed to generate a convincing time-resolved
neurophysiological response inhibition signal based on neuro-
physiological response execution data, this was not equally pos-
sible the other way round. The most likely reason is that there
were three times more Go trials than Nogo trials. Consequently,
the Go data fed into the cGAN to generate a Nogo signal were less
variable, which may have allowed for better cGAN performance.
Yet, this skewed distribution of trials was necessary to induce a
strong response tendency and impose high demands on response
inhibition8–11. Since single-trial EEG data are noisier than aver-
aged EEG data, we used the latter for the analyses performed.
Future studies shall investigate and design deep learning models
for the single-trial level.

An important future step is the optimization of the applied
cGAN architecture. The cGAN applied here is inspired by a type
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of cGAN proposed by Isola et al.22, originally designed for the
image to image translations. This architecture was optimized for
example for translations of day-time pictures into night-time
pictures or colorizing monochrome pictures. Here, pre-
dominantly color conversions of objects while maintaining the
overall structure of the objects were required. To put the concept
of changing the color without changing the objects into signal
processing words, the model must learn how to change signal
peaks/amplitudes without introducing latency for the new signal.
The cGAN may therefore give satisfactory results when amplitude
changes prevail, as is the case in a Go/Nogo experiment, but it can
perform worse when significant latency shifts appear. This is
suggested by the results shown in the supplemental material
(Supplemental Fig. 1) using the same cGAN architecture for a
Simon Task measuring response conflict monitoring processes. In
contrast to the predominant amplitude modulations observed
between Go and Nogo trials, the congruent modulations of the
Simon paradigm are also characterized by latency shifts of the
event-related potential components. Optimizing the cGAN
architecture to grasp all functionally relevant aspects of electro-
physiological signals is therefore an important future step.

Nevertheless, the results provide proof of principle that artifi-
cial intelligence methods (i.e., cGANs) may be useful to access
neurophysiological principles and relationships between cognitive
functions. They may be useful to derive and test computational
principles underlying the interrelation of classes of goal-directed
behavior on a neurophysiological level. The “parameters” which
relate to these classes of goal-directed behavior and seem to be
detected by the cGAN approach may be complex mathematical
constructs that need to be estimated using artificial intelligence
methods—at least when it comes to neurophysiological processes.
This has substantial implications for cognitive science, in which
processes underlying goal-directed behavior are increasingly seen
and investigated as a dynamic interplay of control modes that are
putatively regulated by a set of computational principles that have
not yet been understood. At present, the research in this field is
dominated by cognitive theory-driven approaches. In contrast,
data-driven artificial intelligence methods like the ones used in
this study have largely been neglected until now, possibly because
deep networks are rarely built with biological plausibility in
mind16. In this context, it will be a fundamental future challenge
in the following steps to be taken to combine theory-driven (“why
it works questions”) and data-driven approaches (“whether it
works questions”)16,35 to derive a computational formalization
underlying dynamic adjustments in goal-directed actions. We
deem the current study to be a starting point for this in cognitive
control and goal-directed behavior due to its conceptual moti-
vations rooted in metacontrol theories on action control.

Methods
Participants. The study runs quantitative, within-subject manipulations of
experimental conditions. A sample of N= 255 healthy student participants (121
females) took part in the study (convenience sample). The sample was gathered
from different experiments. There were no data exclusions or participants’ drop-
outs. There was no randomization due to the within-subject design. The sample
size is comparable to other studies applying deep learning to EEG data18. The mean
age was 23.8 ± 2.8 years. All participants had a normal or corrected-to-normal
vision and reported being free of any medication. During the recruitment phase,
these participants reported not having any neurological or psychiatric disorder in a
telephone interview. The participants received financial compensation or course
credits for taking part in the study. The study was approved by the ethics com-
mittee of the University of Bochum (reference No. 3827-10/4490-12) and con-
ducted in accordance with the Declaration of Helsinki. We obtained written
informed consent from all study participants before any study procedure was
started.

