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Abstract

Background

Treatment failure in pneumococcal meningitis due to antibiotic resistance is an increasing

clinical challenge and alternatives to antibiotics warrant investigation. Phage-derived endo-

lysins efficiently kill gram-positive bacteria including multi-drug resistant strains, making

them attractive therapeutic candidates. The current study assessed the therapeutic poten-

tial of the novel endolysin PlyAZ3aT in an infant rat model of ceftriaxone-resistant pneumo-

coccal meningitis.

Methods

Efficacy of PlyAZ3aT was assessed in a randomized, blinded and controlled experimental

study in infant Wistar rats. Meningitis was induced by intracisternal infection with 5 x 107

CFU/ml of a ceftriaxone-resistant clinical strain of S. pneumoniae, serotype 19A. Seventeen

hours post infection (hpi), animals were randomized into 3 treatment groups and received

either (i) placebo (phosphate buffered saline [PBS], n = 8), (ii) 50 mg/kg vancomycin (n = 10)

or (iii) 400 mg/kg PlyAZ3aT (n = 8) via intraperitoneal injection. Treatments were repeated

after 12 h. Survival at 42 hpi was the primary outcome; bacterial loads in cerebrospinal fluid

(CSF) and blood were secondary outcomes. Additionally, pharmacokinetics of PlyAZ3aT in

serum and CSF was assessed.

Results

PlyAZ3aT did not improve survival compared to PBS, while survival for vancomycin treated

animals was 70% which is a significant improvement when compared to PBS or PlyAZ3aT

(p<0.05 each). PlyAZ3aT was not able to control the infection, reflected by the inability to

reduce bacterial loads in the CSF, whereas Vancomycin sterilized the CSF and within 25 h.
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Pharmacokinetic studies indicated that PlyAZ3aT did not cross the blood brain barrier

(BBB). In support, PlyAZ3aT showed a peak concentration of 785 μg/ml in serum 2 h after

intraperitoneal injection but could not be detected in CSF.

Conclusion

In experimental pneumococcal meningitis, PlyAZ3aT failed to cure the infection due to an

inability to reach the CSF. Optimization of the galenic formulation e.g. using liposomes

might enable crossing of the BBB and improve treatment efficacy.

Introduction

The emergence and the spread of antimicrobial resistance in the last decades are major threats

to human health. Alternative treatment strategies targeting antibiotic-resistant bacteria are

urgently needed. One such approach is the use of endolysins (or lysins). Lysins are bacterio-

phage-derived enzymes with peptidoglycan hydrolase activity and are thereby able to degrade

the bacterial cell wall. Recent in vitro and in vivo results suggest that endolysins might be

promising antimicrobial agents. First, they rapidly lyse bacterial cells including those that are

multi-drug resistant [1–6]. Second, they act very specifically, killing only strains from closely

related species and do not affect off-target commensal bacteria, which makes them less likely

to disturb the physiologic microflora [1, 4, 7]. Third, the frequency of resistance emergence

seems to be low [8, 9]. Finally, they appear safe; in 2 recent clinical trials, no detrimental effects

were observed after topical [10] or intravenous [11] application in humans.

Streptococcus pneumoniae is an opportunistic human pathogen that can cause diseases like

sinusitis, otitis media, pneumonia, septicemia, and meningitis. Meningitis due to pneumococci

is associated with important morbidity and mortality. Despite the availability of appropriate

antibiotic treatment, pneumococcal meningitis (PM) is associated with a high case-fatality rate

of up to 37% in high-income countries [12, 13]. By the end of the 20th century, a concerning

increase in antimicrobial resistance was recognized for S. pneumoniae [14]. This was mitigated

by the implementation of the pneumococcal conjugate vaccines (PCV), which led to a con-

comitant decrease in the rate of invasive pneumococcal diseases (IPD) [15, 16] and overall

antimicrobial resistance [17–19]. Yet, as high as 30% of infections caused by S. pneumoniae
remain resistant to at least one antibiotic [20], and cephalosporin-resistance in PM represents

an emerging threat [21]. Additionally, serotype redistribution caused by vaccine selection pres-

sure has been observed [22–24], leading to the risk of the re-emergence and spread of non-vac-

cine serotypes that are resistant to antibiotics.

