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Abstract: Chalcones are naturally occurring phytochemicals with diverse biological activities
including antioxidant, antiproliferative, and anticancer effects. Some studies indicate that the
antiproliferative effect of chalcones may be associated with their pro-oxidant effect. In the present
study, we evaluated contribution of oxidative stress in the antiproliferative effect of acridine chalcone
1C ((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) in human colorectal HCT116 cells.
We demonstrated that chalcone 1C induced oxidative stress via increased reactive oxygen/nitrogen
species (ROS/RNS) and superoxide production with a simultaneous weak adaptive activation of
the cellular antioxidant defence mechanism. Furthermore, we also showed chalcone-induced
mitochondrial dysfunction, DNA damage, and apoptosis induction. Moreover, activation of mitogen
activated phosphokinase (MAPK) signalling pathway in 1C-treated cancer cells was also observed.
On the other hand, co-treatment of cells with strong antioxidant, N-acetyl cysteine (NAC), significantly
attenuated all of the above-mentioned effects of chalcone 1C, that is, decreased oxidant production,
prevent mitochondrial dysfunction, DNA damage, and induction of apoptosis, as well as partially
preventing the activation of MAPK signalling. Taken together, we documented the role of ROS in the
antiproliferative/pro-apoptotic effects of acridine chalcone 1C. Moreover, these data suggest that this
chalcone may be useful as a promising anti-cancer agent for treating colon cancer.

Keywords: chalcones; antiproliferative; oxidative stress

1. Introduction

Chalcone, (E)-1,3-diphenyl-2-propene-1-one, has been reported as being a precursor in flavonoid
synthesis [1]. Similar to flavonoids, chalcones have already been documented as exhibiting
several biological activities, including antioxidant [2], anti-inflammatory [3], antibacterial and
antifungal [4], antiprotozooal [5], immunomodulatory [6], and antiangiogenic [7,8] effects. Furthermore,
antiproliferative/antitumor activities of chalcones have also been intensively studied [9–14].
The available studies revealed multitargeted activity of chalcones including various kinases [15],
microtubules [16], multidrug-resistance proteins [17], or different signalling pathways associated with
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cell survival or death [18,19]. Moreover, we and others have detected the ability of chalcones to inhibit
cancer cell proliferation via cell cycle arrest [20–23].

As was mentioned above, chalcones possesses antioxidant properties. Oxidative stress can be
involved in cellular dysfunction due to DNA, protein, or lipid damage [24]. Oxidative cell damage can
be linked to diseases such as cancer or neurodegenerative, cardiovascular, or metabolic diseases [25–27]
and chalcones are suggested to either prevent or slow progression of these chronic diseases [28–30].

On the other hand, chalcones, under certain circumstances, may act as oxidants [31], and this
effect can be associated with their antitumor activity [32,33]. The pro-oxidant activity of chalcones may
result from different mechanisms such as increase in superoxide formation [34], cellular glutathione
(GSH) depletion [35], or generation of phenoxyl radicals [36].

In our previous paper, we documented the ability of acridine chalcone 1C
((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) to suppress growth of cancer
cells in vitro [11]. In accordance with the above-mentioned pro-oxidative effect of chalcones,
we hypothesized that antiproliferative effect of chalcone 1C can be associated with either reactive
oxygen species (ROS) or reactive nitrogen species (RNS) formation. To verify our hypothesis, we aimed
to elucidate the link between ROS/RNS and the antiproliferative effect of 1C in human colorectal
carcinoma cells HCT116.

The results of our study indicated that antiproliferative and pro-apoptotic effects of 1C are free
radical-dependent, and these effects were inhibited by a powerful antioxidant N-acetylcysteine (NAC).

2. Materials and Methods

2.1. Tested Compound

(2 E)-3-(Acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one (1C) was synthetized by Maria
Vilkova (Faculty of Natural Sciences of the P.J. Šafarik University, Košice). The structure of compounds
was confirmed by using 1H, 13C nuclear magnetic resonance (NMR), infrared (IR) spectroscopy,
and mass spectrometry. The studied agent was dissolved in DMSO. The final concentration of DMSO
in the culture medium was 0.02% and exhibited no cytotoxicity.

2.2. Cell Culture

Cell line HCT116 (human colorectal carcinoma) was cultured in RPMI 1640 medium (Biosera,
Kansas City, MO, USA). The growth medium was supplemented with 10% foetal bovine serum and 1X
HyClone antibiotic/antimycotic solution (GE Healthcare, Little Chalfont, United Kingdom). Cells were
cultured in an atmosphere containing 5% CO2 in humidified air at 37 ◦C. Cell viability, estimated by
trypan blue exclusion, was greater than 95% before each experiment.