Response inhibition task. To examine the inhibition of speeded responses, we
used a Go/Nogo task in which the Go and Nogo conditions occurred with different
frequencies (i.e., 70% Go trials and 30% Nogo trials). This ratio of Go and Nogo

trials has been shown to increase demands on response inhibition processes
because it encourages the execution of speeded responses8–11. Participants were
seated approximately 60 cm from a 17-in. CRT screen. The experiment was pre-
sented using the software Presentation 14 (Neurobehavioral Systems, Inc.). As a Go
stimulus, the word “DRÜCK” (German for “press”) was presented in white font on
black background in the center of the screen for 200 ms. Participants were asked to
respond by pressing a key with their right index fingers. As a Nogo stimulus, the
word “STOPP” (German for “stop”) was presented in white font on a black
background in the center of the screen for 200 ms. The trial ended as soon as the
participant responded with a keypress (either a correct response in Go trials or a
false alarm in Nogo trials) or 2200 ms after stimulus onset if no key was pressed
(either a miss in Go trials or a correct inhibition in Nogo trials). The trials were
separated by a jittered inter-trial interval (ITI) of 1000–1300 ms, in which only a
central white fixation cross was presented on the screen. Overall, there were 315 Go
and 135 Nogo trials. The entire experiment took about 15 min.

EEG recording and processing. An EEG was continuously recorded during task
performance with a sampling rate of 500Hz using 64 sintered Ag/AgCl electrodes
that were mounted in an elastic cap (EasyCap Inc.). EEG recording was performed
using a QuickAmp amplifier (Brain Products Inc.), with the reference electrode
placed at FCz. The signal was automatically re-referenced to a common average
reference by the amplifier. The cap preparation was performed using Lectron III high
chloride electrolyte gel to ensure that electrode impedances were kept below 5 kΩ.
For offline data processing using the Brain Vision Analyzer 2 software package
(BrainProducts Inc.), the data were down-sampled to 256 Hz. Then, a 0.5 Hz high-
pass filter and an 18Hz low-pass filter were applied (IIR, slope of 48 dB/oct). Sub-
sequently, gross and irregular artifacts (e.g., technical artifacts, DC offset corrections,
excessive movement/EMG artifacts, SQUID jumps) were discarded employing a
manual raw data inspection procedure. This step was followed by an independent
component analysis using the infomax algorithm to correct for horizontal and
vertical eye movements, ECG, and pulse artifacts: Independent components showing
these artifacts were discarded before the back-projection of the data to EEG sensor
space was performed. After that, electrode FCz was interpolated using a spherical
spline interpolation before the data was segmented into Go and Nogo trials using
time markers in the EEG. Of note, only correct trials were segmented and included in
all further data processing and analyses steps. Only Go trials with responses before
the response deadline of 1200ms and Nogo trials with no responses until the
response deadline of 2200ms were considered. The segments were initially 4000ms
long, starting 2000ms before and ending 2000 ms after stimulus onset. An auto-
mated artifact rejection procedure followed segmentation to eliminate any artifacts
that might have survived prior artifact removal steps. Segments were removed if any
of the below-specified rejection criteria were met: a voltage step of more than 50 µV,
a difference of values in a 200ms intervals of >100 µV, amplitudes exceeding
±100 µV, a difference of minimum and maximum activity of less than 0.5 µV in
intervals of 100ms. This procedure removed on average 2.4 ± 3.6 (0.5%) of total
trials. Then, a current source density transformation was performed (order of splines
m= 4, maximum degree of the Legendre polynomials n= 10, precision of 2.72−7) to
eliminate the reference potential. A baseline correction between −200ms and sti-
mulus onset was performed, and averages for Go and Nogo trials were formed on the
single-subject level. On average, 242.4 ± 64.3 correct GO trials and 102.4 ± 26.8
correct NOGO trials remained for further analysis. A time window of 0 to 1000ms
relative to stimulus onset was used for the GAN procedures.

