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ABSTRACT

Alternative splicing (AS) is an important mechanism
in the development of many cancers, as novel or
aberrant AS patterns play an important role as an in-
dependent onco-driver. In addition, cancer-specific
AS is potentially an effective target of personalized
cancer therapeutics. However, detecting AS events
remains a challenging task, especially if these AS
events are novel. This is exacerbated by the fact that
existing transcriptome annotation databases are far
from being comprehensive, especially with regard to
cancer-specific AS. Additionally, traditional sequenc-
ing technologies are severely limited by the short
length of the generated reads, which rarely spans
more than a single splice junction site. Given these
challenges, transcriptomic long-read (LR) sequenc-
ing presents a promising potential for the detection
and discovery of AS. We present Freddie, a com-
putational annotation-independent isoform discov-
ery and detection tool. Freddie takes as input tran-
scriptomic LR sequencing of a sample alongside its
genomic split alignment and computes a set of iso-
forms for the given sample. It then partitions the
input reads into sets that can be processed inde-
pendently and in parallel. For each partition, Freddie
segments the genomic alignment of the reads into
canonical exon segments. The goal of this segmen-
tation is to be able to represent any potential isoform
as a subset of these canonical exons. This segmen-
tation is formulated as an optimization problem and
is solved with a dynamic programming algorithm.
Then, Freddie reconstructs the isoforms by jointly
clustering and error-correcting the reads using the
canonical segmentation as a succinct representa-

tion. The clustering and error-correcting step is for-
mulated as an optimization problem––the Minimum
Error Clustering into Isoforms (MErCi) problem––and
is solved using integer linear programming (ILP).
We compare the performance of Freddie on sim-
ulated datasets with other isoform detection tools
with varying dependence on annotation databases.
We show that Freddie outperforms the other tools
in its accuracy, including those given the complete
ground truth annotation. We also run Freddie on a
transcriptomic LR dataset generated in-house from
a prostate cancer cell line with a matched short-read
RNA-seq dataset. Freddie results in isoforms with a
higher short-read cross-validation rate than the other
tested tools. Freddie is open source and available at
https://github.com/vpc-ccg/freddie/.

INTRODUCTION

Alternative splicing (AS) is a cellular process that enables
a single gene to code for different proteins (1), contribut-
ing to protein diversity (2,3). Recent findings show that AS
plays a critical role in regulating gene expression (4) and
tissue specialization (5). Abnormalities in the AS of genes
are also linked to the pathogenesis of many diseases, in-
cluding cancer. For example, AS aberrations contribute to
a tumor’s ability to proliferate and to evade programmed
cell death (6). Additionally, cancer-specific AS aberrations
present potential targets for cancer therapeutics (7,8). The
efficacy of these AS-centred treatments relies on the person-
alized, accurate and rapid detection of AS isoforms at the
level of individual patients.

From the mid-2000s and until recently, short-read (SR)
sequencing has been the dominant high-throughput se-
quencing technology for genomics and transcriptomics
analysis. While SR sequencing has a very low sequencing
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error rate (of the order of 1 error per 1000 sequenced nu-
cleotides), it generates reads that are too short to fully se-
quence an isoform molecule in a single read: 75–250 nt per
read versus a median of 909 nt per isoform (9,10). SR AS
detection methods use SRs to identify splicing junctions
between pairs of exons (11–14). However, due to the lim-
ited span of SRs, such methods face major challenges in
‘chaining’ these splicing junctions to reconstruct complete
isoforms.

