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Abstract: Congestive heart failure (CHF), a progressive and complex syndrome caused by ventricular
dysfunction, is difficult to detect at an early stage. Heart rate variability (HRV) was proposed as a
prognostic indicator for CHF. Inspired by the success of 2-D UNet++ in medical image segmentation,
in this paper, we introduce an end-to-end encoder-decoder model to detect CHF using HRV signals.
The developed model enhances the UNet++ model with Squeeze-and-Excitation (SE) residual blocks
to extract deep features hierarchically and distinguish CHF patients from normal subjects. Two
open-source databases are utilized for evaluating the proposed method, and three segment lengths of
intervals between successive R-peaks are employed in comparison with state-of-the-art methods. The
proposed method achieves an accuracy of 85.64%, 86.65% and 88.79% when 500, 1000 and 2000 RR
intervals are utilized, respectively. It demonstrates that HRV evaluation based on deep learning can
be an important tool for early detection of CHF, and may assist clinicians in achieving timely and
accurate diagnoses.

Keywords: congestive heart failure; short-term RR intervals; UNet++

1. Introduction

Congestive heart failure (CHF) is the terminal stage of a variety of cardiovascular
diseases, such as hypertension, coronary heart disease, and valvular heart disease [1].
Frequently-reported symptoms include left ventricular hypertrophy and left ventricular
dilation, which may lead to neuroendocrine disorders and circulatory dysfunction [2].
If left untreated or not treated properly, heart failure will gradually worsen over time.
According to epidemiological surveys around the world, for every 100 people, 3–5 people
have different levels of heart failure. However, diagnosis is often difficult, especially for
early diagnosis. Early diagnosis of CHF is able to slow down the progression prior to
adverse events and improve the patients’ chance of survival [3]. Moreover, the mortality
rate in CHF patients within 5 years is as high as 50%, which makes it a major public
health challenge [4]. Therefore, CHF diagnosis with high objectivity and reliability is
highly desired.

Electrocardiogram (ECG), which contains abundant information of cardiac activities, is
commonly utilized for heart rhythm analysis in hospitals [5]. However, manual ECG signal
analysis is time-consuming, and the quality of diagnostic results depends on the clinician’s
expertise [6]. To address the limitations of manual ECG analysis, various automated CHF
detection algorithms have been proposed. For instance, Gotsman et al. [7] found that
QRS-T angle is relatively stable in patients with heart failure, and widening of the QRS-T
angle has predictive value. The equal frequency in amplitude and equal width in time
(EFiA-EWiT) discretization method was proposed to extract features from ECG signals,
and a linear regression model was used to differentiate CHF from normal sinus rhythm
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(NSR) patterns [6]. Acharya et al. developed a fully automatic CHF diagnosis model based
on an 11-layer convolutional neural network which achieved an accuracy of 98.97% on a
data set from PhysioBank [8].

RR interval, the time elapsed between successive R-peaks extracted from ECG signals,
may contain useful information about heart diseases [9]. Previous studies show that heart
rate variability (HRV), a phenomenon of the variation of heart rate in the time intervals, can
serve as a biomarker for disease severity in patients with CHF [10]. Long-term HRV signals
have been employed for CHF detection. Using Poincare plot, Tushar et al. [11] studied the
differences of lag-response in CHF patients and normal subjects, and found that curvilinear-
ity was lost in patients with CHF after exploring sequences up to 50,000 beats. A multistage
classification method using non-equilibrium decision-tree-based support vector machine
(DT-SVM) was proposed for risk assessment based on HRV [12]. Fifty four classical
measures and 126 dynamic indices were extracted to detect and quantify CHF patients.
Isler et al. [13] applied genetic algorithm (GA) to select the best features from the combina-
tion of standard HRV measures and wavelet entropy measures. They further employed the
k-nearest neighbor classifier to distinguish 29 CHF patients from 54 healthy subjects.

Despite providing promising performance, existing methods always require long-term
data which are difficult to acquire. For example, Yu et al. [14] proposed bispectral analysis
and genetic algorithm for CHF detection based on long-term (24-h) HRV. Although their
proposed method achieved a high accuracy of 96.38%, acquiring 24-h HRV data is not easy
outside of the hospital environment, especially with mobile devices. Recently, various
machine learning-based CHF detection methods have been developed with different
lengths of short-term RR intervals and achieved inspiring performance. Liu et al. [15]
proposed a multiscale entropy method to classify normal subjects from CHF patients
and achieved accuracy of 85.5% and 85.6% when 1000 and 2000 RR intervals are used,
respectively. Wang et al. [16] combined handcrafted features and deep-learning features,
and utilized an ensemble classifier for CHF detection. Three types of RR segment length
(N = 500, 1000 and 2000) were used to evaluate their proposed method with accuracy of
83.84%, 87.54%, and 85.71%, respectively.