2.3. Viability Test

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)colorimetric test was
used to determine the antiproliferative effect of 1C and N-acetylcysteine. HCT116 cells (5 × 103/well)
were seeded in 96-well polystyrene microplates (SARSTEDT, Nümbrecht, Germany). Twenty-four
hours after seeding, 1C final concentration (10 µM) and NAC (final concentration 0.3, 0.5, 1, 1.5, 2,
and 2.5 mM) or their combinations were added. After 72 h, cells were incubated with 10 µL of MTT
(5 mg/mL, Sigma-Aldrich Chemie, Steinheim, Germany) at 37 ◦C. After an additional 4 h, insoluble
formazan produced by metabolic reactions were dissolved by 100 µL of a 10% sodium dodecyl
sulphate. Cell proliferation was evaluated by measuring the absorbance at wavelength 570 nm using
the automated Cytation 3 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA). Absorbance
of control wells was taken as 1.0 = 100%, and the results were expressed as a fold/percentage of
untreated control.
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2.4. Flow Cytometry Analyses

2.4.1. Analysis of Cell Cycle

For flow cytometric analysis of the cell cycle, floating and adherent HCT116 cells were harvested
24, 48, and 72 h after treatment (1C, 10 µM), then washed in cold phosphate-buffered saline (PBS),
fixed in cold 70% ethanol, and kept at −20 ◦C overnight. Before each analysis, cells were washed in PBS,
resuspended in staining solution (final concentration 0.2% Triton X-100, 0.5 mg/mL ribonuclease A and
0.025 mg/mL propidium iodide in 500 µL PBS (all Sigma Aldrich, St. Louis, MO, USA)), and incubated
for 30 min in the dark at room temperature. The DNA content of stained cells was analysed using a
FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, USA)).

2.4.2. Flow Cytometry Analysis of Free Radicals, Apoptosis, Signalling Pathways, and DNA Damage

HCT116 cells were seeded in Petri dishes and cultivated for 24 h in a complete medium with
10% FBS. Cells were treated with 1C (10 µM) or with N-acetylcysteine (2.5 mM) and their mutual
combination at 1, 3, 6, 24, 48, and 72 h prior to analysis. The antioxidant NAC was used in mutual
combination as pre-treatment for 30 min before 1C was added. Floating and adherent cells were
harvested, washed in PBS, distributed for particular analysis, and stained before analysis (see Table 1).
After 15 min incubation at room temperature in the dark, samples were put on ice and fluorescence
changes were detected by a flow cytometer BD FACSCalibur (BD Biosciences). A minimum of 1 × 104

events were analysed per analysis.

Table 1. Flow cytometry staining.

Analysis Staining Solution Manufacturer

ROS DHR123 (Dihydrorhodamine 123), final concentration 200 nM Sigma-Aldrich, St. Louis, MO, USA

RNS DAF-FM (Diaminofluorescein-FM) diacetate, final
concentration 2 mM Sigma-Aldrich, St. Louis, MO, USA

Lipid peroxidation BODIPY 581/591 C11, final concentration 1 mM Sigma-Aldrich, St. Louis, MO, USA

Superoxide anion MitoSox Red mitochondrial superoxide indicator, final
concentration 5 µM Sigma-Aldrich, St. Louis, MO, USA

Externalization of phosphatidylserine Annexin V-FITC, 1:100
Propidium iodide, final concentration 25 µg/mL

BD Biosciences Pharmingen,
San Diego, CA, USA

Caspase-3 activation Cleaved caspase-3-PE, 1:200 BD Biosciences Pharmingen,
San Diego, CA, USA

Cytochrome c release Cytochrome c antibody (6H2) FITC conjugate, 1:200 Invitrogen, Carlsbad, CA, USA

Smac/DIABLO release
Smac/DIABLO rabbit mAb, 1:200 Cell Signaling Technology, Danvers,

MA, USA

Goat anti-rabbit IgG (H + L) secondary antibody, Alexa Fluor
488, 1:500 Thermo Scientific, Rockford, IL, USA

Mitochondrial membrane potential TMRE (tetramethylrhodamine ethyl ester perchlorate), final
concentration 0.1 µM Sigma-Aldrich, St. Louis, MO, USA

Protein analysis

Phospho-Bcl-2 (Ser70) rabbit mAb Alexa Fluor 488 conjugate,
1:200

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) mouse
mAb, 1:2000

Phospho-SAPK/JNK (Thr183/Tyr185) (G9) mouse mAb (PE
conjugate), 1:200

Phospho-p38 MAPK (Thr180/Tyr182) (3D7) rabbit mAb PE
conjugate, 1:200

Cell Signaling Technology, Danvers,
MA, USA

Goat anti-rabbit IgG (H+L) secondary antibody, Alexa Fluor
488, 1:500 Thermo Scientific, Rockford, IL, USA

DNA damage

Anti-pATM, PE conjugated antibody, 1:200
Anti-pHistone H2A.X, PerCP conjugated antibody, 1:200

Anti-pSMC1, Alexa Fluor 488 Antibody, 1:200

Millipore Corporation, Temecula, CA,
USA

Anti-oxoguanine 8 antibody Abcam, Cambridge, United Kingdom

Goat anti-mouse IgG (H + L) secondary antibody, Alexa Fluor
488 Thermo Scientific, Rockford, IL, USA
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2.5. Antioxidant Enzyme Activities and Glutathione Content Measurement