The efficacy of different pneumococcal endolysins (e.g. Cpl-1 and Pal) has been previously

assessed in experimental in vivo models for pneumonia [25], endocarditis [26], bacteremia [4,

6], and otitis media [27]. In an animal model of PM, Cpl-1 reduced bacterial loads within the

central nervous system (CNS) after a single intracisternal or intraperitoneal injection [28].

Overall, in principle endolysins seem attractive therapeutic candidates to treat pneumococcal

infections.

So far, however, the translation of promising preclinical applications of endolysin into clini-

cal trials has been strikingly slow. We adapted a well-established infant rat model of PM and

evaluated the efficacy of a novel endolysin called PlyAZ3aT for the treatment of a ceftriaxone-

resistant S. pneumoniae serotype 19A strain in a randomized, blinded, and controlled animal

study. As PM affects in particular children under the age of 5 years, infant rats are especially
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well suited to mimic pediatric bacterial meningitis, since they reflect the developmental stage

of this specific population.

Material and methods

Infecting bacterial strain

A ceftriaxone-resistant (in accordance with CLSI guidelines, MIC� 2 μg/ml as determined by

E-test, [Biomérieux, Nürtingen, Germany]) clinical isolate of S. pneumoniae, serotype 19A

(identified as SPn28) was used. Bacteria were routinely grown overnight at 37˚C in brain heart

infusion broth (BHI, BD, USA), adjusted to an optical density (OD570) of 0.1, and then further

diluted tenfold in fresh and pre-warmed BHI medium. The subculture was grown for 2 h to

reach logarithmic growth phase. Colony forming units (CFU) were determined on Columbia

sheep blood agar (CSBA) plates.

Expression and purification of PlyAZ3aT

Endolysin was produced as previously described, with minor modification [29, 30]. Briefly, the

gene coding for PlyAZ3aT was amplified from the genome of Streptococcus tigurinus strain

AZ3aT [31] by PCR using specific primers (5’- ATGAAGAAAAACGACTTATTCATCGACG-
3’ and 5’-ATTTAGTGGTAACAATTAGTCCATCAGGTAATACATC-3’), cloned into plasmid

pIN-IIIA and transformed into E. coli DH5α. Expression was induced by addition of 2% (w/v)

lactose. PlyAZ3aT binds strongly to diethylaminoethyl (DEAE). Therefore, crude extracts of

PlyAZ3aT were purified by fast protein liquid chromatography (FPLC) with HiTrap DEAE FF

columns (GE Healthcare Bio-Science AB, Uppsala, Sweden) followed by endotoxin removal

to< 1 endotoxin units (EU)/mg (ToxinEraser™ Endotoxin Removal Kit, GenScript, Leiden,

Netherlands) and dialysis against phosphate-buffer saline (PBS, pH 7.4) (Slide-A-Lyzer™ Dialy-

sis Flasks, ThermoFisher, Reinach, Switzerland). Residual endotoxin concentration was deter-

mined by ToxinSensor™ Chromogenic LAL Endotoxin Assay Kit (GenScript, Leiden,

Netherlands) and endolysin concentrations using Pierce™ BCA Protein Assay Kits (Thermo-

Fisher, Reinach, Switzerland).

Characterization of PlyAZ3aT

To assess similarities of PlyAZ3aT (GenBank: EMG32405.1) to the well-characterized pneumo-

coccal endolysin Cpl-1 (GenBank: NP_044837.1) protein alignment was performed using

BLASTp [32]. Killing efficacy of PlyAZ3aT was assessed on SPn28 and compared to vancomy-

cin. SPn28 was grown to exponential phase and treated with either PlyAZ3aT (1 μg/ml, 100 μg/

ml or 200 μg/ml), vancomycin (1 μg/ml) or PBS. Bacteria were incubated statically at 37˚C

with 5% CO2 and CFU were quantified before treatment, and 1, 2, 4 and 6 h after treatment.