More recently, long-read (LR) sequencing became a com-
mercially viable option to study the transcriptome and
genome (15). In theory, LR sequencing machines can se-
quence the full length of RNA molecules, generating reads
that range from thousands to tens of thousands of nu-
cleotides (16). Thus, ideally, aligning LRs to the reference
genome should be enough to perfectly define the exons of
the underlying isoforms. However, in practice, LRs suffer
from a high sequencing error rate (10–20 errors per 100
sequenced nucleotides) that is dominated by indels (erro-
neous insertions and deletions) (17). This high-error profile
is especially characteristic of Oxford Nanopore Sequencing,
one of the leading LR sequencing platforms. When compar-
ing aligned LRs with a reference genome, indels cause erro-
neous shifts in the observed boundaries of the exons and
occasionally result in missing smaller exons altogether. Ad-
ditionally, LR sequencing of an RNA molecule, more of-
ten than not, terminates before reaching the full length of
the molecule, resulting in missing exons at the tail of the
isoform (18). These main types of LR sequencing errors
are summarized in Supplementary Figure S1. Current iso-
form detection methods based on LRs overcome these chal-
lenges by relying on existing isoform annotation databases.
The current methods can be classified into three categories
depending on how they use available annotation data: (i)
methods that detect only isoforms that are described in the
annotation which is typically done by aligning the LRs to
the sequences of annotated isoforms; (ii) methods that de-
tect isoforms with potentially novel exon chains if those ex-
ons boundaries are present in some annotated isoforms [e.g
FLAIR (19)]; and (iii) de novo methods that do not rely on
any annotation but can potentially benefit from using exist-
ing annotation data [e.g. StringTie2 (20)]. Approaches that
rely on annotation data are limited by the fact that annota-
tion databases are incomplete: millions of splicing genomic
locations and thousands of isoforms are present in different
individuals but not in major annotation databases (21,22).
Figure 1 provides further detail of the hierarchy of de-
pendence on annotations for isoform detection. Note that
this whole spectrum of methods relies on the presence of a
genome reference sequence against which LRs are aligned.
In the absence of such genome reference sequences, some
methods have been developed that attempt to reconstruct
transcripts from LR sequences without genomic alignment
[e.g. RATTLE (23)].

Contributions

In this paper, we introduce Freddie, a novel multistage com-
putational method aimed at detecting isoforms using Ox-
ford Nanopore LR sequencing without relying on isoform
annotation data. The design of each stage in Freddie is mo-
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Figure 1. AS isoform detection tools can be put on a spectrum in terms of
their reliance on reference annotations. (A) On the left of the spectrum, the
tool is fully dependent on the known isoform annotations and is thus un-
able to discover any novel isoforms. Each read is annotated by the isoform
that it best matches or is discarded if it does not match any isoform. (B)
In the middle, the tool is partially reliant on the isoform annotation; novel
isoforms can be detected as long as they are composed of known splice
junctions (i.e. boundaries of known isoforms). The split-alignment bound-
ary of each read is corrected to best matching splice junction position. If a
read has a novel splice junction position, the tool will have difficulty iden-
tifying its isoform structure. (C) On the right, the tool does not rely on the
reference annotation. Instead, it relies solely on the split alignment of the
reads to the reference genome.

tivated by the specific challenges of annotation-free isoform
detection from noisy LRs. We compare the performance of
Freddie against two alternative state-of-the-art isoform de-
tection tools, FLAIR (19) and StringTie2 (20). We show us-
ing simulated data that Freddie achieves accuracy (as mea-
sured by the harmonized F1 score) on a par with FLAIR de-
spite not using any annotations and outperforms StringTie2
in accuracy. Furthermore, Freddie’s F1 score is better than
FLAIR’s when FLAIR is provided with only partial anno-
tations. Finally, we demonstrate Freddie’s ability to detect
novel isoforms on a real cancer cell line dataset and use re-
verse transcription–polymerase chain reaction (RT–PCR)
to biologically validate a select set of these detected novel
isoforms.

MATERIALS AND METHODS

Freddie takes as input the mapping of transcriptomic LRs
to a reference genome, and outputs, in GTF format, a list
of detected isoforms each described as a set of genomic in-
tervals. Freddie assumes that the mapping is performed by a
splice-aware mapper which attempts to solve the problem of
finding the best read to genome alignment that accounts for
introns by allowing for large deletions to not be penalized.
Freddie is made up of three stages: partitioning, segmen-
tation and clustering/error correction, as depicted in Fig-
ure 2. The design of each of these stages is motivated by the
challenges of isoform detection using noisy LR sequencing
that does not rely on annotation data.

Read partitioning

In this stage, we partition the aligned reads into sets with
the aim that no isoform from the sequenced transcriptome
has reads present in different sets. As a result, each set of the
partition can be assumed to contain all the reads from a set
of isoforms and can be processed independently from the
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Figure 2. Overview of the Freddie stages, from genomic split alignments of LRs to detected isoforms.

other sets, which allows for highly parallel processing. We
define the partition sets as follows: if two reads have split-
alignment intervals that overlap, then they must be in the
same set or, equivalently, if two reads are in different sets,
then their split-alignment intervals cannot overlap.