Both floating and adherent HCT116 cells were harvested at 1, 3, 6, 24, 48, and 72 h after treatment
with 1C (10 µM), NAC (2.5 mM), or their mutual combination. The activity of glutathione reductase (GR;
EC 1.6.4.2) was measured according to a modified method described by Carlberg and Mannervik [37].
Activity of glutathione peroxidase (GPx, EC 1.11.1.9) was measured according to Zagrodski et al. [38].
For detection of glutathione-S-transferase (GST, EC 2.5.1.18) activity, Glutathione S-Transferase Assay
Kit (Sigma-Aldrich, Germany) was used. Reduced glutathione (GSH) content was measured by
the method originally described by Floreani et al. [39]. Assays were performed on an M 501 single
beam UV/VIS spectrophotometer (Spectronic Camspec Ltd., Leeds, United Kingdom). All measured
parameters were calculated per milligram or gram of protein determined using the bicinchoninic
acid assay.

2.6. Western Blot Analysis

HCT116 cells were treated with compound 1C (10 µM), NAC (2.5 mM), or their mutual
combinations for 24, 48, and 72 h. Protein lysates from HCT116 cells were prepared using a lysis buffer
containing 1 mol/L Tris/HCl (pH 6.8), glycerol, 20% SDS (sodium dodecyl sulphate), and deionized
H2O in the presence of PIC (protease inhibitor cocktail) and a process of sonication. The concentration
of proteins was determined using the Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford,
IL, United States) and measured using an automated Cytation 3 Cell Imaging Multi-Mode Reader
(Biotek) at wavelength 570 nm. Forty micrograms of total cellular proteins were separated on SDS-PAA
gel (12%) at 100 V for 2 h and electrotransferred onto PVDF Blotting Membrane (GE Healthcare,
Chicago, IL, United States) at 200 mA for 2 h using a BioRad Mini Trans-Blot cell (BioRad, Hercules,
CA, USA). The membrane was then blocked in 4% milk with TBS-Tween (pH 7.4) for 1 h at room
temperature to minimize non-specific binding. After that, the membrane was incubated with primary
antibodies overnight at 4 ◦C. Immunoblotting was carried out with the antibodies stated below (Table 2).
After incubation with primary antibodies, membranes were washed in TBS-Tween (3 × 5 min) and
incubated with corresponding horseradish peroxidase-conjugated secondary antibodies for 1 h at room
temperature. After incubation and washing of membranes (3 × 5 min with TBS-Tween) the expression
of selected proteins was detected by chemiluminescent ECL substrate (Thermo Scientific, Rockford, IL,
USA) and MF-ChemiBIS 2.0 Imaging System (DNR Bio-Imaging Systems, Jerusalem, Israel).

Table 2. List of Western blot antibodies.

Primary Antibodies Mr (kDa) Origin Manufacturer

β-actin 45 Mouse

Cell Signaling Technology,
Danvers, MA, USA

p38 MAPK 43 Rabbit
Phospho-p38MAPK 43 Rabbit

p44/42 MAPK (Erk1/2) 42 + 44 Rabbit
Phospho-p44/42 MAPK (Erk 1/2) 42 + 44 Mouse

JNK1 48 Mouse
Phospho-SAPK/JNK 54 Mouse
Cleaved caspase-7 18 Rabbit

PARP 116 + 89 Rabbit
Phospho-histone H2A.X 15 Rabbit

Secondary Antibodies Mr (kDa) Origin Manufacturer

Anti-rabbit IgG HRP - Goat Cell Signalling Technology,
Danvers, Massachusetts, USA

Anti-mouse IgG/HRP - Goat Dako, Glostrup, Denmark

JNK1- c-Jun N-terminal kinase; SAPK- Stress-activated protein kinase; PARP- Poly (ADP-ribose) polymerase.
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2.7. Statistical Analysis

Results are expressed as mean ± standard deviation (SD). Statistical analysis of the data was
performed using standard procedures, with one-way ANOVA followed by the Bonferroni multiple
comparisons test. Values of p < 0.05 were considered as being statistically significant.

3. Results

3.1. Viability of HCT116 Cells after 1C and NAC Treatment

To verify our hypothesis that the antiproliferative effect of 1C could be associated with free radical
production, we analysed viability/proliferation of HCT116 cells exposed to 1C (10 µM) alone or in
combination with NAC (0.3 mM, 0.5 mM, 1 mM, 1.5 mM, 2 mM, 2.5 mM). After 72 h of incubation,
1C significantly decreased HCT116 cell viability. However, when combined with NAC, the effect
of 1C on cell proliferation was significantly attenuated. A significant protective effect of NAC was
observed at the concentration range of 1.0–2.5 mM (Figure 1). These results suggest that NAC exhibits
an antagonistic effect on 1C-induced decrease in cell viability. Moreover, NAC in used concentrations
had no inhibitory effect on HCT116 cell proliferation (Figure 1B). For further experiments, 2.5 mM
concentration of NAC was selected as non-toxic.
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Figure 1. HCT116 cell proliferation treated with chalcone 1C
((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) alone (A) or in combination
(N-acetyl cysteine (NAC)/1C) (B) and after NAC dilutions (C). Data were obtained from three
independent measurements. Significantly different a p < 0.05, b p < 0.01, c p < 0.001 vs. untreated cells
(control); ** p < 0.01, *** p < 0.001 vs. 1C.