Prior to quantification on agar plates, 10 μl of PlyAZ3aT-treated samples was added to 90 μl of

NaCl 0.85% containing 10% w/v choline (Sigma Aldrich, Buchs, Switzerland) in order to block

further activity of the enzyme. Six biological replicates were performed for each condition. The

effect of temperature and pH on enzymatic activity of PlyAZ3aT was evaluated as previously

described by Son et al. [33].

Assessment of toxicity and inflammation in primary astroglial cell culture

The use of animal for cell culture experiments was approved by the animal care and experi-

mentation committee of the canton of Bern, Switzerland (license no. BE 6/20). Primary astro-

glial cells were isolated and processed from 2-day old infant Wistar rats (central animal facility

of the Medical Faculty of the University of Bern, Switzerland) as previously described [34, 35]
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with minor adaptations. After 11 days of cultivation, cells were seeded in 24-well plates

(~250’000 cells/well) precoated with poly-L-ornithine (0.01 mg/ml in PBS, Buchs, Sigma-

Aldrich). Three days later, astroglial cells were exposed for 24 h to (i) sterile PBS (pH 7.4), (ii)

10 μg/ml lipopolysaccharide (LPS) from E. coli 026:B6 (Sigma Aldrich, Switzerland), (iii)

100 μg/ml PlyAZ3aT or (iv) 2% Triton X-100 (Merck, Darmstadt, Germany). Production of

NO2
− was assessed in the supernatant of cell cultures as previously described [34, 35]. Viability

of cells was assessed using an XTT assay, according to manufacturer’s instruction (Cell Prolif-

eration Kit II, Sigma Aldrich, Buchs, Switzerland). The experiment was performed twice and

in biological replicates of 18 for every condition.

Changes in inducible nitric oxide synthase (iNOS) expression were also assessed by immu-

nofluorescence. Cells were fixed with 4% paraformaldehyde (PFA, Merck, Switzerland) diluted

in PBS for 10 min at room temperature, followed by three washing cycles with sterile PBS. Per-

meabilization was done with 0.1% Triton X -100 (TX-100, Merck, Zug, Switzerland) for 5 min,

followed by a 1 h blocking with blocking buffer (0.01% TX-100 + 2% bovine serum albumin,

dissolved in PBS). Primary antibodies consisted of anti-GFAP mouse antibodies for astrocytes

(dilution 1:1000; ThermoFisher, Reinach, Switzerland) and anti-NCOA3 rabbit antibodies for

iNOS (dilution 1:500; Amsbio, Abingdon, UK). Secondary antibodies were goat anti-mouse

Cy3 for astrocytes (dilution 1:500; ABCAM, Switzerland) and donkey anti-mouse Cy3 for

iNOS (dilution 1:500; ThermoFisher, Switzerland), dissolved in blocking buffer. Secondary

antibodies were added after overnight incubation of the primary antibodies at 4˚C and three

washing cycles with PBS and incubated for additional 2 h at room temperature. 40,60-diami-

dino-2-phenylindole (DAPI, ThermoFisher, Reinach, Switzerland) was used to visualize cell

nuclei. Images were generated using fluorescence microscopy (OLYMPUS CKX53, Olympus

LS, Germany).

Infant rat model of pneumococcal meningitis

All animal experiments were approved by the animal care and experimentation committee of

the canton of Bern, Switzerland (license no. BE 5/20). Animals had access to water and food ad

libitum and were kept in rooms with controlled temperature (22 ± 2˚C) and natural light.

A well-established infant rat model for PM was used as previously described [34–38] and

adapted to use the serotype 19A clinical isolate SPn28. SPn28 was passaged 3 times in infant

rats before further investigations were performed.