Given a sorted list of the split-alignment intervals of the
reads, we can compute the partition sets in linear time. This
is achieved by first identifying genomic intervals with con-
tiguous coverage, and then running a classic breadth-first
search using the read membership in these contiguous ge-
nomic intervals. At the end of this stage, we have indepen-
dent sets of reads that we can process independently and in
parallel in the next stages. Therefore, when we refer to the
reads in the next stages, we mean only the reads in a given
set. Figure 2 illustrates the parallel processing of multiple
partition read sets in the next stages.

Canonical segmentation of the genome

The segmentation stage addresses the challenge of detect-
ing exon (and intron) boundaries from the alignments of
LRs to a reference genome. Annotation-dependent isoform
detection tools bypass this challenge by matching the LR
alignments to the closest exon boundary in the annotation,
assuming that any deviation from the annotation is a result
of sequencing noise and not of a potentially novel AS event.
To overcome this limitation, we propose a data-driven seg-
mentation approach aiming at identifying exon boundaries
by finding a set of segmentation breakpoints that are best
supported by the input LR split-alignments. To find this
segmentation, we devise a two-step process (illustrated in
Figure 3).

Identifying candidate breakpoints. To generate the set of
candidate breakpoints, C, we treat the LR split alignments
as a discrete signal: for a genomic position i , we define M[i ]
as the number of reads that have a split-alignment interval
starting or ending on i . We then apply a Gaussian filter on
the signal encoded by the array M to smooth over the sig-
nal’s noise. The Gaussian filter smooths out the raw signal
and makes it more robust to the noise due to indel sequenc-
ing errors on the potential splicing positions. We denote the
smoothed signal byM. Finally, we denote by C the set of ge-
nomic positions of the local peaks (i.e. local maxima) of M
(see Figure 3A). Our implementation uses scikit-learn (24)
Gaussian filter and peak-finding functions.

Pruning the set of the candidate breakpoints. Freddie se-
lects a subset of breakpoints, S ⊆ C, to represent the final-
ized set of canonical exon boundaries inferred from the in-
put LR alignments. Note that the breakpoint sets, C and

S, divide the genome, respectively, into |C| − 1 and |S| − 1
non-overlapping genomic segments. We define a scoring
function, f , which given a set of breakpoints simultane-
ously rewards individual reads for sharp changes in cover-
age between consecutive segments and penalizes them for
having partial alignment on individual segments (see Fig-
ure 3B). Freddie selects the subset S which maximizes f (S)
over all the subsets of C, using a dynamic programming al-
gorithm. The details of this optimization process and its
dynamic programming solution are in Section S1.1 of the
Supplementary Data. Additionally, the details of the seg-
mentation hyperparameter selection process are presented
in Section S1.2 of the Supplementary Data.

Vectorization of LRs. For the next stage, we use the se-
lected breakpoints, S, of this stage to succinctly represent
the reads: each LR is encoded as a binary vector of length
V = |S| − 1 in which each bit indicates the presence (1) or
absence (0) of a segment on the LR using the 90% coverage
threshold used above, as illustrated in Figure 4.

Clustering and error correction

The goal of this stage is to compute a set of potential iso-
forms using the succinct binary vector representation of the
LRs generated by the segmentation stage. Our approach is
to cluster the LRs such that each cluster represents a po-
tential isoform. A crucial point is to consider the possibility
for some reads to have erroneously missed segments (1 to
0 errors) due to sequencing errors and to correct such er-
rors by using evidence from other LRs from the same clus-
ter. Thus, each cluster is composed of similar reads that po-
tentially originate from the same isoform. We can then re-
construct each isoform by generating the consensus struc-
ture from the vector representation of the LRs in the clus-
ter. We recognize two main challenges for this task that are
not faced by annotation-dependent tools: we do not know
a priori (i) the number of clusters (i.e. isoforms) and (ii) the
structure of the isoforms in terms of segments. To overcome
these challenges, we devise an iterative process inspired by
the minimum error correction (MEC) problem (25) that is
commonly used in haplotype assembly.

In each round of this iterative process, we assign the input
reads into one of two bins: an isoform bin and a recycling
bin. The isoform bin should contain similar reads that are
assumed to originate from the same isoform, while the recy-
cling bin should contain everything else. At the end of each
round, the isoform bin reads are set aside and their consen-
sus is used as the structure of a detected isoform, while the
recycling bin reads are used as input to the next round (see
Figure 5). The assignment of the reads in each round to one
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Figure 3. Illustrating the two main steps of Freddie’s segmentation stage. (A) The interval boundaries of the genomic split-alignments of the reads are
represented as a discrete signal (grey). This signal is smoothed using a Gaussian filter. The peaks (red) of this filtered signal are used as candidate breakpoints
for the segmentation. (B) A subset of the elements in the list of candidate breakpoints, C, is selected and scored. Score increases due to high coverage contrast
are shown in green and score decreases due to partial coverage are shown in red. This scoring scheme is used to select the optimal subset of C to be used
as canonical segmentation in this stage.

