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Abstract

In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases
that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur
and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor
suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13
regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling
complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a
PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while
Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further
enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a
phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers
harboring ErbB2-activating mutations and decreased PTPN13 expression.
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Introduction

ErbB2 (Her2) amplification/over-expression occurs in 20-30%

of breast cancers resulting in aggressive tumor behavior and poor

prognosis [1,2]. ErbB2 activation via hetero-dimerization with

other family members or homo-dimerization with itself (when

expressed at high levels) initiates intracellular signals that

culminate in transcription of many genes regulating proliferation,

survival, differentiation, invasion and metastasis. In this way,

ErbB2 plays a key role in orchestrating an aggressive breast cancer

phenotype [3]. The advancement of targeted therapies such as

trastuzumab, a humanized anti-ErbB2 antibody, improves survival

of Her2 breast cancer patients [4,5]. However, most patients do

not respond to trastuzumab (62-74%), harboring de novo resistance;

those that do respond benefit greatly with an increased probability

of surviving over five years or remaining tumor free. Regrettably,

25% of these initially responding patients later fail therapy [6–9].

Like de novo resistance, the pathways leading to acquired

trastuzumab resistance remain unclear [10,11]. While significant

progress has been made in understanding the role of ErbB2 in

breast cancer initiation and progression, the overwhelming

resistance to trastuzumab therapy suggests that additional

signaling pathways exist that circumvent ErbB2 antibody-mediat-

ed blockade. Characterizing these pathways and, more impor-

tantly, the proteins that initiate them, will define novel targets for

therapeutic intervention that may re-sensitize Her2 patients to

trastuzumab and improve survival.

In addition to amplification/over-expression, polymorphisms in

ErbB2 at codon 655 (within the transmembrane domain) are

associated with increased development of breast cancer in some

populations, suggesting that changes in the ErbB2 coding

sequence may also have functional consequences associated with

cancer [12–14]. ErbB2 coding sequences may affect associations

with partner proteins and subsequently alter ErbB2-mediated

intracellular signaling. Thus, like trastuzumab resistance, identi-

fying these pathways will be critical for defining therapies that

block or circumvent them, improving survival.

While dominant pro-oncogenic functions like those described

for the ErbB2 kinase in breast cancer occur frequently in solid

tumors, alterations in phosphatases likewise occur and function as
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tumor suppressors. For example, the non-receptor protein tyrosine

phosphatase, PTPN13 (also known as FAP1, PTPL1, PTPLE,

PTPBAS, PTP1E; PTP-BL is the mouse homolog) [15–17] has

recently been dubbed a putative tumor suppressor. PTPN13 is a

multi-module containing phosphatase. Its five PDZ protein-protein

interaction domains mediate associations with many cellular proteins

and, as such, suggest that PTPN13 mutations may alter a variety of

different cellular functions [18,19]. PTPN13 mutations have, in fact,

been identified in colorectal [16], head and neck [20] and liver

cancers [17,21]. Importantly, decreased PTPN13 expression in

breast cancer correlates with decreased overall survival [22].

Moreover, we previously found that decreased PTPN13 expression

synergizes with an activated ErbB2 transmembrane mutation

(mNeuNT) enhancing tumor growth and invasion in vivo [23].

While in humans amplification/over-expression of ErbB2 is

oncogenic, in animals activating transmembrane ErbB2 mutations

are required for tumor growth. Thus, our in vivo mouse studies

necessitate the use of mNeuNT, a constitutively active transmem-

brane ErbB2 mutation. However, the finding that human ErbB2

polymorphisms can affect breast cancer prevalence suggests that the

study of transmembrane activating ErbB2 mutations in animals (in

the absence of amplification/over-expression) may prove beneficial

in the context of human disease. While a study by Zhu et al. suggests

that PTPN13 regulates ErbB2 function directly by de-phosphory-

lating the ErbB2 signal domain [24], we have not found that in our

system suggesting that PTPN13 and activated ErbB2 alone cannot

account for the enhanced downstream signaling, tumor growth, and

invasion evident in our published studies [23]. We therefore

hypothesized that additional modifiers function in the PTPN13/

ErbB2 synergy observed. We further reasoned that a PTPN13

phosphatase substrate with signaling capacities may be one such

candidate molecule. Therefore, we analyzed EphrinB1 [25].

EphrinB1 belongs to a family of ligands that bind and activate

Eph receptor tyrosine kinases. Ephrin ligands are unique, binding

and activating signaling from their cognate receptors, and

themselves becoming phosphorylated and initiating their own

signaling cascades. This Ephrin specific characteristic is called

‘‘reverse’’ signaling. ‘‘Reverse’’ signaling following Eph receptor

engagement constitutes the conventional signaling pathway.

However, Ephrins are promiscuous in their associations and

signaling occurs following non-Eph receptor interactions [26,27].

This type of Ephrin signaling is non-conventional.

Given that EphrinB1 is a phosphatase substrate of PTPN13,

decreased PTPN13 expression or functional PTPN13 mutations

(both of which occur in solid tumors) likely result in increased

EphrinB1 phosphorylation and subsequent signaling. In the

context of breast cancer where decreased PTPN13 expression

correlates with poor survival, defining the pathways activated in

the absence of PTPN13 may identify critical targets for therapeutic

intervention and improve survival. Thus, we hypothesized that the

synergy between decrease PTPN13 and increased ErbB2 activa-

tion that drives tumor growth and invasion is mediated via

EphrinB1 and, further, that EphrinB1-mediated signaling is

enhanced in breast cancers with compromised PTPN13 expres-

sion. Here, we describe a novel association between ErbB2 and

EphrinB1. Expression of an activated ErbB2 mutant or over-

expression of wildtype ErbB2 (as in Her2 breast cancers), together

with decreased PTPN13 expression or function, not only enhances

complex formation but also leads to EphrinB1 phosphorylation

and associated downstream signaling. In this report, we charac-

terize this complex, the signals mediated from it, and its relevance

to breast cancer. In addition, we demonstrate that this complex

exists in other epithelial cells and suggest that signaling from the

complex plays a functional role in other solid tumors as well.