Mixed-sex Wistar rats (outbred, 11-day old) and their dams were purchased from Charles

River Laboratories (Sulzfeld, Germany). Bacteria in logarithmic growth phase were used as

inoculum and were washed twice by centrifugation (3100xg, 10 min at 4˚C) and resuspended

in ice cold sterile saline (NaCl 0.85%), followed by dilution to reach the desired OD570 of 0.15.

Bacterial inoculation (10 μl containing 3.9 ± 0.25 x 107 CFU/ml SPn28) was performed by

injection into the cisterna magna. This amount of inoculum was chosen according to the

results of LD90 experiments (S1 Fig). CSF sampling was performed by puncture of the cisterna

magna using a 30-gauge needle and blood sampling by puncturing the facial vein with a

20-gauge needle and collection of 1 drop (approximately 50 μl). Clinical signs of meningitis

arose at 17 hours post infection (hpi), and this correlated with quantitative analysis of bacterial

titers in the CSF. This timepoint was chosen for the first treatment dose. Clinical scoring and

weighing were performed at 17, 24 and 42 hpi as described previously [36]. Briefly, clinical

score was determined as follows: 5 = healthy with normal behavior; 4 = turns upright within 5

s, weight loss and/or appearance of fur; 3 = turns upright within 30 s; 2 = inability to turn

upright; 1 = marked diminished motor activity, coma. Animals were sacrificed upon reaching

a score of� 2 to meet ethical requirements. At 42 hpi all remaining animals were sacrificed by
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intraperitoneal (i.p.) injection of pentobarbital (Esconarkon1, 150 mg/kg, Streuli Pharma AG,

Switzerland) followed by perfusion with 4% PFA. Brains were collected for histomorphometric

analysis of cortical damage and hippocampal apoptosis, which was performed as previously

described [35, 39, 40].

Pharmacokinetic study. In order to assess pharmacokinetic properties of PlyAZ3aT,

infected animals were treated with a single i.p. injection of either 100 mg/kg or 400 mg/kg b.w.

PlyAZ3aT at 17 hpi. Animals were separated in 2 groups (n = 16 per group) with different sam-

ple withdrawal times, in order to avoid excessive sampling frequency from the same animals.

CSF and blood samples were taken at 15 min, 4 h and 12 h for the first group and at 2 h, 6 h

and 12 h for the second group. If animals reached a clinical score� 2, samples were taken after

sacrifice and included into the analysis. Blood was collected in serum Microvettes1 200 Z (Sar-

stedt, Nümbrecht, Germany).

Treatment study. The procedure for the randomized, blinded and controlled study of

PM was as follows. CSF sampling was performed at 17 hpi to confirm meningitis and all ani-

mals were randomly allocated into 3 groups using GraphPad (https://www.graphpad.com/

quickcalcs/randomize1.cfm). Treatment groups were (i) placebo (sterile PBS), (ii) PlyAZ3aT

400 mg/kg b.w. and (iii) Vancomycin 50 mg/kg b.w. (Vancocin, in saline, Teva, Petach Tikwa,

Israel). Treatments were applied twice daily (12-hour time interval) through an i.p. injection.

All persons involved in animal treatment were blinded regarding treatment groups until the

end of the experiment. The primary endpoint was survival at 42 hpi. Secondary endpoints

were (i) CFU in CSF and blood at 6 and 25 h post treatment and (ii) extent of cortical necrosis

and hippocampal apoptosis in histopathological analysis.

The volume of CSF recovered from each animal during sampling was restricted and ranged

from 5 to 15 μl. This resulted into a limit of detection for CFU quantification of 1 x 103 CFU/

ml.

Animals displaying a clinical score of� 2 prior to the time of randomization were sacrificed

immediately and excluded from the analysis. Similarly, animals without established meningitis

at randomization, defined by bacterial titers in CSF <1 x 104 CFU/ml at 17 hpi, were excluded

from the analysis.