Recently, deep learning algorithms are widely used in medical signal analysis and
have achieved remarkable results [17,18]. Deep neural networks are able to automatically
learn discriminative features from raw data. They have shown enormous potential in
analyzing heterogeneous data and great generalization ability. For example, Chen proposed
a sparse auto-encoder-based deep learning model in CHF detection using RR intervals [19].
Li et al. [20] combined deep neural network and distance distribution matrix to identify
CHF and achieved an accuracy of 81.85%. Wang et al. [21] used long short-term memory
(LSTM) deep network to detect CHF based on RR intervals and achieved 82.51%, 86.68%
and 87.55% accuracy on N = 500, 1000 and 2000 RR intervals, respectively.

Although the above-mentioned studies have made significant progress, there are still
two major limitations. Firstly, mainstream CHF detection algorithms are mostly based
on handcrafted features. However, such approaches are not robust and rely too much on
expert experience. To extract effective temporal features from HRV data, some researchers
integrated time-domain, frequency-domain and nonlinear features together to form feature
vectors [16], which is time-consuming and error-prone. In addition, such features generally
are task-specific and lack generality. Meanwhile, errors in feature extraction process may be
propagated to later stages, which negatively impact the detection performance. Although a
few deep learning-based strategies were proposed for exploring the information of RR
intervals, the performance is not satisfactory in comparison with approaches based on
time-series ECG signals. Secondly, patients with mild CHF might be misclassified with
healthy controls because the classification boundaries between them are not clear. Existing
studies show that there is still great room for improvement, especially for mild CHF
patients detection.
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To address these problems, this paper presents an encoder-decoder model for CHF
detection based on short-term RR intervals. The main contributions are summarized
as follows:

1. This paper proposes a novel strategy to extract the features from short-term RR
intervals, at most with the length of 2000. The end-to-end decision support system
extracts deep features automatically from raw data, which not only improves the
generalization but also avoids error propagation and information reduction.

2. Inspired by the success of UNet++ in computer vision tasks, this paper presents a
novel strategy to classify patients with CHF and normal subjects via improved 1-D
UNet++. To the best of our knowledge, no prior work on ECG analysis has employed
the 1-D UNet++ network. In addition, to increase the sensitivity to informative
features, the squeeze and excitation block are integrated [22] and combined with
residual networks [23]. The improved 1-D UNet++ has achieved state-of-the-art
accuracy of 88.79% on two publicly available data sets with mild CHF patients.

2. Materials and Methods

The proposed framework, consisting of data preprocessing, feature-extraction based
on the improved UNet++ and classification based on fully connected layers, is illustrated
in Figure 1. The details of each parts are discussed in the following sub-sections.

Figure 1. An overview of the method used in this work.
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2.1. Dataset and Preprocessing

All data used in this study are obtained from PhysioBank [24], an open-access archive
of physiological signals. For normal subjects, the normal sinus rhythm RR interval database
(NSR-RR) is used. This database includes 54 long-term RR interval recordings from normal
subjects aged from 29 to 76. The congestive heart failure RR interval database (CHF-RR)
comprises 29 subjects with CHF (NYHA classes I, II and III) aged from 34 to 79. The raw
ECG signals of both NSR-RR and CHF-RR databases were digitized at 128 samples per
second, and the beat information was annotated through automated analysis with manual
correction provided by PhysioNet [24]. RR interval is the time interval between successive
cardiac cycle and has attracted wide attention for its potential to diagnose CHF. The pre-
processing procedure for the RR intervals in this paper includes two steps:

1. Each beat in original ECG signals was annotated as normal (labeled as ‘N’) or abnormal
(usually caused by the ectopic beats). The RR intervals marked as abnormal are
removed to avoid the negative effects on analysis of HRV. Meanwhile, the RR intervals
longer than 2 s are also removed to avoid the error accumulated in the precedent peak
detection.