Results

PTPN13 Loss occurs in epithelial cancers
Decreased PTPN13 expression correlates with decreased overall

survival in breast cancer [22]. We wondered whether this

correlation existed across all types of breast cancers or if it was

specific to a particular subtype. Thus, we analyzed a gene

expression array from 200 early stage breast cancers and 7 normal

breast samples for PTPN13 with particular attention to subtype

specificity. While Her2, Luminal A, Luminal B breast cancers and

normal breast samples express relatively high levels of PTPN13,

basal-like (BL) tumors express significantly lower levels of PTPN13

mRNA (Figure 1A, p = 0.00044 for basal vs. normal). Compar-

isons of the other subtypes with normal breast were not significant.

However, while PTPN13 mRNA levels in Her2, Luminal A and

Luminal B breast cancers is not different than normal breast, the

data do not eliminate the possibility that PTPN13 functional

mutations occur in these subtypes that may result in a phenotype

similar to that found in its absence.

We also examined PTPN13 protein expression in sub-type

defined breast cancer cell lines [28]. While PTPN13 expression

varied among cell lines, three out of four of the BL cell lines tested

exhibited nearly absent PTPN13 protein (Figure 1B). The BL

tumors comprise a heterogeneous group of cancers, but in general,

are aggressive tumors with a poor prognosis [29]. Thus, our

findings are consistent with those of Revillion et al correlating

decreased PTPN13 expression and poor overall survival [22].

These data support the hypothesis that loss of PTPN13 expression

impacts tumor phenotype and suggest that PTPN13 plays a role in

regulating epithelial proliferation, migration and/or invasion in

BL breast cancer.

PTPN13 loss increases phosphorylated EphrinB1 and
Erk1/2

PTPN139s five PDZ domains mediate associations with many

proteins, including EphrinB1 [19]. Following binding, PTPN13

de-phosphorylates EphrinB1, shutting off reverse signaling

[18,19]. To test the effects of decreased/lost PTPN13 on

EphrinB1 phosphorylation, we examined two BL breast cancer

cell lines: MDA-MB231, expressing nearly undetectable PTPN13

protein, and MDA-MB468, expressing endogenous PTPN13

protein (Figure 1B). As expected, low PTPN13 expression

(MDA-MB231) correlates with increased EphrinB1phosphoryla-

tion while endogenous PTPN13 expression (MDA-MB468)

correlates with low phospho-EphrinB1 (Figure 1C). These data

are consistent with EphrinB1 being a PTPN13 phosphatase

substrate and suggest that decreased PTPN13 expression in BL

breast cancer cell lines increases phosphorylation of EphrinB1.

Given EphrinB19s ability to signal, we further asked whether

phosphorylated EphrinB1 correlated with increased downstream

signaling. Molecular analysis of BL breast carcinomas shows that

many gene products in the BL cluster are associated with MEK/

Erk activation, thus we chose to analyze the phosphorylation status

of Erk1/2 in these BL cell lines [30–33]. We found that

decreased/absent PTPN13 expression (MDA-MB231) correlates

with increased phosphorylation of Erk1/2 (Figure 1C); while

endogenous PTPN13 expression (MDA-MB468) correlates with

decreased Erk1/2 phosphorylation. These data suggest that

EphrinB1 activation (phosphorylation) signals via the MAP Kinase

pathway. To test this, we stably knocked-down EphrinB1 in

HEK293 cells, chosen due to their ease of transfection relative to

breast cancer cell lines. Knock-down of EphrinB1 results in

prominent attenuation of phosphorylated Erk1/2 (Figure 1D)

consistent with EphrinB1-mediated Erk1/2 activation. Taken

ErbB2, EphrinB1, Src and PTPN13 Complex in Cancer
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together, the data suggest that the absence of PTPN13 results in

enhanced EphrinB1 activation and concomitant Erk1/2 phos-

phorylation.

As a further test, endogenous PTPN13 was transiently knocked-

down in MDA-MB468 cells (shRNA-mediated, shPTPN13). As

predicted, PTPN13 knock-down increased phosphorylation of

EphrinB1 consistent with PTPN13 regulation of EphrinB1

phosphorylation (Figure 1E) [25]. Moreover, increased EphrinB1

associated with ErbB2 in lysates from shPTPN13 cells suggesting

that phosphorylated EphrinB1 associates more readily with ErbB2

as compared to unphosphorylated EphrinB1. Surprisingly,

PTPN13 knock-down did not affect Erk1/2 phosphorylation,

suggesting that either EphrinB1 does not signal via the MAP

Kinase pathway in MDA-MB468 cells or that its signaling is

modulated in these cells via additional (as yet undefined)

components.

Figure 1. Decreased PTPN13 expression occurs in BL tumors and correlates with increased EphrinB1 and Erk1/2 signaling. (A)
Relative PTPN13 mRNA expression of PTPN13 in molecularly characterized breast tumors. Basal-like (BL) breast cancer PTPN13 expression is decreased
relative to normal breast (p = 0.00044 for basal vs. normal). (B) Western blot analysis of breast cancer cell lines. MDA-MB231, MDA-MB468, HCC1143,
HCC1954 are breast cancer cell lines with BL breast cancer characteristics. The BT474 cell line has Her2/ErbB2 over-expressing breast cancer
characteristics. MCF7 and T47D are breast cancer cell lines with luminal characteristics. HEK293 cells over-expressing PTPN13 served as a positive
control. (C) BL breast cancer cell lines, MDA-MB231 and MDA-MB468, expressing low or high PTPN13, respectively, were analyzed by western blot. (D)
HEK293 cells stably knocked-down for EphrinB1 (sh EphrinB1) or control were analyzed by western blot. (E) MDA-MB468 cells were transiently
transfected with an shRNA plasmid targeting PTPN13 (shPTPN13) or a non-silencing shRNA construct (Non-silencing) and analyzed by western blot
for the indicated proteins. (F) HaCaT cells, a human keratinocyte cell line, and UM-SCC84 cells, an HPV-negative head and neck squamous cell
carcinoma cell line, stably knocked-down for PTPN13 (sh PTPN13) or control lines were analyzed by western blot. (G) HaCaT cells stably knocked-
down for PTPN13 (sh PTPN13) or over-expressing HPV16 E6 protein (PHV16 E6) or control were analyzed by western blot for phosphorylated
EphrinB1, phosphorylated Erk1/2, total Erk1/2, and GAPDH.
doi:10.1371/journal.pone.0030447.g001
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Previous attempts by our laboratory to over-express PTPN13

have been unsuccessful as its increased expression results in cell

death, thus limiting our ability to analyze its downstream effects

[34]. Therefore, we were unable to test the effects of over-

expressing PTPN13 in MDA-MB231 cells which lack endogenous

expression. However, given its affects on EphrinB1 phosphoryla-

tion in breast cancer cells, we speculated that a reduction in

PTPN13 expression or function may be a common and, more

importantly, a key alteration in other epithelial cancers. To test

this concept, we knocked-down PTPN13 in a human keratinocyte

cell line (HaCaT cells) and analyzed its affects on signaling.