3.2. NAC and 1C-Induced Oxidative Stress

In order to verify the abovementioned hypothesis that the cytotoxic effect of 1C in HCT116
cells could be related to oxidative stress, we performed several analyses focused upon free radical
production or antioxidant system activity.

The results presented in Figure 2A and Figure S1 show that ROS started to be increased from 6 h
of treatment (p < 0.05) when compared to control (untreated cells). This trend continued after 24 h, 48 h,
and 72 h of treatment (p < 0.05; p < 0.001). Opposite to ROS, we observed a moderate decrease in RNS
(Figure 2B and Figure S1) production after 6 h of incubation (p < 0.05). On the other hand, significant
increase in RNS production after 24 h, 48 h, and 72 h of treatment was observed (p < 0.01; p < 0.001).
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In order to find out how superoxide may contribute to 1C-induced cytotoxicity, we performed a direct
measurement of superoxide anion levels after treatment with 1C (Figure 2C and Figure S1). Except in
the first hour of incubation, treatment of HCT116 cells with 1C significantly increased production of
superoxide (p < 0.05; p < 0.01 vs. control). In both cases, co-treatment of cells with NAC significantly
decreased either ROS or superoxide production (p < 0.05; p < 0.01; or p < 0.001 vs. 1C treated cells).
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Figure 2. The influence of 1C and NAC/1C on free radical production in HCT116 cells. (A) Measurement
of reactive oxygen species (ROS) levels after 6, 24, 48, and 72 h incubation (B) Relative levels of reactive
nitrogen species (RNS) after 6, 24, 48, and 72 h incubation (C) Relative levels of superoxide after 3, 6, 24,
48, and 72 h incubation (D) Analysis of lipoperoxide production after 6, 24, 48, and 72 h incubation.
Data were obtained from three independent measurements. Significantly different a p < 0.05, b p < 0.01,
c p < 0.001 vs. untreated cells (control); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 1C.

Some of the well-known consequences of free radical generation are peroxidation of
polyunsaturated fatty acids and DNA damage. As our results showed (Figure 2D and Figure S1),
treatment of HCT116 cells with 1C led to a significant increase in lipid peroxide level after 24 h, 48 h,
and 72 h of incubation when compared to the control (p < 0.05; p < 0.01). No significant increase in
lipoperoxide level was observed after shorter times of incubation (1, 3, and 6 h; Figure S1).

8-Oxo-7,8-dihydroguanine (8-oxoG) is the main product of oxidative DNA damage. Because of the
clear correlation between free radical production and 8-oxoG creation, it is a frequently used cellular
marker of oxidative stress. As shown in Figure 3, 1C significantly increased levels of 8-oxoG in all
treatment periods (24, 48, and 72 h; p < 0.001). Compared with 1C treatment alone, NAC co-treatment
at a dose of 2.5 mM significantly reduced some parameters of oxidative stress. Production of ROS
and RNS was significantly decreased in 1C/NAC-treated after 24, 48, and 72 h of incubation (p < 0.05;
p < 0.01). Similarly, significant reduction in lipid peroxides was observed in NAC-co-treated HCT116
cells (p < 0.01; p < 0.001). NAC also attenuated oxidative DNA damage. After 2.5 mM NAC addition,
8-oxoG level significantly decreased (p < 0.001) as compared with 1C alone treatment.

Furthermore, because oxidative stress is the result of pro-oxidants/antioxidants disbalance,
we also studied effect of 1C on endogenous antioxidant status. Reduced glutathione and GSH-related
enzymes play an important role in protection against reactive species produced during oxidative stress.
As presented in Figure 4A and Table S1, the content of GSH in 1C-treated cells was biphasic, with the
highest level after 6 and 48 h of treatment. In addition, decrease in GSH content was detected after
24 h of incubation. Activity of GSH-related enzyme was time-dependent. Treatment of HCT116 cells
with 1C resulted in increased activity of GPx and GR after 24 h of incubation only. On the other hand,
activity of GST was increased during the whole course (Figure 4B–D; Table S1). NAC modulated GSH
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content as well as activity of GSH-related enzymes. The content of GSH in 1C/NAC-treated cells was
increased after 6 and 48 h of treatment and decreased after 24 h of treatment. This biphasic response
was also observed in 1C-only-treated cells, however, combination with NAC increased content of
GSH in a more appreciable manner. Moreover, NAC increased activity of GPx, GR, and GST when
compared to 1C-treated cells.
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Figure 4. Antioxidant status of HCT116 cells after 1C, NAC, and NAC/1C treatment. The influence
of 1C and combination of NAC/1C on glutathione content (A), glutathione peroxidase (GPx)
activity (B), glutathione reductase (GR) activity (C), and glutathione-S-transferase (GST) activity
(D). The experiments were performed in triplicate and measured parameters were calculated per
milligram or kilogram of protein vs. untreated cells (control).