Quantification of PlyAZ3aT in CSF and blood samples

The amount of PlyAZ3aT in CSF and serum samples was assessed by quantitative near infrared

Western Blot (NIR-WB). Proteins in CSF or serum were separated using 10% SDS-polyacryl-

amide gels. Western blotting and immunostaining were performed with WesternBrightTM

MCF and MCF-IR kit (Advansta, San Jose, USA) according to manufacturer’s instructions.

PlyAZ3aT was detected as a 41 kD band, by using a primary antibody (custom-produced PlyA-

Z3aT-specific polyclonal rabbit antibody, David’s Biotechnology, Regensburg, Germany).

Fluorescence was measured using a Fusion FX6 EDGE System (Vilber Lourmat, Collégien,

France) with an exposure time of 2 min. Quantification of PlyAZ3aT was performed by com-

parison to a standard curve of PlyAZ3aT ranging from 2–0.02 μg using FIJI (version 1.8). The

limit of detection was 10 μg/ml.

Analysis of cytokines in cell culture supernatant

Inflammatory cytokines known to be upregulated in PM (IL-1β, IL-6 and TNF-α) were mea-

sured in cell supernatants and CSF samples using a magnetic multiplex assay (Rat Magnetic

Luminex1 Assay, R&D Systems, Bio-Techne) on a Bio-Plex 200 station (Bio-Rad Laboratory)

as reported previously [35, 41].
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Plate lysis assay for endolysin resistance testing

Plate lysis assay was performed as described previously [42–44] to assess resistance and activity

against various pneumococcal serotypes. Bacteria recovered from animals was grown to expo-

nential phase and plated on a CSBA to produce uniform bacterial lawns. PlyAZ3aT (0.5 μg)

was spotted onto the plate and incubated overnight. Bacteria were classified as susceptible to

PlyAZ3aT if a clear lysis zone was observed.

Statistical analysis

Statistical analyses were performed using GraphPad Prism1 (San Diego, USA). Differences in

survival were calculated using log-rank tests. Differences between means of non-normally dis-

tributed groups (cytokines, cortical necrosis, hippocampal apoptosis) were assessed using

Kruskal-Wallis test with Dunn’s multiple comparison. Differences in CFU reduction in CSF

and blood of animals were calculated using Fisher’s exact test. A p value < 0.05 was considered

statistically significant.

Results

PlyAZ3aT lyses ceftriaxone-resistant S. pneumoniae in vitro
PlyAZ3aT is a bacteriophage-derived endolysin found within the genome of S. tigurinus strain

AZ3aT (Accession number GCA_000344275.1). Alignment of the amino acid sequence of

PlyAZ3aT and Cpl-1 (up to now the most extensively characterized pneumococcal endolysin)

displayed 80% similarity for the putative catalytic domain and 47% similarity for the putative

cell-wall binding domain (Fig 1A), suggesting PlyAZ3aT might be active against S. pneumo-
niae. Indeed, PlyAZ3aT exhibit a broad-spectrum lytic activity against S. pneumoniae, lysing 18

distinct serotypes including both PCV 13 (3, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F) and

non-PCV 13 serotypes (11A, 15A, 17F, 20, 22F, 23B and 35B), as tested by plate lysis assay. No

resistance to the endolysin activity could be detected among the tested isolates (n = 18). PlyA-

Z3aT lysed S. pneumoniae efficiently (>50% of maximal efficacy) at temperatures ranging

from 25–42˚C (Fig 1B) and for pH ranging from 5–7. Optimal activity occurred at pH 6, while

pH� 9 completely inactivated the enzyme (Fig 1B). In time-kill curve assays, PlyAZ3aT

showed a dose-dependent killing of the ceftriaxone-resistant strain SPn28. The bacteria were

not eradicated even after 6 h of exposure to the lysin at the highest concentration of 200 μg/ml

(Fig 1C). In contrast, vancomycin displayed a bactericidal effect and reduced counts below the

detection limit within the same time period (Fig 1C).