Figure 4. The segmentation is projected on the reads. Each read is repre-
sented as a binary vector of size equal to the number of canonical segments.
A segment has a value of 1 (filled grey) if a read has at least 90% coverage
over the segment, and 0 otherwise.

Figure 5. The input to the clustering stage is the vectorized reads. In each
round of MErCI, the reads are assigned to either the isoform bin or the
recycling bin. The isoform bin reads are set aside and the recycling bin
reads are used as input to the next stage. The read vectors of each isoform
cluster are used to reconstruct the isoforms employing a simple column-
wise consensus strategy.

of the two bins is done according to a scoring function: each
read in the isoform bin incurs a penalty proportional to the
number of error corrections it requires in order to match the
consensus structure of the isoform bin reads (similar to the
MEC problem) while each read in the recycling bin incurs
a constant penalty. The interesting feature of this approach
lies in its ability to cluster the reads without specifying the
number of expected clusters or their structure. We call this
clustering problem the Minimum Error Clustering into Iso-
forms (MErCI) problem. The mathematical formulation of
MErCI is presented in Section S.1.3 of the Supplementary
Data.

Additional considerations for transcriptomic LRs. In Fred-
die, we extend and modify the MErCI problem as described
in the previous section and in the Supplementary Data in or-
der to include considerations that are specific to transcrip-
tomic LR sequencing data.

Poly(A) tail. During the biological process of transcrip-
tion, the spliced RNA molecule is extended with a small
sequence of A nucleotides, known as the poly(A) tail. The
presence of the poly(A) sequence is used as a target in the
preparation step of sequencing to extract and isolate the
mRNA molecules from the sample RNA material. Note

that the poly(A) tail is not part of the genomic sequence
of the gene. Therefore, if an LR has successfully sequenced
the poly(A) tail of its isoform, we expect to observe an A-
enriched sequence (or a T-enriched sequence for cDNA se-
quencing) in the LR in the parts of its sequence that did not
align to the genome. If we observe the A-enriched sequence
after the last covered canonical segment of the LR, then we
can infer that the gene of the LR isoform is on the forward
strand of the genome and we describe this LR as a forward
read. Similarly, if we observe theA-enriched sequence before
the first covered canonical segment of the LR, we describe
the LR as a reverse read. Note that the order of the seg-
ments is defined by their increasing genomic coordinates. In
Freddie, we constrain the MErCI assignment to the isoform
cluster to forbid assigning a forward read and a reverse read
to the isoform cluster in a given round.

Truncated reads. As mentioned earlier, LRs do not always
cover the full length of an RNA/cDNA molecule. There-
fore, for a given LR, it makes sense not to penalize the cor-
rected segments at the start or end of the isoform if the se-
quencing has terminated before they were sequenced. We,
therefore, modify the correction cost function in Freddie
to penalize only the internal segments of a given LR. We
define the internal segments of an LR to be the segments
between the first and last covered segments of the LR (i.e.
segments between the first and last 1 entries in the binary
representation of the read). For forward reads, we extend
the definition of internal segments to include segments af-
ter its last covered segment. Similarly, for reverse reads, we
include segments before its first covered segment.

Length of corrected segments. When correcting internal
segments in an LR, we also take into account the lengths
of the corrected segments. This is because missing shorter
segments are more likely to be the result of sequencing and
mapping errors. More specifically, we want to account for
the possibility that the missing segments were sequenced
by the LR, but, due to substitution and indel errors, the
LR alignment to the reference genome missed some seg-
ments. Therefore, for each read, we extract the set of its in-
ternal contiguous missing segments and their flanking cov-
ered segments (i.e. maximal stretches of 0s surrounded by 1
on both sides) which we call ‘gaps’. The formal definition of
how this constraint is incorporated into MErCI is detailed
in Section S.1.3 of the Supplementary Data.
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Solving MErCI using integer linear programming. The
search space for assigning reads to the isoform bin or the
recycling bin is exponentially large in the size of the input
(i.e. number reads multiplied by the number of segments).
To overcome this challenge, we formulate the MErCI prob-
lem with the extra constraints described as an integer linear
program (ILP). We use the ILP solver Gurobi to obtain an
optimal assignment of the reads according to the MErCI
formulation.