3.3. Effect of NAC on Cell Cycle

We evaluated the cell cycle distribution of chalcone 1C-treated cells by flow cytometry. As shown
in Figure 5 and Table 3, 1C induced a significant cell cycle arrest at G2/M phase after 24 h (p < 0.001)
of incubation, and cell cycle progression was also arrested after 48 and 72 h of incubation (p < 0.01).
Moreover, we also found a significant increase in number of cells with sub-G0/G1 DNA content, which is
considered a marker of apoptosis (p < 0.01). Compared with 1C treatment alone, NAC (2.5 mM)
co-treatment completely prevented G2/M cell cycle arrest. In addition, NAC also significantly reduced
number of cells with sub-G0/G1 DNA content.
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Table 3. Cell cycle analysis of HCT116 cells after 24, 48 and 72 h incubation with NAC, 1C, or NAC/1C.

SubG0/G1 G1 S G2

C_24h 1.77 ± 0.74 44.65 ± 0.65 28.45 ± 2.55 25.25 ± 2.55
NAC 2.71 ± 1.36 41.30 ± 2.80 25.55 ± 0.45 30.60 ± 3.50

1C 11.30 ± 2.31 b 29.25 ± 3.15 b 14.40 ± 2.10 b 45.25 ± 1.45 c

NAC/1C 4.25 ± 1.23 a** 50.75 ± 3.45 *** 15.85 ± 4.45 b 29.35 ± 2.35 **

C_48h 0.95 ± 0.65 55.45 ± 6.45 19.10 ± 6.50 24.30 ± 0.90
NAC 1.92 ± 0.38 47.95 ± 0.15 23.60 ± 2.00 26.55 ± 2.55

1C 11.85 ± 0.55 b 31.80 ± 2.20 b 17.75 ± 2.65 38.35 ± 1.25 b

NAC/1C 5.55 ± 0.95 a*** 52.95 ± 0.35 ** 16.85 ± 3.85 24.50 ± 3.20 **

C_72h 0.71 ± 0.03 68.30 ± 6.00 13.25 ± 1.95 17.85 ± 4.45
NAC 1.53 ± 0.77 68.95 ± 6.35 14.75 ± 2.55 14.55 ± 3.15

1C 15.63 ± 7.18 b 26.25 ± 1.95 c 18.80 ± 1.00 39.00 ± 4.20 b

NAC/1C 3.85 ± 1.24 a* 67.75 ± 0.65 *** 10.65 ± 1.65 ** 17.75 ± 0.25 **

The results are presented from three independent measurements as the mean ± standard deviation (SD). Significantly
different a p < 0.05, b p < 0.01, c p < 0.001 vs. untreated cells (control); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 1C.

Overall, results of cell cycle analysis suggested that ROS production participated in G2/M
phase arrest.

Because the analysis of the cell cycle showed the participation of free radicals in 1C-induced
apoptosis, we provided a set of following experiments to study the detailed role of ROS (free radicals)
in cell death processes.

3.4. Effect of NAC on the Presence of Apoptotic Markers

Execution of apoptosis results in the consecutive display of different biochemical markers including
phosphatidylserine externalization, release of pro-apoptotic proteins, and caspase activation.
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3.4.1. Phosphatidylserine Externalization

To explain the association between oxidative stress and 1C-induced cell death, double annexin
V/PI (propidium iodide) staining was used, and measurements were conducted after incubation of
HCT116 cells with 1C, NAC, or both. As depicted in Figure 6 and Table 4, 1C significantly reduced the
percentage of living cells after 24 h of incubation, and this effect was noticed also after 48 and 72 h
incubation (p < 0.001). Furthermore, the increase in the population of apoptotic and dead cells was also
observed. However, compared with that in groups treated with 1C alone, the number of living cells
significantly increased with the concomitant decrease of apoptotic and dead cells after co-treatment
with NAC (p < 0.05, p < 0.01, and p < 0.001).
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Table 4. Externalization of phosphatidylserine after treatment with NAC, 1C, and NAC/1C.

Live (Q1) Early Apoptotic (Q2) Late Apoptotic (Q3) Death (Q4)

C_24h 97.80 ± 0.65 0.05 ± 0.04 0.18 ± 0.10 2.00 ± 0.49
NAC 90.95 ± 1.67 1.61 ± 1.14 b 6.20 ± 3.43 b 1.23 ± 0.633 b

1C 68.50 ± 0.98 c 17.84 ± 2.25 c 3.99 ± 0.99 c 9.78 ± 0.34 c

NAC/1C 86.65 ± 1.59 b*** 10.92 ± 2.35 c*** 0.71 ± 0.32 b** 1.75 ± 0.45 ***
C_48h 93.55 ± 0.86 1.37 ± 0.53 2.28 ± 0.62 2.75 ± 2.00
NAC 91.50 ± 0.98 0.16 ± 0.13 8.10 ± 0.65 b 0.27 ± 0.19 b

1C 42.55 ± 5.76 c 16.53 ± 2.96 c 17.23 ± 5.69 c 23.70 ± 3.02 c

NAC/1C 62.15 ± 1.84 b** 10.49 ± 0.35 c* 15.61 ± 3.66 c 11.75 ± 1.43 b**
C_72h 94.30 ± 0.41 0.78 ± 0.21 1.38 ± 0.51 3.56 ± 0.29
NAC 94.95 ± 0.20 0.06 ± 0.05 c 4.85 ± 0.05 0.17 ± 0.09