2. We split the ECG signal of each subject into multiple RR segments. This approach
not only augments the data set, but also avoids the problem of time-consuming
process in long-term HRV signal analysis [25]. To compare the results with other
studies, the signals are divided into 500, 1000 and 2000 RR intervals, as in [15,16].
Table 1 shows the details for these two datasets used in this study. Two demonstrative
examples of the signals corresponding to NSR and CHF with 500 RR intervals are
shown in Figure 2.

Table 1. The number of signals for different database and classes.

Database Pre-Processing
Total Segments

500 1000 2000

CHF-RR
None 6635 3317 1658

Removing the RR intervals longer than 2 s 6622 3311 1655
Removing the RR intervals marked as abnormal heartbeats 6271 3129 1558

NSR-RR
None 11,555 5777 2888

Removing the RR intervals longer than 2 s 11,538 5769 2884
Removing the RR intervals marked as abnormal heartbeats 11,314 5641 2808

Figure 2. Two demonstrative examples for the RR intervals corresponding to (a) normal subjects and (b) CHF patients.
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2.2. Proposed Network Architecture

The encoder-decoder architecture has become increasingly popular in feature extrac-
tion due to its high flexibility and superiority. UNet++ is a useful new variant of UNet,
proposed by Zhou et al. [26,27]. A series of nested dense convolutional blocks connect the
encoder and decoder in UNet++, which can narrow and fill the information gap between
the feature maps of the encoder and decoder prior to fusion. In this study, given that
the CHF data is one-dimension, the 1-D variant of classical UNet++ model is developed
to explore the pathological variations of CHF based on RR interval recordings. The 1-D
UNet++ is able to capture valuable details of the HRV signals effectively since high dimen-
sion feature maps from the encoder part are gradually enriched prior to fusion with the
corresponding pathologically rich feature maps from the decoder part.

RR intervals of different lengths, after being processed, are utilized as the input of the
network. As shown in Figure 3a, the 1-D UNet++ structure consists of convolution blocks,
down-sampling and up-sampling modules. Each black arrow denotes a down-sampling
step which is implemented using a maximum pooling operation with kernel size of 2 and
stride of 1. This window and stride configuration halves the size of the feature map. Such
down-sampling can effectively extract features of the input and enhance robustness to
noise by condensing features. The orange arrows represent the opposite operation, namely
up-sampling, doubling the size of the feature maps. Up-sampling is the part that restore
characteristics which is the highly effective expression form of the input data.

Figure 3. Structure of (a) the overall UNet++ network structure, (b) residual module and (c) convolution block.
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As shown in Figure 3a, we assume xi,j denotes the output of node Xi,j , where i repre-
sents ith down-sampling layer along the encoder way and j represents the jth convolution
layer along the skip pathway. The accumulation of feature maps by xi,j can be defined as:

xi,j =

{
H(xi−1,j), j = 0

H([[x(i,k)]j−1
k=0, u(xi+1,j−1)]), j > 0

(1)

where H(·) denotes a 1-D convolution operation combined with an activation function,
u(·) presents an up-sampling layer, and [·] is the concatenation operation. Generally, nodes
at level j = 0 receive only one input from the previous layer of the encoder while nodes at
level j > 0 receive j + 1 inputs from both the skip connections and the up-sampling layer.

Residual modules are incorporated in the convolution unit, which facilitates con-
vergence of the proposed deep model [28]. As can be seen in Figure 3b, the original
residual module contains 1-D convolution layers (Conv1D) [29] and Batch Normalization
(BN) layers [30] which are implemented alternately. The output of the residual module
is generated by adding the outputs of the first Conv1D layer and the second BN layer.
Inspired by the effectiveness of squeeze-and-excitation features on image object classifica-
tion, 1-D squeeze-and-excitation (SE) residual modules are employed as convolution units
in UNet++, as shown in Figure 3c. The SE residual modules can adaptively recalibrate
residual feature maps within each feature channel by explicitly modeling interdependency
between channels. It can enhance the representational power of modules throughout the
network [22].

2.3. Model Structure and Parameters

In this work, a deep learning model is built to perform CHF detection using RR interval
recordings. As shown in Figure 3a, the dimension of output to encoding is 1/16 of the
input size. In this work, normal and CHF recordings, each with 500, 1000 or 2000 samples,
are changed to 512, 1008 and 2000 using zero padding, respectively and then are fed into
the input layer of this model. A global average pooling [31] is used to summarize the
information from all the feature maps. Finally, an automatic prediction is provided by
learning of these feature maps in the dense layer.