Generative adversarial network (GAN). GAN is a class of methods for learning
generative models, which were initially proposed by Goodfellow36,37. GANs consist
of two networks (i.e., a generator and a discriminator network) that compete in a
game. While the generator tries to “fool” the discriminator by generating realistic/
raw data from noise (i.e., G(z)), the discriminator takes a generated fake or real
example as an input and makes a binary decision whether this input is fake (i.e.,
generated signal) or real (i.e., D(x)). Competition between these two networks
results in improvements for both and in an ideal situation, the discriminator
cannot distinguish real and fake data at the end of this process. This competition
can be expressed as a zero-sum game with the following objective (i.e., LGan)

LGan D;G; x; zð Þ ¼ Ex�PdataðxÞ log D x; θD
� �� �� �

þ Ez�Pz ðzÞ log 1� D G z; θG
� �

; θD
� �� �� � ð1Þ

θG
�; θD

� ¼ argminθGmaxθD LGanðD;G; x; zÞ ð2Þ

D and G are two neural networks with parameters θD and θG representing dis-
criminator and generator, repetitively. x is an example of real data, and z is
n-dimensional noise. Pdata xð Þ and Pzðz) are the distribution of the data and noise,

respectively. The objective of a GAN is to learn the mapping z!G x by estimating
the parameters θD and θG, in which the loss is maximal concerning θD and minimal
concerning θG. Goodfellow et al37. originally used simple neural networks (i.e., a
multi-layer perceptron). After that, more complex architectures have been put
forward (i.e., convolutional neural networks), which have been shown to lead to
impressive results, especially in image generation38–42. Importantly, GANs can also
be used as a tool for transforming a data distribution from one condition to
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another. This transformation process is called conditional GAN (cGAN). The
principal architecture of a conditional GAN is shown in Fig. 5a.

Suppose that we have a dataset containing recorded data from two conditions
(i.e., X and Y), which can be completely arbitrary. Conditional GANs are optimized
to learn and estimate the function that transforms condition X to condition Y (e.g.,
transforming Go data into Nogo data). The procedure behind conditional GANs is
very similar to that behind classical GANs. However, a slight difference between
these methods lies in the construction of the generator. Classical GANs learn the

mapping z!G x and the primary input is noise. In conditional GANs, however, the
primary input is the real data from condition x. Using this information, the

conditional GAN learns the mapping x!G y22. In other words, the generator learns
how to synthesize/ produce natural-looking data (i.e., y) by using x as its input.
Conditional GANs have been widely used for the learning transformation of data
such as image to image or text to image22,43–45. There are also a few studies that
used GAN for the generation of EEG data. Two recent studies used GAN as an
augmentation method to increase the dataset size46,47, and another study used a
conditional GAN to generate EEG data similar to data recorded during epileptic
seizures48. In the current study, we applied a conditional GAN22 to generate
neurophysiological signals for the Nogo condition using data from the Go
condition and vice versa. The chosen method by Isola et al22. is applicable when
having a paired dataset. Supposedly, we have a dataset that recorded two conditions

xi
� �N

i¼1 and yi
� �N

i¼1: (i.e., Go and Nogo). When the correspondence between xi and
yi exists for each example of the dataset, it is called a paired dataset. When there is
no such correspondence, it is called an unpaired dataset. Our dataset was
composed of averaged ERP data recorded during both Go and Nogo conditions for
each subject. The number of examples is equal to the number of subjects and for
each of them, there are both Go and Nogo conditions. Therefore, our dataset is
paired. There are several methods for conditional GAN but it has been shown that
the quality of results generated by the conditional GAN proposed by Isola et al22. is
better (i.e., less blurred) than other methods in case the dataset is paired45. The loss
function for the conditional GAN can be expressed as:

LGan D;G; x; y
� � ¼Ex;y log D x; y;θD

� �� �� � þ Ex log 1� D x;G x;θG
� �

;θD
� �� �� �

þ λ Ex;y y � G xð Þ
�� ��

1

h i ð3Þ

θG
�; θD

� ¼ argminθG maxθD LGanðD;G; x; zÞ ð4Þ
The first and second terms in Eq. 3 are very similar to classical GAN, but the input
of the generator is real data x instead of noise, and the discriminator decides

whether pair of (x,y) or (x,G(x)) is real or fake. The last term is a regularizer and
prevents the generator from generating blurred images49. Transferred to the
signal level, this means that the generator generates a signal containing high
frequencies. Equation 3 states that the generator not only generates data that
fools the discriminator but also considers that the L1 distance between generated
and real data should be minimized. In other words, Eq. 3 can be considered as a
normal autoencoder with L1 distance (i.e., last term in Eq. 3) plus adversarial
loss (i.e., the first and second term in Eq. 3). Isola et al.22 used images as data for
learning the transformation, but in our study, the data type was the time-
resolved signal. Consequently, the architectures and parameters designed for
images had to be changed to be applicable for time-series data. Specifically, we
changed all of the convolutional and pooling layers from two dimensions into
one dimension. Other hyper-parameters and network structures remained the
same. Crucially, we employed K-fold as a cross-validation method to evaluate
the transformation performance with K= 10. This means that 90% of subjects
were randomly selected as a training set, and 10% were used for testing. By
continuing this process ten times, all subjects in the dataset are part of both the
testing and training sets for the conditional GAN. Please note that all of the
results and plots are shown in the results section are based on the test sets in the
K-fold method.

The architectures for the generator and the discriminator are shown in Fig. 5b, c22.
The generator (Fig. 5b) consists of an encoder and a decoder block with a skip
connection between each layer of the decoder and the encoder50. Assume that Ck
denotes a Convolution-BatchNorm-ReLU layer with k filters and CDk denotes a
Convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%. The
decoder consists of 8 layers (i.e., C’64–C128–C256–C512–C512–C512–C512–C512).
The encoder also has 8 layers in which layers 1–7 are CD512–CD512–CD512–
CD512–C256–C128–C64, and the last layer is a convolution with a Tanh activation
function to map to the output signal. The filter size for the convolution is 2 with
a stride of 2. In the discriminator and the encoder, convolutions down-sample
the data by factor 2, but in the decoder, they up-sample data by factor 2. A
convolutional “PatchGAN” classifier was used as discriminator22. The
discriminator tries to classify whether each of each patch in a signal is real or
fake. The architecture of the discriminator is shown in Fig. 5c. The discriminator
consists of five convolutional layers. The architecture for layers 1–4 is
C’64–C128–C256–C512, and in the last layer, there is a convolution to map to one
dimension output followed by a sigmoid activation function. The output shape of
the discriminator is 16*1 (i.e., features), and the discriminator should assess
whether each of the 16 output features (i.e., belongs to a patch of the input signal)
is accurate or fake22,51. Please note that C’ 64, used in discriminator and encoder, is

Fig. 5 The general procedures and architectures of the conditional GAN for generating a Nogo signal based on the Go signal. a General procedures for
generating a Nogo signal based on the Go signal. The real Go signal is fed into the generator. The real Go signal is concatenated with real and generated
Nogo data separately. The discriminator assesses whether the pair of either real Go/real Nogo data or real Go/generated Nogo data is real or fake. b The
architecture of the generator. It consists of an encoder (i.e., blue part) and a decoder (i.e., red part). Both decoder and encoder each consist of eight
convolutional layers. Convolutions in the encoder down-sample by a factor of 2, whereas in the decoder, data is up-sampled by a factor of 2. Black arrows
indicate a skip connection between each layer of the encoder and the decoder. c The architecture of the discriminator. It consists of four convolutional layers.
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similar to C64, but there is no batch normalization. Furthermore, all ReLUs in the
encoder and discriminator are leaky, with a slope of 0.2, while ReLUs in the
decoder are not leaky. The conditional GAN was applied separately for each
channel of the EEG data. The batch size, number of the epochs, and λ are set to 1,
15, and 100, respectively. Finally, please note that we do not aim to design a model
that can achieve the highest performance for the transformation of EEG data in two
different conditions in this study. Our primary goal is to use a model with
acceptable performance to transform EEG data from automated behavior to
inhibitory behavior. In other words, we want to show that instances of goal direct
behavior (i.e., Go and Nogo) have an interrelation at the neurophysiological level.
Thus, we used a well-established deep learning architecture22 able to transform
images from one condition to another. The model’s performance was already
validated in various experiments22 such as semantic data labels↔photo,
architectural labels→photo, map↔aerial photo, edges→photo, etc., with identical
hyperparameters and network architecture as used in the current study. Thus, the
only modification that we applied is changing all convolution and pooling layers
from two dimensions into one dimension applicable to the EEG signal. To increase
the signal-to-noise ratio in the data used for learning, we did not use single-trial
data but used the single-subject averages of data in the respective conditions. The
cGAN analysis was run using a Jupyter Notebook (Project Jupyter) and Python
3.8.5 (Python Software Foundation).