Decreased PTPN13 expression indeed enhanced EphrinB1 and

Erk1/2 phosphorylation (Figure 1F, HaCaT). Similarly, knock-

down of PTPN13 in the head and neck squamous cell carcinoma

cell line, UM-SCC84, resulted in increased EphrinB1 and Erk1/2

phosphorylation (Figure 1F, UM-SCC84). Importantly, previous

studies focused on human papillomavirus (HPV)-associated head

and neck cancers demonstrate that the HPV16 E6 oncoprotein

binds and targets PTPN13 for degradation [34,35]. Thus, HPV

positive cells served as an additional test of the function of

PTPN13 in cellular signaling in the context of virally-mediated

cancer. Thus, we analyzed previously characterized mouse tonsil

epithelial cells stably expression HPV16 E6 or those stably

knocked-down for PTPN13 [34,35]. Indeed, HPV16 E6 expres-

sion enhanced EphrinB1 and Erk1/2 phosphorylation, consistent

with decreased/lost PTPN13 expression. Moreover, knock-down

of PTPN13 in mouse tonsil epithelial cells demonstrated a similar

effect (shPTPN13, Figure 1G). Taken together, these data suggest

that decreased PTPN13 expression enhances EphrinB1 and Erk1/

2 phosphorylation in epithelial cells. The finding that high risk

HPV viruses have evolved a mechanism to eliminate cellular

PTPN13, further emphasizes the importance of PTPN13

regulatory functions critical in cellular signaling pathways. The

data suggest that PTPN13 expression may be interesting to

evaluate in many, if not all, solid tumors.

ErbB2 co-immunoprecipitates and co-localizes with
EphrinB1

The above data suggest that decreased/lost PTPN13 increases

EphrinB1 activation which may then modulate downstream

phosphorylation of Erk1/2. Our laboratory has previously

demonstrated that decreased/lost PTPN13 synergizes with ErbB2,

potentiating MAP Kinase signaling [23]. Thus, we wondered

whether EphrinB1 phosphorylation and the resulting Erk1/2

signaling occurs in an ErbB2-mediated, non-conventional manner.

Therefore, we asked whether EphrinB1 associates with ErbB2 and

completed co-precipitation and co-localization studies. We found

that EphrinB1 and ErbB2 co-precipitate (Figure 2A) from lysates

derived from breast cancer cell lines as well as HaCaT cells.

Interestingly, knock-down of PTPN13 in HaCaT cells (shPTPN13)

enhanced pull-down of EphrinB1 with ErbB2, again suggesting

that phosphorylated EphrinB1 associates more readily with ErbB2

than the unphosphorylated state. In addition, in all cases multiple

forms of EphrinB1 were pulled down with ErbB2 (Figure 2A

arrows). We speculate these bands represent different phosphor-

ylated forms, as suggested by Xu et al. In their study, mutation of

EphrinB1 tyrosine residues results in the specific loss of EphrinB1

bands suggesting that the bands evident by western blot represent

phosphorylated forms of the protein [36]. Alternatively, the bands

may represent unglycosylated or degraded EphrinB1 as suggested

by Makarov et al [37]. While the identity of these bands is

undefined in this study, different EphrinB1 antibodies verified its

co-immunoprecipitation with ErbB2 (data not shown). Important-

ly, while varying amounts of ErbB2 were pulled down in all lysates

tested (consistent with their different levels of ErbB2 expression), a

similar amount of EphrinB1 was associated with it. These data

suggest that there is a limit to the amount of EphrinB1 that

associates with ErbB2; more ErbB2 expression does not result in

increased EphrinB1 association. These data suggest that the

interaction is tightly regulated.

Co-immunostaining of endogenous ErbB2 and endogenous,

surface EphrinB in HaCaT cells shows that ErbB2 and EphrinB

co-localize at cell-cell junctions (Figure 2B). Surface EphrinB was

localized on unfixed, unpermeabilized cells using EphB1-Fc.

EphB1-Fc is a chimera consisting of the extracellular region of

the EphB1 receptor (a cognate EphrinB receptor) fused to human

IgG1. Thus, EphB1-Fc binds to surface expressed EphrinB ligands.

These interactions are then detected using an anti-human IgG-

FITC and cells analyzed by confocal microscopy. Thus, while the

surface staining is not specific to EphrinB1alone, it does suggest

that EphrinB proteins co-localize with ErbB2. Together with the

immunoprecipitation data, these data suggest that EphrinB1

associates with ErbB2.

To assess the significance of the ErbB2/EphrinB1 interaction in

breast cancer, we further analyzed: BT474, a Her2 (ErbB2) cell

line; T47D, a luminal cell line with high ErbB2 expression; MCF7,

another luminal cell line with low ErbB2 expression (Figure 1B).

Interestingly, both T47D and MCF7 cells express nearly

undetectable PTPN13, while BT474 cells express endogenous

PTPN13 (Figure 1B). Immunoprecipitation for ErbB2 followed by

western blot analysis for EphrinB1 demonstrates enhanced

EphrinB1 co-IP in T47D cells which correlated with higher levels

of phosphorylated EphrinB1. This finding is consistent with our

previous data suggesting that phosphorylated EphrinB1 associates

more readily with ErbB2. In addition, T47D cells demonstrate

robust phosphorylation of Erk1/2 which was undetectable in

BT474 and MCF7 cells (Figure 2C). Taken together, these data

suggest that in breast cancer cell lines with low/absent PTPN13

expression, and high ErbB2 expression, EphrinB1 phosphoryla-

tion is elevated as is its association with ErbB2 and correlates with

enhanced Erk1/2 phosphorylation. The data further suggest that

lack of effect on Erk1/2 phosphorylation in shPTPN13 MDA-

MB468 cells (Figure 1E) may be due to insufficient ErbB2

expression and/or complex formation with EphrinB1.

mNeuNT increases complex formation and signaling
Given that ErbB2 is a tyrosine kinase and EphrinB1

phosphorylation initiates reverse signaling, we wondered whether

ErbB2 phosphorylates EphrinB1. In addition, given its affects on

EphrinB1 phosphorylation, we speculated that PTPN13 regulates

this activation. To examine this, both wildtype PTPN13

(PTPN13wt) as well as a phosphatase null mutant (PTPN13C/S)

were tested. In addition, our previous findings demonstrate that a

constitutively active ErbB2 transmembrane mutant (V660E,

henceforth referred to as mNeuNT) synergizes with loss of

PTPN13 and increases MAP Kinase signaling and invasive

growth whereas wildtype (endogenous) ErbB2 does not [23].