1C 31.85 ± 5.59 c 11.29 ± 0.58 c 25.71 ± 4.07 c 31.20 ± 0.89 c

NAC/1C 61.10 ± 1.23 b** 8.83 ± 1.48 c* 11.83 ± 0.96 b* 18.24 ± 0.70 b***

The results are presented from three independent measurements as the mean ± standard deviation (SD). Significantly
different b p < 0.01, c p < 0.001 vs. untreated cells (control); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 1C.
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3.4.2. Cytochrome c and Smac/DIABLO Release

One of key apoptotic events is the release of cytochrome c and Smac/DIABLO from mitochondria
to cytosol. Incubation of HCT116 cells with 1C led to a significant release of both cytochrome c and
Smac/DIABLO protein after 24, 48, and 72 h of treatment. Release of both proteins was significantly
attenuated by NAC co-treatment in all time periods studied (p < 0.05, p < 0.01, and p < 0.001)
indicated role of free radicals in mitochondrial membrane permeabilization and apoptosis induction
(Figure 7A,B).
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Figure 7. Mitochondrial apoptotic pathway alteration in 1C-treated and NAC/1C-co-treated HCT116
cells represented by cytochrome c release (A), expression of Smac/DIABLO (B), and caspase-3 (C) or
caspase-7 activation and PARP cleavage (D). Significantly different a p < 0.05, b p < 0.01, c p < 0.001 vs.
untreated cells (control); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 1C.

3.4.3. Caspase-3 and -7 Activation

After releasing into the cytosol, cytochrome c forms apoptosome with subsequent activation of
caspase-3 and -7 (executioner caspases), which mediate many features of apoptosis. As we found,
treatment of HCT116 cells with 1C led to significant activation of caspase-3 in all time periods (p < 0.01;
p < 0.001). On the other hand, significant suppression of caspase-3 activation was seen in 1C/NAC
co-treated cells (p < 0.5 and p < 0.01 vs. cells treated with 1C alone) (Figure 7C). Moreover, Western
blot analysis also showed that 1C increased levels of cleaved (activated) caspase-7, mainly after 48 and
72 h treatment, and NAC was able to abolish this effect (Figure 7D).

3.4.4. PARP Cleavage

The activation of caspase-3 and -7 has been confirmed by the cleavage of PARP (substrate for
caspases) using Western blot analysis. The level of cleaved PARP in 1C-treated HCT116 cells increased
(48 and 72 h of incubation) as shown in Figure 7D, indicating the activation of caspase-dependent
apoptosis. This analysis also revealed that the levels of cleaved PARP were markedly suppressed in
NAC-co-treated HCT116 cells.
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3.5. Effect of NAC on 1C-Induced Mitochondrial Dysfunction, Bcl-2 Phosphorylation, and DNA Damage

3.5.1. Mitochondrial Membrane Potential

It is well known that mitochondria are involved in the regulation of various functions related
to cell survival or cell death. Mitochondrial membrane potential plays crucial role in mitochondria
homeostasis, and long-lasting drop of it may be associated with apoptosis. As shown in Figure 8,
we observed a significant decrease of MMP in chalcone 1C-treated HCT116 cells (p < 0.01; p < 0.001).
By contrast, 1C/NAC co-treatment completely rescued HCT116 cells from mitochondrial membrane
potential collapse (p < 0.01, p < 0.001 vs. 1C alone).
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3.5.2. Bcl-2 Phosphorylation

The function of anti-apoptotic Bcl-2 protein depends on phosphorylation status, and Bcl-2
phosphorylation suppresses its anti-apoptotic activity. Treatment of HCT116 cells with 1C led to a
significant increase in phosphorylation of Bcl-2, thus enabling the initiation of intrinsic apoptotic cascade.
In contrast to 1C, addition of NAC completely abolished Bcl-2 phosphorylation, thus preventing
further apoptotic events (p < 0.001 vs. 1C alone) (Figure 9).
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3.5.3. DNA Damage

Xenobiotic-induced DNA damage often leads to activation of DNA repair machinery including
histone H2A.X, ATM (ataxia telangiectasia mutated kinase), and SMC1 protein (structural maintenance
of chromosomes 1). Our results showed activation (i.e., phosphorylation) of all of the aforementioned
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markers of DNA damage (p < 0.01; p < 0.001) in 1C-treated cells (Figure 10A–D). Similarly to our previous
experiments, co-treatment of HCT116 cells with 1C/NAC significantly prevented phosphorylation of
all proteins (p < 0.05, p < 0.01, and p < 0.001 vs. 1C alone).
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Figure 10. Analysis of DNA damage-related proteins. Phospho histone H2A.X (A,D), phospho-ataxia
telangiectasia mutated kinase (ATM), (B) and phospho-structural maintenance of chromosomes 1 (SMC1)
(C) levels after 24, 48, and 72 h of 1C or NAC/1C treatment. Significantly different a p < 0.05, b p < 0.01,
c p < 0.001 vs. untreated cells (control); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 1C.