PlyAZ3aT failed to control ceftriaxone-resistant pneumococcal meningitis

In primary astroglial cell cultures, no direct toxicity of PlyAZ3aT was observed (S2A and S2B

Fig). Exposure led to a minimal inflammatory response when compared to the inflammatory

control LPS as inferred by NO2
- and cytokine levels (S2C and S2D Fig), suggesting the protein

was safe for animal administration. Overall, 38 infant Wistar rats were included in the treat-

ment study, which was performed in 2 independent experiments. At the time of randomiza-

tion (17 hpi), 8 animals had to be excluded due to a clinical score� 2. The 30 remaining

animals were randomly allocated to receive either (i) placebo (n = 8), (ii) PlyAZ3aT (n = 11) or

(iii) vancomycin (n = 11) (S3 Fig). Post hoc additional 4 animals not having established men-

ingitis (<1 x 104 CFU/ml in the CSF at 17 hpi) had to be excluded (n = 3 for PlyAZ3aT, n = 1

for vancomycin).

PlyAZ3aT was not superior to placebo in improving survival of animals with PM (p> 0.05,

Fig 2A). In contrast, the standard-of-care antibiotic vancomycin significantly improved
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survival with a rate of 70% survival (p = 0.02 versus PBS and PlyAZ3aT, Fig 2A). PlyAZ3aT did

not significantly reduce bacterial loads in the CSF and blood over the course of infection when

compared to placebo (p> 0.05, Table 1). On the opposite, vancomycin-treated animals dis-

played a consistent reduction of bacterial loads in both CSF and blood within the first 6 h after

start of therapy (CSF p = 0.0182 and blood p = 0.021 compared to placebo, Table 1). In surviv-

ing animals under vancomycin treatment, the infection was cleared within 25 h of treatment

(S4 Fig). The kinetics of bacteria in blood of PlyAZ3aT and placebo treated animals are dis-

played in S4 Fig. Finally, the extent of cortical necrosis and the number of apoptotic cells of the

subgranular zone of the dentate gyrus were similar among all groups (p > 0.05 for all compari-

sons) (S5A and S5B Fig).

Reduced bioavailability of PlyAZ3aT in CSF

We further investigated whether the lack of efficacy of PlyAZ3aT in the experimental meningi-

tis model was associated either with the emergence of endolysin resistance or with an altered

pharmacokinetic profile. First, bacteria recovered from PlyAZ3aT treated animals (60 colonies

in total) were tested for resistance and all remained susceptible to lysis. Second, PlyAZ3aT was

quantified from the serum and CSF of infected animals receiving a single dose of either 100

mg/kg or 400 mg/kg b.w. PlyAZ3aT. PlyAZ3aT was detected in the serum (Fig 2B), peaked

after 2 h of intraperitoneal administration (268 μg/ml for 100 mg/kg group and 785 μg/ml for

400 mg/kg group), and was detected up to 12 h in the 400 mg/kg BW group, albeit at low levels

(Fig 2C). In contrast, PlyAZ3aT was not detected in the CSF of any of the animals tested, at any

time point (Fig 2B, limit of detection 10 μg/ml).

Fig 1. (A) Alignment of the amino acid sequences of PlyAZ3aT and Cpl-1. Each domain is highlighted in a different

color. The catalytic domain in blue, the cell-wall binding domain in orange and the linker in green. PlyAZ3aT displays

six choline binding repeats marked in red. (B) Lytic activity of PlyAZ3aT after exposure for 10 min to different

temperatures and pH. Relative lytic activity was assessed by measuring the reduction in OD570 and comparing it to the

condition with the maximal reduction (data point marked in red and defined as 100%). (C) Time-kill curves for S.

pneumoniae strain SPn28 exposed to PlyAZ3aT or vancomycin. The dotted line represents the limit of detection. CFU,

colony forming units. All experiments were performed in triplicate. Data are presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0266928.g001
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Discussion

Despite the introduction of the pneumococcal conjugate vaccine 13 (PCV13), S. pneumoniae
serotype 19A remains a major causative of invasive pneumococcal disease and meningitis [22,

45]. In addition, serotype 19A is among the major serotypes associated with penicillin or

Fig 2. Treatment of ceftriaxone-resistant pneumococcal meningitis using PlyAZ3aT. (A) Kaplan-Meier survival

curve of Wistar rats treated with either PBS (n = 8), 400 mg/kg PlyAZ3aT (n = 8) or 50 mg/kg Vancomycin (n = 10).