The signals from 83 subjects are split into 10 parts and ensure that all the signals
from each subject are in one part. 10-fold cross validation is employed to evaluate the
robustness of the proposed model. For each iteration, 9 parts are used for training and the
remaining one part is used for testing. The method is repeated 10 times by shifting the
testing part. The test set consists of the RR intervals from the subjects who are not used in
the training process, and therefore reduces the possibility of over-fitting. We empirically
set the batch size as 16 and the number of training epochs as 70 (N = 500, 1000 and 2000
length RR intervals). During the training process, we first set the initial learning rate as
10−4, and update its value as 0.1 times of the original one when the validation loss stops
improving within 5 epochs. Adam optimizer and mean squared error loss function are
applied. The loss function is defined as:

L(y, p) =
1
N

N

∑
i=1

(yi − pi)
2 (2)

where N is the number of samples, yi and pi is the true label and the prediction result of
the ith sample.
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2.4. Performance Measures

To evaluate the performance of the proposed method and make a fair comparison,
we employ four widely used evaluation metrics, including accuracy, recall, precision and
F1-score [32,33].These four indicators are widely considered to be the most informative
for evaluating the performance of classifiers and convenient for calculation. All these
evaluation metrics can be calculated by following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 − score =
2

[ 1
Precision + 1

Recall ]
(6)

Here, true positives (TP) is the number of CHF segments correctly classified as CHF
group; false positives (FP) is the number of NSR segments wrongly classified as CHF group.
True negatives (TN) associates with the number of NSR segments correctly classified as
NSR group; false negatives (FN) is the number of CHF segments wrongly classified as
NSR group.

3. Results
3.1. 10-Fold Cross Validation Performance

In the traditional cross validation, the RR intervals from one subject may appear
in both training and test set. However, the similarity between these signals will lead to
information leakage and result in overoptimistic performance. Considering the practical
application of classification system to diagnosis unknown subjects, the dataset is split into
training and test set in terms of the subjects in this study. The RR intervals of one subject
appear in either the training set or the test set in each iteration.

The training details in terms of the accuracy and the loss against each epoch are
presented in Figure 4. The solid line is the average of the performance across 10-folds.
In the training phase, the model reaches convergence within a short time (mostly 20 epochs).
The fluctuations of the performance on the test set is relative small, which demonstrates
that the developed model generalizes well on separate dataset. Specifically, the training
accuracy converges at 92.82%, 93.36% and 93.79% when 500, 1000 and 2000 RRs are
employed respectively. The corresponding test accuracy converges at 85.64%, 86.65%
and 88.79%.

3.2. Comparison with Different Network Architectures

Inception was a deep learning network model, designed by Christian Szegedy and
others [34]. It is not only able to efficiently reduce the number of parameters, but also
capable of increasing the expression ability of the network by introducing more linear
mappings. In this study, the CHF detection results of the improved UNet++ are compared
with those of introducing the inception modules on account of the excellent performance of
Inception. In addition, the performance of the UNet++ model with or without SE modules
are evaluated for illustrating its effect.

The results and comparisons of three RR segment length types (N = 500, 1000 and 2000)
for different methods are listed in Table 2. The testing accuracy of the proposed UNet++
model among all the RR intervals length is over 85%. The best classification performance
is yielded when 2000 RR intervals from each subject are employed, reaching an accuracy
of 88.79%. These outperforming results indicate that the proposed model is effective for
CHF detection.
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Figure 4. Performance graphs of the proposed model. (a) The RR segment length N = 500; (b) The RR segment length
N = 1000; (c) The RR segment length N = 2000.

Table 2. The overall performance with different length of RR segments.

Methods Segment Length
Evaluation

Recall Precision F1-Score Accuracy

The 1-D UNet++
500 0.6812 0.7927 0.7248 0.8257

1000 0.6621 0.7980 0.7176 0.8184
2000 0.6617 0.8202 0.7279 0.8269

The inception 1-D UNet++
500 0.6978 0.8255 0.7488 0.8412

1000 0.7247 0.8359 0.7684 0.8521
2000 0.7190 0.8122 0.7529 0.8442

The proposed method
500 0.7381 0.8346 0.7793 0.8564

1000 0.7596 0.8488 0.7947 0.8665
2000 0.8018 0.8685 0.8281 0.8879
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It is worth noting that the improved UNet++ with SE residual units consistently
outperforms other network structures when three different lengths of RR intervals are
employed, in terms of Recall, Precision, F1-score and Accuracy. The mean accuracy of
the plain 1-D UNet++ across 10-fold across validation is 82.57%, 81.84% and 82.69% for
N = 500, 1000 and 2000, respectively, whereas that of improved 1-D UNet++ is 85.64%,
86.65% and 88.79%, respectively. By introducing SE residual blocks to the original 1-D
UNet++, the mean accuracy is increased by 3.07% 4.81% and 6.10% when N = 500, 1000
and 2000, respectively.