Isoform reconstruction. Finally, to reconstruct the iso-
forms, we build a consensus for each cluster of reads. Here,
we apply a simple rule of column-wise consensus of the
reads with a plurality threshold of 30% of the reads that
span a given exon segment.

RESULTS

To evaluate the accuracy and predictive power of Freddie,
we assessed Freddie against two well-established methods,
FLAIR (19) and StringTie2 (20), on simulated and real
datasets. As the ground truth about the real datasets is not
known a priori, it is essential to use controlled simulated
data to perform accuracy measurements. However, the sim-
ulation can only reflect the aspects of LR sequencing that
we are aware of and that we introduce in the simulation’s
design. Therefore, it is also equally important to test our
method on a real dataset and attempt to validate it using
orthogonal technologies to provide some assurance of the
usability of our method. Thus, we also tested the three tools
on a prostate cancer cell line dataset that we transcriptom-
ically sequenced using both ONT PromethION’s LR plat-
form and Illumina’s SR platform. Note that the computa-
tional benchmarking pipeline can be fully reproduced using
our Snakemake (26) scripts at https://github.com/vpc-ccg/
freddie/tree/benchmarking.

Simulated data experiment

Data generation. We generated an LR transcriptomic se-
quencing dataset for the human genome. For this dataset,
we wanted it to reflect the isoform expression distribution of
a typical real dataset. Therefore, we used a publicly available
prostate cancer cell line LR dataset that we previously se-
quenced (SRA: PRJNA726724) to estimate isoform expres-
sion levels. We mapped the LRs of this real dataset using
Minimap2 (27) to the set of annotated human isoform se-
quences from the ENSEMBL 97 database (28) and used the
number of primary alignments of the reads to each isoform
as an expression profile of this real dataset. We used this ex-
pression profile to simulate LRs from the isoform sequences
employing Badread (29), a simulator specifically designed
for Oxford Nanopore LRs. The simulator pipeline, which
wraps around the Badread simulator, is available on our
GitHub repository at https://github.com/vpc-ccg/LTR-sim.
Finally, we discarded any isoform (and its simulated reads)
with less than three simulated reads. In total, the simu-
lated dataset includes 1 341 487 reads from 28 025 isoforms
with a median length of 1446 nt. The median number of
reads simulated per isoform is eight. Additionally, using the
same simulation pipeline, we generated a second simulated

dataset using the publicly accessible ONT fruit fly RNA
dataset (accession number ERR3588905) (30). All the re-
sults of this second simulated dataset are available in Sup-
plementary Figures S3, S4 and S5, and Tables S3 and S4.

Tool configuration. We used Minimap2 (27) to generate in-
put genomic split alignments and ran it without using any
annotation files. We tested all tools using their default set-
tings. We ran StringTie2 (with -L flag) and Freddie without
any annotation files. FLAIR requires the use of an anno-
tation file so we supplied it with the complete GTF file for
the human transcriptome, including the annotations of the
28 025 considered isoforms. Note that this provides the best-
case scenario for FLAIR in terms of the comprehensiveness
of the annotation. To further investigate FLAIR’s reliance
on the annotation, we tested it with subsets of the annota-
tion with varying sampling rates of 75, 50, 25 and 1% of
the annotation isoforms. We present here the accuracy re-
sults of FLAIR using 100% and 50% annotation sampling
rates. The complete results for FLAIR are available in Sup-
plementary Figure S2.

Accuracy measurement. In assessing the accuracy of AS
detection by different tools, we use two approaches. The first
approach is based on computing for each tool how many of
its predicted isoforms are present in the set of simulated iso-
forms using the structure of the isoforms to test for isoform
equivalency. In this approach, we consider two isoforms as
equivalent if they have the same set of exon (or intron) in-
tervals with the possibility for each coordinate to be shifted
by ±10 bp. This approach provides a simple yet strict means
of quantifying the accuracy metrics of different tools.