Treatment was applied intraperitoneally twice daily. Significance was determined by log-rank test. (B) Anti-PlyAZ3aT

near-infrared western blots of serum or CSF samples recovered from one animal treated with a single intraperitoneal

injection at 15 min and 4 h after injection. (C) Pharmacokinetic assessment of PlyAZ3aT in serum of Wistar pups

(n = 16 per group) after one single intraperitoneal injection. Limit of detection 10 μg/ml. Data are presented as

mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0266928.g002

Table 1. Comparison of the decrease of CFU in CSF and blood between treatment groups within the first 6 h after treatment. (A) Comparison of CFU reduction in

CSF and (B) in blood. Statistical significance was determined using Fisher’s exact test. Animals displaying bacterial loads below the limit of detection throughout the exper-

iment or missing follow-up sampling were excluded from the analysis.

A) Numbers of animals displaying decrease of CFU in CSF

CSF Decrease No Decrease Comparison to PBS

PBS 1 3

PlyAZ3aT 2 4 p > 0.05

Vancomycin 8 0 p = 0.0182

B) Numbers of animals displaying decrease of CFU in blood

CSF Decrease No Decrease Comparison to PBS

PBS 2 5

PlyAZ3aT 6 1 p > 0.05

Vancomycin 6 0 p = 0.021

https://doi.org/10.1371/journal.pone.0266928.t001

PLOS ONE Efficacy of endolysin PlyAZ3aT in an infant rat model of ceftriaxone-resistant pneumococcal meningitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0266928 April 26, 2022 8 / 13

https://doi.org/10.1371/journal.pone.0266928.g002
https://doi.org/10.1371/journal.pone.0266928.t001
https://doi.org/10.1371/journal.pone.0266928


cephalosporin resistance [22]. Having a wider range of treatment alternatives to combat ceftri-

axone-resistant pneumococci is of necessity. Herein, we investigated whether a novel phage

lysine recently isolated from S. tigurinus strain AZ3aT [31] would be effective for the treatment

of S. pneumoniae serotype 19A either in vitro or in vivo, in an experimental bacterial meningi-

tis model in infant rats. In vitro, PlyAZ3aT showed a broad host-range and was able to lyse all

tested S. pneumoniae serotypes independently from their antibiotic resistance profile. PlyA-

Z3aT induced a quick and dose-dependent reduction of bacterial loads of the ceftriaxone-resis-

tant serotype 19A. Furthermore, the endolysin was safe and did not induce any evident direct

toxic effect in astroglial cell cultures. Only minor inflammatory reactions were observed,

mostly related to residual endotoxin activity.

In vivo, PlyAZ3aT failed to improve survival, to reduce bacterial numbers in the CSF or to

prevent systemic spreading of the infection in blood compared to placebo. On the other hand,

vancomycin significantly increased survival to 70%, which is in accordance with survival rates

observed in previous studies when using standard of care treatment in this animal model [34,

35, 38]. PlyAZ3aT showed an important pharmacokinetic limitation, as endolysin could not be

detected in CSF of endolysin treated animals most likely as a result of its inability to cross the

BBB or the low stability of the protein in this environment. A possible solution to bypass this

limitation is the use of direct intracisternal application, which is not devoid of problems either,

as shown in a previous investigation assessing the pneumococcal endolysin Cpl-1 in the similar

experimental setting [28]. There, Cpl-1 exhibited a short half-life time of ~16 min after direct

intracisternal application, leading to bacterial regrowth within 4 h and prompting the necessity

of repeated intracisternal injections, which on their part where harmful [28]. An intracister-

nal-sustained release might help to optimize the pharmacokinetic profile. In bacterial meningi-

tis, such an opportunity might be found when an external ventricular drain (EVD) is available,

allowing for a continuous delivery of endolysin directly to the CNS thereby circumventing the

BBB. Alternatively, innovative galenic formulations (e.g. using liposomes) might improve the

ability of the endolysin to cross the BBB allowing for an intravenous administration.

