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ABSTRACT: Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials.
Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed
cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between
the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept
therefore enables a considerably broader scope compared with previous chemical oxidation methods.

Cross-dehydrogenative coupling (CDC) reactions have
become a promising pathway for C—H functionalization
because of their step- and atom-efficient nature.'”® In
particular, the concepts of cross-dehydrogenative phenochal-
cogenazination (CDP) and phenothiazination are becoming
increasingly popular because of their “oxidative click”
character.”~"" Indeed, these enable the late-stage functionaliza-
tion and modification of peptides at their tyrosine units. In
2019, Lei and coauthors clicked some phenothiazines onto
tyrosine derivatives and peptides by means of electro-oxidation
(Scheme 1, eq 1)."” More recently, MacMillan and co-workers

Scheme 1. CDP Oxidative Click Concept
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utilized this concept to click new functionality onto the
tyrosine positions of peptides with a photochemical method
(Scheme 1, eq 2)."

This methodology is very effective at selectively modifying
tyrosine units in the presence of large and sensitive peptide
scaffolds because of the high specificity of the CDP reaction
toward electron-rich phenols.]4 Moreover, such oxidative click
concepts are operationally minimal, typically containing only
an oxidant, and are effective at very mild temperatures.'’
Nevertheless, the oxidative CDP click reaction becomes more
challenging in terms of scope and functional group tolerance
when applied to anilines. In the past few years, chemical
oxidative'® and in particular electro-oxidative'®™"® methods
have been developed (Scheme 2). In the former case, however,
only a limited number of five- and six-membered cyclic anilines
could be utilized,"® indicating a demand for novel, efficient
methodologies.

Because of the large atomic size, unique chalcogen bonding
ability, and activation properties of tellurium, the field of
tellurium catalysis has considerably expanded over the last few
months.'”~** Recently, our group reported an unusual
tellurium(II)-catalyzed CDP reaction in the presence of O,,
associated with a considerably expanded substrate scope
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Scheme 2. CDP Reaction with Anilines Table 1. Screening of the Reaction Conditions”
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(Scheme 2, eq 4) Given the exceptional redox properties of ‘
.. 12 O, (1 atm) instead of Ag,O nr.
Te(II) catalysts, we envisioned that these could also be used ) .
. . . 13 O, instead of Ag,O at 110 °C 11
to perform the oxidative CDP click reaction on some other )
14 DTBP instead of Ag,O nr.
challenging substrate classes, such as anilines and secondary ] .
16—18 15 DTBP instead of Ag,O at 110 °C 41
amines, while avoiding an electrochemical setup. - i
Our study commenced with 2-acetylphenothiazine (1a) and 16 addition of TEMPO (1.5 equiv) 7
Y P 17 addition of BHT (1.5 equiv) 44

N-phenyl-1-naphthylamine (2a) in the presence of our
previously developed Te(II) catalyst PTeZl (Table 1).
Through a series of optimization experiments, we identified
Ag,O as the optimal chemical oxidant, toluene as the best
solvent, and 60 °C as the optimal temperature. This allowed
the access to CDP product 3aa in 93% isolated yield (Table 1, oxidizing system. In any case, no TEMPO nor BHT adducts

“Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), PTeZ1 (0.02
mmol), Ag,0 (0.2 mmol), toluene (1.5 mL), 60 °C, 16 h. bIsolated
yields.

entries 1—3). Importantly, the omission of the Te(II) catalyst could be detected in the reaction mixtures.

resulted in a significantly decreased yield (64%; entry 4). A Next, we explored the scope of the reaction (Scheme 3). A
higher reaction temperature (110 °C; entry S) or longer large selection of functional groups were well-tolerated, such as
reaction time (44 h; entry 6) did not improve this result, halides (F, Cl, Br), methoxy, thioether, trifluoromethyl,
highlighting the importance of the Te catalyst for obtaining a trifluoromethoxy, cyano, acetyl, and tosyl moieties. Both 1-

high yield of the desired product. None of the other and 2-naphthylamines performed best (3aa to 3ao), with
phenotellurazine candidates that we explored (PTeZ2 to several CDP yields above 90%. Nevertheless, promising yields