Therefore, both mNeuNT and wildtype ErbB2 (wt ErbB2) were

also tested. Given their low endogenous expression of PTPN13,

ease of transfection and robust expression of transfected PTPN13,

HEK293 cells were utilized for these studies (Figure 2D). In these

experiments HEK293 cells were transiently transfected with

ErbB2 (either wildtype or mNeuNT), wildtype EphrinB1 and

PTPN13 (either wildtype or the C/S mutant) and analyzed by

western blot.

Control lysates (eGFP) show that EphrinB1 co-immunoprecip-

itates with ErbB2 but that EphrinB1 is not phosphorylated and

Erk1/2 is not activated (lane 1, Figure 2E). Expression of neither

ErbB2, EphrinB1, Src and PTPN13 Complex in Cancer
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wildtype (lane 2, Figure 2E) nor C/S PTPN13 (lane 4, Figure 2E)

changes these parameters in the presence of over-expressed wt

ErbB2 and EphrinB1. In contrast, expression of mNeuNT with

EphrinB1 increases not only the amount of EphrinB1 associating

with it, but also leads to EphrinB1 and Erk1/2 phosphorylation

(lanes 3 and 5, Figure 2E). HEK293 cells express little endogenous

ErbB2 (data not shown); in addition, the anti-ErbB2 antibody

utilized for immune precipitation recognizes both wildtype ErbB2

and mNeuNT. Thus, while co-IP studies cannot distinguish

between EphrinB1 associated with endogenous ErbB2 or

mNeuNT, the data strongly support an association mNeuNT.

While we have previously demonstrated that mNeuNT expression

alone increases Erk1/2 phosphorylation [23], our finding that

expression of PTPN13C/S is not capable of reducing EphrinB1

and Erk1/2 phosphoryaltion , suggests that EphrinB1-mediated

reverse signaling also contributes to Erk1/2 phosphorylation

(Figure 2E, lane 5, arrows). In addition, expression of wildtype

PTPN13 (lane 3, Figure 2E), but not C/S PTPN13 mutant (lane 5,

Figure 2F), decreases the amount of phosphorylated EphrinB1 and

P-Erk -1/2, also consistent with EphrinB1 phosphorylation

affecting MAP Kinase signaling.

These biochemical data were confirmed by immunolocalization

studies of phosphorylated EphrinB (Figure 2F, green) and ErbB2

(Figure 2F, red). Only expression of mNeuNT results in

Figure 2. mNeuNT is required for EphrinB1 activation and initiation of signaling. (A) Western blot analysis of a human keratinocyte cell
line, HaCaT cells (control as well as cells knocked-down for PTPN13), and breast cancer cell lines (MCF7, BT474, HCC1953) immunoprecipitated (IP) for
ErbB2 and immunoblotted (IB) for EphrinB1. Membrane was re-probed for ErbB2. GAPDH was used as a loading control. (B) En face confocal images
of HaCaT cells immunolocalizing surface EphrinB (green) and total ErbB2 (red). Nuclei are counterstained with DaPi (blue). Scale bar 20 mm. (C)
Western blot analysis of breast cancer cell lines: T47D, BT474 and MCF7. (D) HEK293 cells transiently transfected with either wildtype PTPN13 or the
C/S PTPN13 mutant analyzed by western blot. (E) HEK293 cells transiently transfected with either eGFP alone, or a combination of EphrinB1, ErbB2
(wildtype or mNeuNT), and PTPN13 (wildtype or C/S mutant) and analyzed by western blot. (F) En face confocal images of cells transfected in E
processed for immunolocalization of phosphorylated EphrinB (green) and ErbB2 (red). Nuclei counterstained with DaPi (blue). Scale bar 20 mm.
doi:10.1371/journal.pone.0030447.g002
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phosphorylated EphrinB present at the cell surface (Figure 2F,

panels 3 and 4, yellow indicates expression co-localization of

phosphorylated EphrinB and ErbB2). Moreover, only wildtype

PTPN13 decreases the amount of phosphorylated EphrinB at the

cell surface (Figure 2F, compare yellow and green between panels

3 and 4). Taken together, these data suggest that, 1) mNeuNT

associates with EphrinB1 and this association is enhanced with

EphrinB1 phosphorylation, 2) phosphorylated EphrinB1 correlates

with phosphorylation of Erk1/2 and 3) that PTPN13 de-

phosphorylates EphrinB1 in this context.

mNeuNT co-immunoprecipitates with and activates Src
ErbB2-mediated signaling occurs directly via its kinase activity

or by its recruitment of Src into a signaling complex [38].

Moreover, following binding to its cognate Eph receptor, Src

phosphorylates EphrinB1 [25]. Since both wildtype ErbB2 and

mNeuNT contain a wildtype tyrosine kinase domain, we

hypothesized that the enhanced EphrinB1 phosphorylation and

MAP Kinase signaling evident in the context of decreased/lost

PTPN13, involves Src. Thus, we first set out to determine whether

Src associates with ErbB2, as suggested by the literature [38].

HEK293 cells were transiently transfected with wildtype ErbB2 or

mNeuNT and tested. While co-IP of activated Src with wildtype

ErbB2 was nearly undetectable, activated Src associated with

mNeuNT (Figure 3A). The anti-activated Src antibody recognizes

Src tyrosine 416 (pSrc-Y416) when phosphorylated, a site that

promotes Src activity [39,40]. These data suggest that mNeuNT

associates with activated Src.