Taken together, our results highlighted the pitfalls and drawbacks of the application of

PlyAZ3aT, and possibly endolysins in general, in bacterial meningitis. Despite a well described

break down of the BBB in bacterial meningitis the BBB seems to remain largely impermeable

to such phage proteins. As such, endolysins might be more suitable for the treatment of other

bacterial infections as it was shown for Cpl-1, such as bacteremia [4, 6], pneumonia [25] or

endocarditis [26] where the endolysin can efficiently and readily reach the infection site.

Supporting information

S1 Fig. Adaptation of a ceftriaxone-resistant pneumococcal strain (serotype 19A) to the

infant rat model of meningitis. Kaplan-Meier survival curves for LD90 finding of the new

strain (A) before and (B) after 3 passages in infant rats. 10 μl of the corresponding inoculum

were injected.

(TIF)

S2 Fig. PlyAZ3aT induces a minimal inflammatory reaction with no direct toxicity in con-

fluent primary astroglial cell cultures. Cells were exposed for 24 h to either PBS (negative

control), LPS (positive control), PlyAZ3aT or TritonX (membrane disrupting agent). (A)

Immunohistological staining in astroglial cell cultures, iNOS is stained in green (anti-iNOS),

astroglia is stained in red (anti-GFAP) and cell nuclei in blue (40,6-Diamidin-2-phenylindole,

DAPI). (B) Viability of cells was confirmed by using an XTT-assay (the mean of PBS treated

cells is defined as 100%). (C) Production of NO2
- measured as an index for nitric oxide (NO)

release. (D) Levels of IL-1β, TNF-α and IL-6. Data are presented as mean ± standard deviation.
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Statistical differences between groups were assessed using Kruskal-Wallis test with Dunn’s

multiple comparisons; �p<0.05, ���� p<0.0001.

(TIF)

S3 Fig. Flowchart of the randomized, blinded and controlled experimental study.

(TIF)

S4 Fig. Tracked course of bacterial loads in CSF (black) and blood (purple) in each single

animal. Tracking of bacterial loads displayed for the first six hours or until the end of the

experiment (25 hours post treatment). Dots connected with lines represent repeated sampling

in one single animal. CFU, colony forming unit.

(TIF)

S5 Fig. Histopathological assessment of cerebral complications after acute pneumococcal

meningitis. (A) Comparison in percentage of necrotizing cortex between groups and (B)

number of apoptotic cells in the hippocampus. Animals reaching the end of the 42 hours trial

are represented by closed circles and succumbed prematurely to the infection by crosses. Sta-

tistical significance was assessed using Kruskal-Wallis test with Dunn’s multiple comparisons,

ns, not significant.

(TIF)

S1 Raw images. Raw images of the western blots displayed in Fig 2B. The red rectangle cor-

responds to the section displayed in Fig 2B. Lanes not included in the final figure are marked

with an “X”.

(PDF)

S1 Table. Overview of the raw data of CFU detected in CSF. Bacterial loads are displayed as

Log10 (CFU). Hpt, hours post treatment. N/A, not available due to failed sampling. Limit of

detection is 3 Log10.

(TIFF)

S2 Table. Overview of the raw data of CFU detected in blood. Bacterial loads are displayed

as Log10 (CFU). Hpt, hours post treatment. N/A, not available due to failed sampling. Limit of

detection is 3 Log10.

(TIFF)

S3 Table. Spreadsheet containing raw data to Figs 1 and 2.

(XLSX)

S4 Table. Spreadsheet containing raw data to supplemental figures.

(XLSX)
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