However, since the isoforms of the same gene can greatly
overlap, it is justifiable to take into account highly simi-
lar isoforms, whether predicted by a tool or present in the
ground truth, as related data points. The second approach
is based on computing clusters of highly similar isoforms.
In this approach, we construct a graph G whose vertices
are V = PT ∪ S where PT and S are, respectively, the sets of
isoforms predicted by tool T and the set of true isoforms.
We add an edge between any pair of isoforms, i1 and i2, if
their pairwise sequence split-alignment score is higher than
a given threshold t ∈ [0, 1]. We define the pairwise sequence
split-alignment score to be:

2 · |aln(i1, i2)|
len(i1) + len(i2)

where |aln(i1, i2)| is the total lengths of the split-alignment
intervals of aligning the sequences of i1 and i2 isoforms and
len(i ) is the length of the sequence of isoform i . We then
extract all the (connected) components of the graph G and
classify them into three categories: (i) a mixed clique con-
tains at least one predicted isoform (PI) and at least one
ground truth isoform (GTI) and an edge between all pairs
of its vertices; (ii) a non-mixed component contains only
PIs or only GTIs and may or may not be a clique; and (iii) a
mixed ambiguous component contains at least one PI and
at least one GTI, with some pairs of vertices having no edge
connecting them. For a given alignment score threshold,
mixed cliques (category i) represent sets of pairwise simi-
lar PIs and GTIs that we interpret as true positives, while

https://github.com/vpc-ccg/freddie/tree/benchmarking
https://github.com/vpc-ccg/LTR-sim
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Figure 6. Graph-based accuracy results of the simulated dataset experiment. The first and second rows plot the count/percentages of isoforms belonging
to mixed clique components (category i) and non-mixed components (category ii). The last two rows describe mixed ambiguous components (category ii).
The left column presents the absolute counts and percentages for GTIs in each type of component for all graphs. The middle and right columns present
the absolute and percentage for PIs in each type of component for all graphs.

PIs and GTIs in non-mixed components (category ii) can
be interpreted as false positive and false negative, respec-
tively. The isoforms in mixed ambiguous components (cat-
egory iii) cannot be unambiguously labeled as true positive,
false positive or false negative. Thus we investigate the struc-
ture of each component of category (iii) as follows: We label
(a) each PI connected to all GTIs as probably true positive;
(b) each GTI connected to all PIs as probably true positive;
(c) each PI connected to some GTIs as probably false pos-
itive; and (d) each GTI connected to some PIs as probably
false negative. Note that to parallelize the computation of
the split-alignment score. we use GNU Parallel (31).

In order to assess the impact of sequencing errors, we also
built an additional graph for the ideal case of read map-
ping and clustering. In this graph, we aligned the reads sim-
ulated from each isoform to that isoform’s sequence using
Minimap2 splice alignment mode. We then generated a po-
sition by position consensus sequence of these alignments.
Inaccuracies in this graph reflect only the sequencing error
model and local alignment mistakes, but not mapping and
clustering problems. Figure 6 plots various statistics on the
structure of the resulting graphs for various threshold t val-
ues defining edges of the graphs.

Table 1. Accuracy statistics for the simulated human dataset using the
exon intervals to identify equivalent isoforms

Tool F1 score Precision Recall True iso. False iso.

Freddie 61.03% 61.89% 60.19% 16 778 10 332
StringTie2 35.83% 34.57% 37.18% 10 366 19 618
FLAIR (100%) 64.42% 69.79% 59.79% 16 669 7215

Simulated dataset results. The results of using the first ap-
proach for assessing the accuracy of the isoform detection
tools are summarized in Table 1 and Figure 7. We observe
that FLAIR (which is supplied with the full set of anno-
tation isoforms) and Freddie achieve close F1 scores (64%
and 61%, respectively), with Freddie having slightly better
recall and FLAIR having better precision. Both Freddie
and FLAIR achieve a much higher F1 accuracy score than
StringTie2 which has an F1 score of 36%. Figure 7 shows
the UpSet (32) plot of the intersections of the isoforms of
the different tools and the ground truth.

While the assessment of the graphs (one for each tool out-
put and one for isoform alignment baseline) is fairly consis-
tent across all threshold t values, we use t = 0.97 to quantify
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Figure 7. Simulated human dataset. UpSet plot showing the intersection
sizes between the sets of isoforms predicted by different tools or present
in the simulated ground truth using their exon intervals as a condition of
equivalence. Note that UpSet plots present the same information as Venn
diagrams but have the advantage of representing each intersection as a bar
with its height corresponding to the intersection’s size. The members of
each intersection are indicated by the solid black circles under each bar.
The total size of each tool’s predictions (i.e. the number of isoforms pre-
dicted by each tool) are shown on the bar graph on the left.

our findings since this value presents a clear inflection point
in the plots. Freddie, FLAIR and StringTie2 predicted 27
243, 24 605 and 30 306 isoforms, respectively, versus a total
of 28 025 GTIs. The analysis of Figure 6 shows that, overall,
Freddie and FLAIR perform similarly, in terms of accuracy
of the PIs compared with the GTIs; both tools outperform
StringTie2 in terms of true positive and false negative, in
terms of both absolute count and proportion. We note that
FLAIR’s results are obtained with the exact annotation for
all the GTIs in the dataset, while StringTie2 and Freddie are
run without any annotations. If we run FLAIR with a par-
tial annotation dataset, we notice a precipitous fall in true
positive GTIs (see FLAIR 50% in Figure 6 and Supplemen-
tary Figure S4).