Src mediates EphrinB1 phosphorylation
Both mNeuNT and Src are kinases, either of which may

phosphorylate EphrinB1. In addition, mNeuNT preferentially

associates with activated Src (Figure 3A). Therefore, we tested

whether activated Src (rather than mNeuNT) mediates EphrinB1

phosphorylation. HEK293 cells were transiently transfected with

mNeuNT, EphrinB1 and either wildtype or mutant (C/S)

PTPN13 and analyzed by western blot. Consistent with the above

data, mNeuNT co-IPs with activated Src and EphrinB1 is

phosphorylated (Figure 3B, lane 1); PTPN13C/S enhances

EphrinB1 phosphorylation (Figure 3B, lane 3). To test the role

of Src in EphrinB1 phosphorylation, transfected cells were treated

with PP2, a potent Src inhibitor. Xu et al previously demonstrated

that treatment with 1 mM PP2 efficiently blocks Src-mediated

EphrinB1 phosphorylation while treatment with 25 mM PP2

results in cell detachment [36]. Thus, in this study to ensure

efficient Src inhibition, cells were treated with 10 mM PP2 for a

short time (4 hours). In mNeuNT, EphrinB1 and wildtype

PTPN13 transfected lysates, PP2 treatment decreased the amount

of activated Src associated with mNeuNT and attenuates

EphrinB1 phosphorylation (Figure 3B, lane 2). Lysates of

mNeuNT, EphrinB1 and PTPN13C/S transfected cells were

similarly affected by PP2 suggesting that EphrinB1 phosphoryla-

tion within the mNeuNT, Src, PTPN13 complex is mediated via

Src. Taken together, these data suggest that Src, rather than

mNeuNT, phosphorylates EphrinB1 and further supports the

published literature and our own findings that PTPN13 is

responsible for de-phosphorylating EphrinB1 in this complex.

PP2 is a Src-family kinase inhibitor, blocking activation of Lck,

Fyn, Hck and Src. In addition, the experiments performed using

PP2 utilized HEK293 cells over-expressing PTPN13, ErbB2 and

EphrinB1. Thus, to more selectively inhibit Src and to test its

function on phosphorylation of endogenous EphrinB1, we also

analyzed saracatinib (AZD-0530, currently in clinical trials [41–

44]) on non-transfected cells. HEK293 cells were treated with

Figure 3. mNeuNT associates with activated Src which phosphorylates EphrinB1. (A) HEK293 cells transiently transfected with either
wildtype ErbB2 or mNeuNT and analyzed by western blot. (B) HEK293 cells transiently transfected with a combination of EphrinB1, mNeuNT, and
PTPN13 (wildtype or C/S mutant) were treated with or without PP2 and analyzed by western blot. (C) Untransfected HEK293 cells treated with
increasing doses of saracatinib and analyzed by western blot for expression of endogenous activated Src, total Src, phosphorylated EphrinB1 and
immunoprecipitated EphrinB1.
doi:10.1371/journal.pone.0030447.g003
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saracatinib (0, 0.25 mM or 1.0 mM) and analyzed by western blot.

Saracatinib treatment successfully inhibited Src activation and a

dose response was evident. In addition, at the highest dose, there

was a decrease in the amount of EphrinB1 phosphorylation

(Figure 3C) consistent with a role for Src in mediating EphrinB1

phosphorylation.

EphrinB1 immunoprecipitates with ErbB2 in a manner
that does not require the extracellular or C-terminal PDZ
motif

Our data suggest that regulation of the ErbB2/EphrinB1

complex may mediate signals important in breast cancer. Given

that ErbB2 and EphrinB1 interact, rationale design of small

molecule inhibitors to block their association may be of

therapeutic value. Thus, ErbB2 and EphrinB1 mutants were

generated to define the domains necessary and sufficient for their

association.

ErbB2 contains two large extracellular domains which we

designated ligand binding domains 1 and 2. ErbB2 extracellular

mutants deleted of either ligand binding domain 1 (D 1–174

LBD1) or both domains 1 and 2 (D 1–487 LBD2) were generated.

ErbB29s PDZ binding domain was deleted in a third mutant (D
1251–1255 PDZBD) (Figure 4A). All ErbB2 mutants, including

the full length wildtype protein, were HA tagged at the N-

terminus. Constructs were transfected into HEK293 cells and

analyzed for loss of co-IP with endogenous EphrinB1. All

constructs express HA-tagged proteins that run at predicted

molecular weights. Endogenous EphrinB1 associated with all

ErbB2 mutants suggesting that none of the deleted domains were

essential for the interaction (Figure 4B).

Wildtype and mutant EphrinB1 constructs were generated and

FLAG tagged at the N-terminus. EphrinB1 was deleted either of

its entire extracellular domain (D 1–161 ED) or only its PDZ

binding domain (D342–346 PDZBD, Figure 4A). HEK293 cells

were transfected and analyzed. All constructs express FLAG-

tagged proteins that run at the predicted molecular weights. Again,

no loss of co-IP between wildtype ErbB2 and the EphrinB1

mutants occurred (Figure 4C). In addition, transfected cells were

studied by immunofluorescence and confocal microscopy. All HA-

tagged ErbB2 constructs localized to the membrane with

endogenous EphrinB1. Similarly, all FLAG-tagged EphrinB1

constructs retained co-localization with wildtype ErbB2

(Figure 4D). These data suggest that the ErbB2/EphrinB1

association is not mediated via the extracellular or PDZ binding

domains of either partner but rather that their transmembrane

domains, ErbB29s kinase domain or remaining intervening

sequences (retained in all mutants), alone or together, play a key

role in the interaction. Future studies mutating these domains will

define the critical elements mediating the ErbB2/EphrinB1

association.

Discussion

We describe a complex consisting of ErbB2, Src, EphrinB1 and

PTPN13 that mediates EphrinB1 phosphorylation and down-

stream signaling in breast cancer cells. In addition, we present

similar findings using multiple human cell lines suggesting that

complex formation and signaling occurs in many, if not all,

epithelial cells. With respect to breast cancer, ErbB2/EphrinB1

signaling may be most relevant in tumors with high ErbB2

expression and either low/absent PTPN13 expression or those

harboring PTPN13 functional mutations. Our study and those of

others predict that these tumors possess an aggressive phenotype

and poor prognosis [22,45].