PTeZ6) performed any better (entries 7—11). Nevertheless, it were also obtained with some simple diarylamines (3ap to 3ar,
is interesting to note that the N—H functional group of the 44—48%).
catalyst is not a requirement to promote the reaction, as In order to further characterize the Te-catalyzed nature of
PTeZ3 gave 3aa in 93% yield (entry 8). Furthermore, O, did this method, we then inspected the yields of a few selected
not perform well as an oxidant in this reactlon (entrles 12 and entries in Scheme 3 in the absence of any Te catalyst under
13),°**” in contrast to a previous method.”> Moreover, it otherwise identical conditions (Scheme 4). Importantly, for
operates at much lower temperatures. This therefore each examined example (3aa, 3ba, 3ga, 3al, 3an, 3ao, 3ac, and
demonstrates that the concept is not limited to an O,—Te 3aq), the yield of the CDP product was always superior in the
interaction but can also accommodate other oxidants. This presence of the Te(I) catalyst. In some cases, such as 3ba,
oxidant tolerance of the Te(II) redox catalyst could therefore 3an, and 3agq, the yield even doubles in the presence of the
prove highly important for the development of future CDC Te(II) catalyst at the given reaction time. In other cases, such
reactions.' ™ No other tested oxidants performed well in this as 3al, there is only a minor difference (Scheme 4). Thus, the
reaction, such as DTBP (entries 14 and 15). Moreover, benefit of utilizing Te(II) catalysis is mostly observed for CDP
although the addition of TEMPO (entry 16) or BHT (entry products with a weaker uncatalyzed background reaction
17) did not shut down the reaction, the desired product was pathway. The Te(Il) catalyst therefore increases the scope of
delivered in reduced yields, which might have been caused by the reaction. Finally, it should be noted that an alternative
radical or redox interference of those additives with the Te(Il)-catalyzed system with O, (1 atm) as the terminal
1627 https://doi.org/10.1021/acs.orglett.2c00125
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Scheme 3. Reaction Scope”
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“Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), PTeZ1 (0.02
mmol), Ag,0 (02 mmol), toluene (1.5 mL), 60 °C, 16 h. Isolated
yields are shown. “1 mmol scale (see the Supporting Information).

oxidant at 110 °C (Table 1, entry 11) systematically delivered
much lower yields (Scheme 4). This again proves the
superiority of the Te(II)/Ag(I) cooperative system in this
method (Table 1, entry 1 and Schemes 3 and 4).
Mechanistically, phenotellurazine PTeZ1 is known to
possess a significantly lower oxidation potential (Ef, .,
+0.08 V vs Fc”/Fc*) compared with the phenothiazine
substrate (for ghenothlazme 1b with R = H, E7),,, = +0.22
V vs F®/Fc*).” It can therefore be assumed that the Te(II)
catalyst PTeZ1 will first be oxidized to the persistent Te(III)
radical cation (Scheme $S). The latter species was previously

Scheme §. Proposed Mechanism
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16 h. Isolated yields are shown.
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characterized by means of EPR spectroscopy.”” The Te(II) to
Te(III) oxidation process might be facilitated by a Te—Ag
interaction, for which there are literature precedents.”**” The
persistent Te(IIl) radical cation would then serve as a redox
relay to oxidize the phenothiazine and aniline substrates. This
likely takes place through the phenothiazine’s N-centered
persistent and neutral radical species I, a well-documented
intermediate for the CDP reaction.'”** As soon as the more
reactive N-centered neutral radical species II forms by
hydrogen atom transfer (HAT), it is intercepted’® by the
accumulated persistent species I to generate the desired CDP
product.

In conclusion, we developed an efficient Te(II)-catalyzed
cross-dehydrogenative phenothiazination method for anilines.
The reaction was found to possess a larger scope in the
presence of the Te(Il) catalyst, which also furnishes higher
CDP yields. This method should therefore contribute to the
development of Te(II) redox catalysis in the context of cross-
dehydrogenative couplings as well as to the specific field of
oxidative click CDP reactions.”'
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