In terms of computational resources, StringTie2 had by
far the smallest computational footprint, finishing in under
3 min and with <30 MB of RAM. Freddie had a memory
footprint of ∼1.4GB while FLAIR memory use maxed at
9.1 GB. FLAIR outperformed Freddie in CPU time use, oc-
cupying the CPU for 77 min compared with Freddie’s 125
min. Note that roughly two-thirds of Freddie’s CPU time is
spent in the Gurobi ILP solver. For the full details of the
computational resource use of the different tools, including
the different stages of Freddie, refer to Supplementary Ta-
bles S1 and S2.

Assessing the resolution of exon boundaries. The
alignment-based similarity provides us with a good
assessment of the structure of the predicted isoforms
and their ground truth counterparts. However, it is also
important to understand the accuracy of the exact lo-
cations of exon boundaries generated by the different
tools. Therefore, we extracted the set genomic locations
of the exon boundaries of the GTIs and of the predicted
isoforms of each tool. For each tool, we counted for each
exon boundary locus the number of ground truth exon
boundaries it has as a neighbor in a neighborhood of
±10 bp. Figure 8 illustrates a histogram of these counts
for the tested tools. As expected, we observe that FLAIR
has the highest exon boundary resolution, with its his-

Figure 8. Histogram of the number of ground truth exon boundaries in
the neighborhood of the predicted exon boundaries for different tools. As
a baseline, we also show the histogram for the ground truth plotted against
itself. For the baseline, bars not on the zero position are explained by the
fact that some different annotation exons have very close starting/ending
positions.

togram tightly concentrated at position zero. Freddie and
StringTie2 have similar distributions. Generally speaking,
all tools have histograms tightly concentrated around the
zero position, indicating high base-level resolution across
all tools.

Real data experiments

Data generation. We generated a real mRNA transcrip-
tomic dataset using the Oxford Nanopore Technologies
PromethION cDNA sequencing platform (chemistry kit
SQK-PBK004 and R9.4.1 flow cell). We also generated
a matched RNA-seq paired SR dataset using Illumnia’s
HiSeq 2x150 sequencing platform. The mRNA material for
both datasets was extracted from the same LNCaP prostate
cancer cell line This cell line is widely used as a first step
model for stages of prostate cancer. In these experiments,
we focused on a randomly selected set of 294 genes with var-
ious degrees of expected isoform complexity (according to
the ENSEMBL database). The selection process is detailed
on a Jupyter notebook in Section S3 of the Supplementary
Data.

Short-read validation of detected isoform splice junctions.
Since this is a real dataset, it is not appropriate to use the
annotations as an absolute ground truth. However, it is still
informative to compare the isoform calls by different tools
against each other and against the annotation database. To
do that, we used our approach of matching isoforms using
their structures. Note that here, we use the isoform intron
intervals instead of their exons to compare the different iso-
forms since we expect a greater degree of early sequencing
termination in the real dataset compared with the simulated
dataset. We also used the matching SR RNA-seq data as a
means of validating the detected isoforms. Our assumption
here is that if a splice junction is detected by one of the three
tools using the LR dataset, it should also be detectable us-
ing the SR dataset. Thus, this SR validation offers a means
to detect false-positive isoforms if they include invalidated
splice junctions. We used STAR RNA-seq aligner to detect
SR-supported splice junctions (33). In the following results,
we assume that any LR-detected splice junction is valid if
it is detected by STAR using the matched SR dataset, al-
lowing for up to ±10 bp shifts. Then, we also assume that
an LR-detected isoform is valid if all of its splice junctions
are valid. Figure 9 shows, using an UpSet plot, the inter-
sections of the detected isoforms of the three tools and the
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Figure 9. LNCaP real dataset. UpSet plot showing the intersection sizes
between the sets of isoforms predicted by different tools or present in the
ENSEMBL 97 annotation database using their intron intervals as a condi-
tion of equivalence. For each intersection column, the number of isoforms
that have all their splice junctions validated using the STAR and the SR
dataset is indicated in green.