In the breast cancer cell lines studied, low/absent PTPN13

together with elevated ErbB2 expression correlate with enhanced

ErbB2/EphrinB1 association as well as increased EphrinB1 and

Erk1/2 phosphorylation. Interestingly, both MDA-MB231 and

MDA-MB468 cells lack detectable (by western blot) ErbB2

expression yet, in the absence of PTPN13, EphrinB1 is phosphor-

ylated. Both of these BL breast cancer cell lines demonstrate over-

expression of ErbB1 [30,46] suggesting that ErbB1 may hetero-

dimerize with low levels of endogenous ErbB2 (forming an ErbB1/

ErbB2/EphrinB1 complex) and mediate signaling from the

complex. It remains unclear why transient knock-down of PTPN13

in MDA-MB468 cells failed to increased Erk1/2 phosphorylation

(Figure 1E) though a few possibilities exist. First, while the extent of

PTPN13 knock-down was not very efficient, it was enough to

increase EphrinB1 phosphorylation (Figure 1E). This suggests that

either EphrinB1 does not signal via the MAP Kinase pathway, or

that the specific EphrinB1 tyrosine(s) necessary to mediate such

signaling were not activated under this condition. Our data

demonstrating that knock-down of EphrinB1 greatly attenuates

Erk1/2 phosphorylation (Figure 1D) argue against the former

possibility and support the latter. Second, the presence of high ErbB1

expression in MDA-MB468 cells and the fact that these cells were

not serum-starved suggests that ErbB1 signaling (either alone or in

combination with low level endogenous ErbB2) modulates down-

stream pathways which include Erk1/2. Third, it is possible that the

ErbB2/EphrinB1 complex is composed of additional components

(in fact, we hypothesize this is true), the composition of which may

differ among different cell lines and may respond differently under

different contexts. Further characterization of the ErbB2/EphrinB1

complex, its association with additional transmembrane proteins

(including ErbB family members), as well as intracellular binding

partners and the signaling pathways they regulate are on-going and

will increase our understanding of the function of this complex in

breast cancer. What is clear from these experiments is that EphrinB1

associates with ErbB2 and its phosphorylation is regulated by

PTPN13. The absence of PTPN13, as occurs in BL breast cancers,

affects EphrinB1 phosphorylation and likely downstream signaling,

which may include components of the MAP Kinase pathway.

Given its over-expression in Her2 breast cancers, we further

studied the ErbB2/EphrinB1 association in additional breast

cancer cell lines. T47D cells which express high levels of ErbB2

and nearly undetectable PTPN13, demonstrate increased ErbB2/

EphrinB1 association, elevated EphrinB1 activation and robust

Erk1/2 phosphorylation. BT474 cells which demonstrate robust

ErbB2 expression and high PTPN13 expression, lack Erk1/2

phosphorylation while MCF7 cells, with low expression of both

ErbB2 and PTPN13, also have undetectable phosphorylation of

Erk1/2 (Figure 2C). These data suggest that the combination of

low/absent PTPN13 and high ErbB2 expression are required for

driving EphrinB1 and Erk1/2 phosphorylation.

Our studies also demonstrate that, whereas PTPN13 is the

phosphatase silencing EphrinB1 activation, Src is the kinase that

activates it (Figure 3B, 3C). Thus, signaling from the ErbB2/

EphrinB1 complex is regulated by transient associations with

PTPN13 and Src. The interaction of two known kinase oncogenes

(ErbB2 and Src), a signaling ligand (EphrinB1) and a putative

tumor suppressor phosphatase (PTPN13) likely regulates key

signals not limited to Erk1/2. In cancers where protein kinase

oncogene expression and/or signaling are enhanced, signals

mediated from this complex may be altered. Our data in breast

cancer cell lines support this hypothesis.

The finding that wildtype ErbB2 associates with EphrinB1 but

does not correlate with EphrinB1 or Erk1/2 phosphorylation,

suggests that in the absence of ErbB2 activation, Src either does
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not associate with the complex or remains in an inactive form. In

fact, we show that mNeuNT (but not wildtype ErbB2) associates

with activated Src, consistent with a requirement for activated

ErbB2 to initiate complex signaling. These findings are highly

relevant not only for Her2 breast cancers but also for epithelial

cancers harboring activating ErbB2 mutations.

mNeuNT association with activated Src suggests that ErbB2

sequence alterations not only enhance complex formation but also

Figure 4. ErbB2 and EphrinB1 associate in a manner that likely requires the transmembrane domains. (A) Schematic representation of
ErbB2 and EphrinB1 mutants. LBD, ligand binding domain. * , PDZ binding domain (PDZBD). Numbers refers to amino acid number. (B) HEK293 cells
were transiently transfected with HA-tagged wildtype or mutant ErbB2 constructs and analyzed by western blot. (C) HEK293 cells were transiently
transfected with FLAG-tagged wildtype or mutant EphrinB1 constructs and analyzed by western blot. (D) HEK293 cells transfected in B and C were
further analyzed by immunofluorescence and confocal microscopy. En face confocal images of immuno-localized HA-tagged ErbB2 (red, top panels)
and endogenous EphrinB1 (endog. EphrinB1,green, top panels). Yellow color signifies co-localization. Immunostaining of FLAG-tagged EphrinB1
(green, bottom panels) and wild-type ErbB2 (red, bottom panels). Yellow color signifies co-localization. Nuclei were counterstained with DaPi (blue).
Scale bar 20 mm.
doi:10.1371/journal.pone.0030447.g004
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initiate its signaling. Both mNeuNT and the human ErbB2 codon 655

polymorphism are single amino acid changes within the transmem-

brane domain of ErbB2 [47–49] suggesting that the transmembrane

domain mediates critical interactions in disease. Interestingly, low

grade in situ lesions of the cervix are not associated with this

polymorphism [50] while advanced cervical cancer is strongly

associated with it [51]. In head and neck squamous cell carcinoma,

codon 655 polymorphism is associated with malignancy [52]. Our

current findings suggest that ErbB2 transmembrane mutations (like

neu (rat) and the human 655 polymorphism) synergize with

decreased/lost PTPN13, allowing breast cancer progression via a

mechanism involving increased ErbB2/EphrinB1 signaling. Our

ErbB2/EphrinB1 truncation experiments also support a functional

role for the transmembrane domains. In fact, a functional role for

ErbB transmembrane domains has been previously described [53–

55]. Our finding that a single amino acid change within ErbB29s

transmembrane domain (mNeuNT) increases its association with

EphrinB1, robustly activating complex signaling, supports these

published data. The association of human ErbB2 transmembrane

polymorphism (codon 655) with cancer is also consistent with this role.