3.6. Phosphorylation of p38 MAPK, JNK, and ERK1/2 Was Reduced by NAC

Because mitogen-activated protein kinase (MAPK) pathway plays an important role in apoptosis
regulation, we investigated the effect of 1C on the MAPK pathway proteins, including p38 MAPK,
JNK, and ERK1/2 (Extracellular signal-regulated kinase 1/2).

Findings of flow cytometry as well as Western blot analysis revealed that treatment of HCT116 cells
with 1C induced an increase of the phosphorylated form of MAPK proteins at specific times (mainly
after 48 and 72 h of incubation) compared to control (Figure 11A–D). However, partial reduction of
MAPK protein phosphorylation was detected when NAC was used. This effect was significant after 48
and 72 h of treatment (p < 0.01 and p < 0.001 vs. 1C alone).
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Figure 11. Phosphorylation status of mitogen-activated protein kinase (MAPK) proteins.
Phosphorylation changes of p38 MAPK (A,D), JNK (B,D), and ERK1/2 (C,D) as the result of 1C
or NAC/1C combination treatment. Significantly different a p < 0.05, b p < 0.01, c p < 0.001 vs. untreated
cells (control); ** p < 0.01, *** p < 0.001 vs. 1C.

4. Discussion

Although free radicals are involved in several physiological functions [40], uncontrolled ROS
production in cells can lead to oxidative stress followed by damage of biomacromolecules, including
DNA, proteins, or lipids, resulting in cell death [41]. Oxidative stress has also been linked to several
diseases such as diabetes mellitus, neurodegenerative and cardiovascular diseases, and cancer [42].
Besides the endogenous antioxidant system, exogenous antioxidants, mainly phytochemicals, play an
important role in the protection of cells and tissues against oxidative stress [43]. Among phytochemicals,
polyphenols have been intensively studied in recent years due to their antioxidant properties [44,45].
However, in recent years, some studies have documented pro-oxidant activity of several antioxidants
including polyphenols [46,47]. As was mentioned above, increased production of ROS can lead
to oxidative stress and even to cell death. It should be noted that cancer cells, due to higher
concentration of some ions and greater metabolic activity [48,49], are more susceptible to oxidative
stress in comparison with non-cancer cells, and this phenomenon explains the higher sensitivity of
cancer cells to pro-oxidants [50].

Chalcones have attracted researchers’ attention as potential anticancer compounds because of
their multi-target action together with simple chemistry, as well as their low toxicity [17]. Recently,
we documented excellent antiproliferative action of 1C acridine chalcone in HCT116 cells [11]. In the
last decade, some articles indicated a relationship between the antiproliferative effect and induction of
oxidative stress in both natural and synthetic chalcones [51–54]. This fact prompted us to evaluate the
role of ROS/RNS in the antiproliferative and proapoptotic effect of chalcone 1C.

Our results showed that co-treatment of HCT116 cells with 1C and antioxidant NAC significantly
attenuated 1C-induced decrease of cancer cell survival. Because this finding indicates possible
involvement of free radicals in 1C action, we further evaluated some parameters of oxidative stress.

Firstly, we detected increased levels of ROS after 24, 48, and 72 h of treatment. Moreover,
using specific indicators, we also detected higher concentrations of superoxide and nitric oxide
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(NO). It has been demonstrated that reaction of NO and superoxide resulted in production of
peroxynitrite, a highly reactive oxidant that is probably responsible for cytotoxicity both of these
oxidants [55,56]. Interaction of peroxynitrite with membrane polyunsaturated fatty acids often results
in lipid peroxidation [57]. In line with this evidence, we also detected significant increase of lipid
peroxides in 1C-treated cells.

Secondly, because oxidative stress is a result of imbalance between pro-oxidants and antioxidants,
we further evaluated effect of 1C on the intracellular antioxidant defence mechanism. Treatment of
HCT116 with 1C significantly influenced GSH, GRH, and GPx. We found a biphasic effect of 1C on
GSH levels, with a significant decrease after 24 h of incubation. This decrease of GSH levels was
associated with increased activity of GR. Because GR catalyses reduction of oxidized glutathione to
GSH [58], we suggest that the increase in GR activity could be an adaptive cellular mechanism to
GSH depletion. Moreover, in the same time of incubation, we detected the highest increase in lipid
peroxide production and increase in GPx activity. Because the role of GPx is to catalyse reduction of
different peroxides including lipid peroxides [59], increase in GPx activity may be a consequence of
lipid peroxide overproduction.

On the basis of the aforementioned findings, we considered the fact that increased generation of
free radicals and simultaneous weak adaptive activation of endogenous antioxidant system results in
oxidative stress and subsequent cell death. Our hypothesis also supports the fact that the addition of
NAC significantly decreases the antiproliferative potential of 1C and increases cell survival.

In addition to lipid peroxidation, ROS can also induce DNA damage [60]. Accordingly,
in 1C-treated cells, we observed significant increase of 8-oxo-7,8-dihydroguanine, the oxidation
product of guanine, which is considered as a marker of oxidative damage of DNA [61].