Behavioral and standard ERP data analysis. For descriptive data, the mean and
standard error of the mean is given. For the quantification of the ERP components,
the mean activity in an individually determined time window was used. The
electrodes were chosen according to their respective scalp topography. Electrodes
P7/P9 and P8/P10 were used for the P1 and N1 components. The P1 was quan-
tified as the mean activity in the time window from 90 to 110 ms after stimulus
onset. For the N1 component, the time window of 150–170 ms was chosen. The N2
was quantified in the time window of 250–280 at electrode Cz. The P3 was
quantified in the time window from 375 to 400 ms at electrode FC1 (frontocentral
P3) and at electrode P1 (parietal P3). The ERP data standard analysis was per-
formed using repeated-measures ANOVA. The model included the within-subject
factors “condition” (Go vs. Nogo trials) and “electrode,” whenever applicable. Post-
hoc tests were Bonferroni-corrected.

Comparison of real and generated EEG data. For comparison of the real
(recorded) Nogo data (Nogoreal) and the generated Nogo data from the GAN
(Nogogenerated), cluster-based permutation tests were computed using field trip
toolbox52. Real and generated data for every single channel were compared from
0ms to 1000 ms using dependent t-tests corrected for multiple comparisons using
the cluster method (1000 random draws, alpha= 0.05, minimum number of
neighborhood channels required for a selected sample= 2). Consecutively, Baye-
sian t-tests were conducted to compare each single data point from 0 to 1000 ms
for the pooled activity of electrodes as revealed by the preceding cluster-based
permutation tests.

Source localization (sLORETA) of real and generated EEG data. To examine
the similarities between the original and the generated Nogo signal at the source
(functional neuroanatomical) level, we conducted source localization using
sLORETA53. We contrasted the following conditions for this analysis: Nogor-
eal > Goreal and Nogogenerated > Goreal and show the results in the sLORETA-
provided MNI-brain template www.unizh.ch/keyinst/NewLORETA/sLORETA/
sLORETA.htm. For source reconstruction, the sLORETA method uses a three-
shell spherical head model. The intra-cerebral volume is partitioned into 6239
voxels within this head model using a spatial resolution of 5 mm. Then, the
standardized current density is calculated for every voxel using an MNI152 head
model template. Several studies have corroborated the reliability of source
estimations provided by sLORETA54–57. To correct for multiple comparisons in
the contrasts, we used the sLORETA built-in voxel-wise randomization tests
with 2000 permutations. This procedure is based on statistical non-parametric
mapping procedures. Locations of significantly different voxels (p < 0.05, two-
sided) are shown in the MNI-brain. The colors show critical t-values in the
MNI brain.

Statistics and reproducibility. The sample size is comparable to previous studies
using deep learning on EEG data18. Details about the K-fold cross-validation of the
cGAN results are given in Section “Generative adversarial network (GAN)”. Details
about behavioral and ERP data analysis in Section “Behavioral and standard ERP
data analysis”. All information about the statistical comparison of generated and
real data can be found in Section “Comparison of real and generated EEG data”.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data can be downloaded from https://osf.io/6n7uc. All other data are available from the
corresponding author upon reasonable request.

Code availability
The GAN architecture can be downloaded from https://phillipi.github.io/pix2pix/.
Further custom code used to process the data can be found here https://osf.io/6n7uc. The
code to run the cGAN has been deposited in OSF and ZENODO58.
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