ENSEMBL database on the real LNCaP dataset and the
number of validated isoforms of each intersection. Supple-
mentary Figure S6 shows the same intersections but at the
level of introns instead of isoforms.

Freddie results in the second highest validation rate
among all the tested tools at 71.41% of its detected iso-
forms having all their splice junctions validated by the SRs.
FLAIR and StringTie2 had validation rates of 74.25% and
56.53%, respectively. These results demonstrate the limita-
tions of fully relying on the annotation dataset and Fred-
die’s ability to detect novel isoforms that are supported by
SR alignment evidence since both Freddie and StringTie2
are able to detect isoforms not present in the ENSEBML
database.

Biological validation of novel splice junctions by RT–PCR.
In addition to the SR in silico validation, we have also
performed reverse transcription–polymerase chain reaction
(RT–PCR) to biologically validate novel splice variants (i.e.
not present in the annotation) detected by Freddie and/or
StringTie2 using the LNCaP prostate cancer cell line. To se-
lect candidates for RT–PCR validation, we focused on novel
splice junctions for which the computational methods show
strong support. Specifically, we identified novel junctions
that are both supported by the SRs and that have the high-
est expression within the genes of their respective isoforms.
We aim to design PCR primers that can cover both known
and novel exon junctions when possible. In cases where the
target sequences have high GC or AT ratios, dinucleotide
repeats or intrasequence homology, we had to compromise
by designing primers to detect novel exon junctions only. As
shown in Figure 10, we validated both known and novel ex-
ons simultaneously in the ING3, KRT19, GSPT2 and PP-
FIA4 transcripts, and validated novel exon junctions only
in the ORM2, FRG1, LYAR, TDRD3 and RABL2A tran-
scripts. Additionally, we attempted to validate a novel exon
detected by StringTie2 but not by Freddie in the EOGT
gene. As shown in Figure 10, these 10 RT–PCR experiments
confirmed the splice junctions detected by Freddie only or
detected by Freddie and StringTie2 and did not confirm the
splice junction detected only by StringTie2. These results

Figure 10. RT–PCR validation confirmed the selected novel isoforms with
novel splice junctions as detected by StringTie2 or Freddie from the real
LNCaP dataset. PCR products were separated by electrophoresis of DNA
agarose gels along with DNA ladders. Cartoons of the novel exons and
their predicted PCR product sizes are shown on the right side of each gel
image.

confirmed that the novel splice variants identified by Fred-
die are expressed in LNCaP cells and that Freddie detects
novel splice junctions that are missed by StringTie2.

DISCUSSION

Freddie is a novel AS isoform detection tool that does not
rely on isoform annotation databases. Freddie is designed
to address the characteristic sequencing errors of LRs, es-
pecially in the absence of isoform annotations. Using sim-
ulated data, we demonstrate that Freddie achieves accu-
racy higher than or on par with existing detection tools
even when they are supplied with isoform annotations. On
an LR real dataset with a matched SR dataset, we used
the SRs to demonstrate Freddie’s ability to detect isoforms
in a noisy real experimental set-up. Freddie shows higher
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rates of validated isoforms than the other annotation-free
tool, StringTie2, and it performs on a par with FLAIR
when FLAIR is supplied with the full annotation dataset.
More importantly, these Freddie-detected isoforms with
novel splice junctions can be biologically validated by RT–
PCR analysis using total RNA samples extracted from the
LNCaP cell line.

For future directions, we plan to further analyze the com-
putational complexity of the MErCI problem used in Fred-
die. We hope to identify a tight bound on the complexity of
solving MErCI and shed light on possible ways to speed it
up. This includes exploring ways to intelligently subsample
its input or approximating its solution. We also aim to cre-
ate variants of MErCI to address the problem of detection
of other transcriptomic targets, besides AS isoforms, such
as circular RNA and gene fusions.

DATA AVAILABILITY

Freddie is open source and is available at https://github.
com/vpc-ccg/freddie/. The benchmarking branch in-
cludes the scripts used to generate the simulation and real
data results. The simulation pipeline is also open source and
is available at https://github.com/vpc-ccg/LTR-sim. Both
repositories are deposited to Figshare at https://doi.org/10.
6084/m9.figshare.21441027. The short- and long-read real
datasets are deposited in the SRA database under the ac-
cession number PRJNA763233.
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