Damage of DNA usually results in activation of the DNA damage response (DDR) system,
which involves DNA damage detection, cell cycle arrest, and activation of repair mechanisms, followed
by survival or cell death [62]. The key role in DDR is played by H2A.X, which is activated by
phosphorylated ATM. Activated, that is, phosphorylated H2A.X (termed γ-H2A.X) is important for
recruitment of repair proteins to DNA damage sites. Moreover, it is also considered as an indicator
of DNA double-strand breaks [63]. Several genotoxic agents that cause DNA double-strand breaks,
such as anthracycline antibiotics, cisplatin, or etoposide, facilitate γ-H2A.X formation. In addition,
another component of DDR network phosphorylated by ATM is the SMC1 protein [64]. In the present
work, we observed activation of these DDR components in 1C-treated cells indicating DNA damage.
Together with the observation that 1C increased 8-oxoG levels and NAC significantly prevented either
8-oxoG production or activation of DDR markers, we suggest that 1C induced oxidative damage of
DNA. To the best of our knowledge, this is the first study reporting that chalcone induces oxidative
DNA damage in colorectal cancer cells. Recently, Gil and co-workers [65] presented ROS-mediated
DNA damage in human lung cancer cells, which support our findings related to role of ROS in the
antiproliferative effect of chalcones.

A significant amount of damage from biomacromolecules, caused by oxidants, can lead to cell
death [66]. Results shown in this paper, together with our recently published data [11], suggest that
chalcone 1C induces apoptosis associated with mitochondrial dysfunction. Today, it is without doubt
that mitochondria play an important role in apoptosis. Permeabilization of the mitochondrial outer
membrane (MOM) allows translocation of proteins localized in the intermembrane space to cytosol
with subsequent caspase activation and apoptotic cell death [67]. In the present work, we found
a significant increase of cytoplasmatic levels of cytochrome c, Smac/DIABLO, and activation of
executioner caspase-3 and -7. Once cytochrome c is released, binds to apoptotic protease-activating
factor 1 (APAF-1) in the presence of deoxyadenosine triphosphate to form the apoptosome [68]
with subsequent activation of downstream effector caspases and initiation of apoptosis. In addition,
Smac/DIABLO protein, by inhibiting of IAP (inhibitor of apoptosis protein) function, allows caspases
to activate apoptosis [69]. Permeabilization of MOM is regulated by pro- and anti-apoptotic proteins of
the Bcl-2 family. For example, it has been demonstrated that over-expression Bcl-2 blocks the release of
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cytochrome c from the mitochondria to cytosol and prevents cell death [70]. Our experiments showed
increased levels of phosphorylated anti-apoptotic Bcl-2 protein, which led to loss of its function.

Apoptotic machinery can be activated in response to different stimuli, and ROS are one form of
them [71]. The results presented here clearly documented the role of ROS in 1C-induced mitochondrial
dysfunction and apoptosis. The addition of antioxidant NAC to HCT116 cancer cells decreased the
release of cytochrome c and Smac/DIABLO proteins, activation of caspase-3 and -7, and PARP cleavage,
as well as phosphorylation of Bcl-2 proteins. Moreover, NAC almost completely prevented 1C-induced
loss of mitochondrial membrane potential. Although it is not clear if loss of MMP is an early event
or consequence in apoptosis, it is broadly accepted that decrease of MMP can be associated with
mitochondrial dysfunction and apoptosis as well [72].

It has been shown that MAPKs are involved in regulation of many cellular processes including
cell growth, survival, and apoptosis [73].

It has been suggested that JNK phosphorylation activates apoptosis in response to different
types of stress [74]. Moreover, the ability of activated JNK to release pro-apoptotic proteins such as
cytochrome c and Smac/DIABLO has also been documented [75]. Similarly to JNK, phosphorylation
of p38 also can be involved in apoptosis [76]. Moreover, although it is commonly accepted that the
phosphorylation of the ERK pathway leads to cell proliferation, activation of ERK1/2 can also be
involved in apoptosis [77]. Our results are consistent with aforementioned findings, as we found
increased phosphorylation of all three members of MAPK signalling pathway in 1C-treated cancer cells.

Furthermore, the involvement of ROS in activation of mitogen-activated protein kinases (MAPKs)
pathway has been proposed [78]. Our results support this hypothesis. As shown here, co-treatment of
cells with NAC significantly decreased phosphorylation of p38 MAPK, ERK1/2, and JNK and partially
suppressed activation of apoptosis machinery and decreased 1C-induced cell death. These results are
in agreement with those published by Wang et al. [79], who found that new chalcone SL-4 induced
apoptosis in human cancer cells through increased production of ROS and activation of the MAPK
signalling pathway.

5. Conclusions

Our study showed that acridine chalcone 1C has an antiproliferative and pro-apoptotic effect
against colorectal cancer HCT116 cells through ROS generation. Mechanistically, 1C increased ROS
production with concomitant mitochondrial dysfunction associated with loss of MMP, release of
cytochrome c, and Smac/DIABLO proteins with subsequent caspase-3 and -7 activation and apoptosis.
Moreover, treatment of HCT116 cells with 1C led to the activation of the MAPK signalling pathways.
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