Interestingly, while expression of mNeuNT is required for

Erk1/2 phosphorylation in transiently transfected HEK293 cells

(Figure 2E), in retrovirally infected HEK293 cells, Erk1/2

phosphorylation occurs in the absence of mNeuNT (Figure 1D).

These data suggest that retroviral infection and integration

mediates cellular changes not evident in transient plasmid

transfections. Despite this, the stable knock-down of EphrinB1

attenuates Erk1/2 phosphorylation consistent with EphrinB1

signaling via the MAP Kinase pathway.

The activated Src antibody used in our studies recognizes

tyrosine 416 when phosphorylated; phosphorylation of this residue

promotes Src activity [39]. Glondu-Lassis et al showed in the mouse

that PTPN13 directly de-phosphorylates this tyrosine residue,

inactivating Src [45]. We find no significant difference between

the amount of activated Src associated with mNeuNT in the

presence of wildtype or C/S PTPN13 suggesting that the cellular

pool of Src associated with ErbB2 may be insensitive or inaccessible

to PTPN13-mediated inactivation (Figure 3B, lanes 1 and 3).

The existence of this complex in breast cancer cells suggests that

therapies targeting one component will likely be insufficient at

blocking all cellular signaling mediated by the complex. For

example, while blocking ErbB2 with trastuzumab (Herceptin) may

effectively block ErbB2-mediated signals, it may not alter

EphrinB1-mediated signaling from the complex. Our data

demonstrate that in the absence of EphrinB1, Erk1/2 phosphor-

ylation is greatly attenuated (Figure 1D) suggesting not only that

EphrinB1 is a good therapeutic target, but that blocking EphrinB1

together with ErbB2 may efficiently inhibit complex signaling.

Our data further suggest that breast cancers with elevated ErbB2

expression and compromised PTPN13 expression and/or function

would benefit the most from this type of dual targeting.

Decreased PTPN13 expression in BL breast cancers supports a

tumor suppressive role for PTPN13 (Figure 1A). BL breast cancers

do not express the estrogen or progesterone receptors nor do they

over-express ErbB2 [56–58]. Thus, these patients do not benefit

from targeted therapies, contributing to their poor outcome.

Moreover, while only Her2 breast cancers demonstrate over-

expression/amplification of Her2, the other breast cancer subtypes

express Her2, albeit at normal levels. However, our data suggest that

it is the combination of increased ErbB2 together with compromised

PTPN13 that is necessary for EphrinB1 activation and downstream

signaling. Despite this, MDA-MB231 cells demonstrate EphrinB1

activation and robust Erk1/2 phosphorylation (Figure 1C). The key

to these data may lie in the fact that this cell line (as well as MDA-

MB468) expresses high levels of ErbB1 suggesting that EphrinB1

associates with additional ErbB family members. We have some

preliminary data suggesting this is indeed the case (data not shown).

Thus, complex formation in BL breast cancers is likely to occur with

downstream signaling amplified in the absence of PTPN13 and over-

expression of ErbB1 or other ErbB family members.

This is the first study to describe a novel complex between ErbB2

and EphrinB1 that is not restricted to breast cancer cell lines but is

present in many epithelial cell lines tested. Importantly, ErbB2/

EphrinB1 interactions may occur in cis (within the same cell) or in

trans (across neighboring cells) mediating dual or bi-directional

signals, respectively. The concept of dual/bi-directional signaling in

the arena of breast cancer is new and untested with potential

implications for tumor growth. Further studies focused on identifying

additional components of the ErbB2/EphrinB1 complex and the

downstream pathways they regulate may identify additional targets

for therapeutic intervention in breast cancer and other solid tumors.

Materials and Methods

Short hairpin RNA (shRNA) vectors
shRNA vectors were obtained from Open Biosystems (Hunts-

ville, AL). Retrovirus was produced as previously described

[59,60]. Alternatively, shRNA plasmids were transfected into cells

(Polyfect Transfection Reagent, Qiagen, Valencia, CA) as per

manufacturer’s directions.

Plasmids
mNeuNT and PTPN13C/S have been previously described

[23]. Full length wildtype human EphrinB1 cDNA was obtained

from Open Biosystems (IHC1380), sequence verified, cloned by

PCR into the p3XFLAG CMV vector (Sigma-Aldrich, St. Louis,

MO) by using the KpnI/XbaI sites. EphrinB1 mutants were

generated by PCR and ligated into p3XFLAG CMV using NotI/

SalI sites. The wildtype and mutant ErbB2 were generated by

PCR and ligated into pCMV-HA (Clontech, Mountain View,

CA). All final plasmids were sequence verified. Primers were as

follows: Full length wildtype ErbB2: Forward: acgagtcgacgatg-

gagctgcgcgccttg, Reverse: aaggaaaaaagcggccgctcacactggcacgtcca-

gacc; ErbB2 LBD1: Forward: gcgatagcggtcgactagacacaagaacaac-

cagctggct, Reverse: gcgatagcggcggccgctcacactggcacgtccaga; ErbB2

LBD2: Forward: gcgatagcggtcgactatgcggaacccgcaccaagct, Reverse:

gcgatagcgctcgagtcacactggcacgtccagacc; ErbB2 PDZBD: Forward:

gcgatagcggtcgaccatggagctggcggcctt, Reverse: gcgatagcggcggccgct-

caacccaggtactctgggttctctg ; Full length wildtype EphrinB1: Forward

primer: gcgatagcgggtaccgggaagatggctcggcct, Reverse primer: gcga-

tagcggaattctcagaccttgtagtagatgttcgccg; EphrinB1 LBD: Forward

primer: gcgatagcggcggccgcatgaaggttgggcaagatcc, Reverse primer:

gcgatagcgtctagatcagaccttgtagtagatgttcgc; PDZBD: Forward primer:

gcgatagcggcggccgcgggaagatggctcggcct, Reverse primer: gcga-

tagvgtctagatcactcttggacgatgtagacaggg.

Cell culture
MDA-MB468, MDA-MB231, MCF7, 4T1, CT26, HEK293,

BT474, T47D, HCC1954 and HCC1143 were obtained from the

American Tissue Culture Collection (ATCC). HaCaT cells were

obtained from Cell Lines Service. The UM-SCC84 was a kind gift

from Dr. Douglas Trask (University of Iowa). This human cell line

was originally generated at the University of Michigan by the

Head and Neck SPORE Translational Research group. This

group has completed genotyping of 73 UM-SCC cell lines which

has been published [61]. While the UM-SCC84 line was not

included in the 73 genotyped cell lines, results from continued

efforts to genotype remaining and newly generated lines are posted
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on the UM Head and Neck SPORE Tissue Core website (http://

www2.med.umich.edu/cancer/hnspore/cores-tissue.cfm). The

UM-SCC84 cell line has been utilized in prior studies [34,62].

HaCaT, UM-SCC84, MDA-MB468, MDA-MB231, MCF7,

4T1, CT26, HEK293 and BT474 cells were maintained with

Dulbecco modified Eagle medium with 10% fetal calf serum and

1% penicillin/streptomycin. T47D, HCC1954 and HCC1143

cells were maintained with RPMI medium with 10% fetal calf

serum and 1% penicillin/streptomycin. To create stable cell lines,

retrovirus infected or plasmid transfected cells were placed under

antibiotic selection and individual colonies ring cloned. At least 20

individual clones were tested. Positive clones were kept under

antibiotic selection (zeocin 500ug/ml). Controls were transfected/

infected with a non-silencing shRNA construct (pSMP, Open

Biosystems) and pooled populations kept under antibiotic selection

and tested. Cells expressing non-targeting shRNA’s were similar to

untransfected control cells.

Immunoprecipitation and Western blot
Cells were lysed in lysis buffer (50mM Tris HCl pH 7.5, 150mM

NaCl, 5mM EDTA, 2mN Na3VO4, 100mM NaF, 10mM NaPPi,

10% glycerol, 1% Triton X-100), membranes pelleted by centrifu-

gation and soluble proteins assayed by BCA protein assay (Pierce,

Rockford, IL). Equal total protein was used for IP and IB analysis.

Antibodies
IP Antibodies include: Santa Cruz anti-EphrinB1 (sc-1011, Santa

Cruz, CA), Dako anti-ErbB2 (Carpinteria, CA), Sigma anti-EphrinB1

(E5404). IB antibodies used: Sigma anti-HA clone HA-7), Sigma anti-

FLAG, Dako anti-ErbB2, Invitrogen anti-ErbB2(Carlsbad, CA),

Sigma anti-EphrinB1, Santa Cruz anti-EphrinB1, Cell Signaling

anti-Phospho-Erk1/2 (Danvers, MA), Calbiochem anti-Erk1/2 (San

Diego, CA), Ambion anti-GAPDH (Austin, TX), Millipore anti-

Phospho-tyrosine (4G10, Billerica, MA), Santa Cruz anti-PTPN13

(H-300), Cell Signaling anti-phospho-Src (Tyr416). The anti-ErbB2

antibodies detect wildtype ErbB2 and mNeuNT. Antibodies for

immunofluorescence were: Invitrogen anti-ErbB2, Cell Signaling

anti-phospho-EphrinB, Sigma anti-HA, Sigma anti-FLAG, Dako

anti-ErbB2 and Santa Cruz anti-EphrinB1. Surface EphrinB ligands

were bound by EphB1-Fc (R&D Systems, Minneapolis, MN) and

detected with Millipore anti-human IgG-FITC.

For IP, soluble proteins were incubated with antibody,

complexed to protein G agarose beads (ThermoScientific, Rock-

ford, IL), washed with lysis buffer and pelleted by centrifugation.

Complexes were dissociated with sample buffer (4% SDS, 100mM

DTT, 20% glycerol, 0.005% bromophenol blue, 0.065M Tris

pH 6.8), separated by SDS-PAGE , transferred to PVDF

membranes (Immobilon-P, Millipore), blocked with either 5%

Bovine Albumin Fraction V (Millipore) or 5% milk (Carnation

instant non-fat dry milk), washed in TTBS (0.05% Tween-20,

1.37M NaCl, 27mM KCl, 25mM Tris Base), and incubated in

primary antibody. Washed membranes were incubated with HRP-

conjugated secondary antibody, incubated with chemiluminescent

substrate (ThermoScientific, SuperSignal West Pico) and exposed

to film (GeneMate Blue Light Autorad Film).

Immunocytochemistry
Cells were seeded on collagen-coated 8 well chamber-slides,

fixed with 4% paraformaldehyde (Electron Microscopy Sciences,

Hatfield, PA), permeabilized with 0.2% TritonX-100 (Thermo

Scientific), blocked with Superblock (Pierce) and incubated with

antibody (1:100). Following phosphate buffered saline (PBS)

washes, cells were incubated with Alexa Fluor-conjugated

secondary antibody (Invitrogen), washed, coverslips mounted with

Vectashield mounting medium plus DaPi (Vector Labs, Burlin-

game, CA) and cells analyzed by confocal microscopy (Olympus

FluoView1000). For surface EphinB localization, cells on cham-

ber-slides were placed on ice, EphB-Fc bound to the surface for

2 hours. Following PBS washes, cells were fixed and bound EphB-

Fc detected with IgG-FITC.

Src inhibition
PP2, an inhibitor of the Src kinase family, blocks Src function in

the 1–25 mM range [36,63]. Cells were treated with 10 mM PP2

(Calbiochem) for 4 hours at 37uC and cell lysates were harvested

as described. Control cells were treated with vehicle (DMSO).

Saracatinib (AZD-0530, LC Laboratories, Woburn, MA) is a

dual specific Src/Abl kinase inhibitor. Cells were treated with

either vehicle alone (DMSO), 0.25, 0.5 or 1.0 mM saracatinib for

3 hours at 37uC and cell lysates harvested and analyzed by IP and

western blot.

Breast Tumor Array
Gene expression array data from early stage breast cancers

measured on Affymetrix U133A (published by Wang et al [64]) and

Affymetrix U133 2 Plus chips (published by Richardson et al [65])

were combined and analyzed. The dataset of Richardson et al was

made compatible with that of Wang et al by restricting it to the

probe sets of the U133A chip and processing it with the mas5

software available at http://www.bioconductor.org. Systematic

source and batch bias adjustment in the two datasets was

performed by the distance-weighted discrimination (DWD)

method, suitable for the correction of systematic biases associated

with micro array data sets [66]. Robust consensus clustering

techniques were used to classify the breast cancer cases into basal-

like cancers (BL), HER2+, Luminal A, Luminal B and normal

breast [67]. The average expression of each gene across all samples

was normalized to 0. The mean relative expression of probes

corresponding to gene of interest in each subtype was calculated

and graphed. Statistical significance was analyzed by two-tailed T-

test.
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