Except for the four aforementioned performance metrics, Receiver Operating Charac-
teristic (ROC) curve and Area Under ROC Curve (AUC) [32] are also employed to evaluate
the CHF detection performance. The ROC curve is able to accurately reflect the relationship
between true positive rate (TPR) and the false positive rate (FPR) in a graphical way and is a
comprehensive representative of the detection accuracy. AUC is obtained by summing the
areas of the parts under the ROC curve. As can be seen from Figure 5, the UNet++ with SE
residual modules, which is blue line, achieve the highest AUC values. The corresponding
AUC is 0.90, 0.91 and 0.92 on N = 500, 1000 and 2000 respectively. Such experimental
results demonstrate that the proposed model yields outstanding performance. In addition,
the ROC curves of the UNet++ model without SE modules and inception UNet++ are
shown in red and brown, respectively.

As shown in Figure 5, the AUC values of 1-D UNet++ without SE modules
(AUC = 0.86, 0.86, and 0.88 when N = 500, 1000 and 2000, respectively) are less than those of
the UNet++ with SE residual modules (AUC = 0.90, 0.91, and 0.92 when
N = 500, 1000 and 2000, respectively). It mainly owns to that the UNet++ model with
SE residual modules can efficiently exploit the information from RR interval segments.
SE modules is able to learn the channel-wise calibration and help alleviate the depen-
dencies among channel-wise features. Besides, the skip connection in SE residual blocks
is conductive to the back-propagation of gradients and mitigates the declining-accuracy
phenomenon in the deep network [35]. The inception modules can improve the expression
ability of network by organizing information across channels. Both Table 2 and Figure 5
show that the UNet++ with inception modules do improve the performance in comparing
with the plain UNet++ model whereas it is less effective than the improved UNet++ model
with SE residual modules.

3.3. Comparison with State-of-the-Art CHF Diagnosis Methods

Over the past years, there are a variety of automatic classifiers to diagnose patients
with CHF (Table 3). In this experiment, the proposed method is compared with sev-
eral state-of the-art CHF diagnosis methods, including the methods based on Inception-
V4 [20], LSSVM [36], SVM [15], Ensmeble classifier [16] and LSTM [21] in terms of the
diagnosis accuracy. Li et al. [20] obtained 81.85% with 300 length RR interval segments.
Sharma et al. [36] achieved the accuracy of 87.15% by using N = 2000 length RR intervals
for the classification of normal and CHF signals. Liu et al. [15] studied CHF detection and
obtained the performance of 85.5% and 85.6% on N = 1000 and 2000 length RR intervals,
respectively. Wang et al. [16] combined expert features of RR intervals with deep-learning
features, and fed into the ensemble classifier to differentiate CHF patients from healthy con-
trols. They yielded 83.84%, 87.54% and 85.71% accuracy on N = 500, 1000 and 2000 length
RR intervals, respectively. Wang et al. [21] presented an LSTM-based inception module
to detect CHF and achieved 82.51%, 86.68% and 87.55% accuracy on N = 500, 1000 and
2000 length RR intervals, respectively.



Diagnostics 2021, 11, 534 10 of 14

Diagnostics 2021, 11, 534 10 of 15

Figure 5. The ROC curve of CHF detection. (a) The RR segment length N = 500; (b)The RR segment length N = 1000; (c)
The RR segment length N = 2000.

In [21], Wang et al. employed the traditional 10-fold cross validation and achieved
the mean accuracy of 86.42%, 87.76% and 86.63% with N = 500, 1000 and 2000 length RR
intervals, respectively. However, the shuffled signals of all the patients were divided them
into training set and test set. Such division method is against the inter-patient experiment
of Association for the Advancement of Medical Instrumentation (AAMI) standard [37].
To overcome such issue, they also employed the blindfold testing to evaluate the result [21].
They randomly selected the RR intervals of 12 subjects as the test data, and achieved an
accuracy of 82.51%, 86.68% and 87.55% when N = 500, 1000 and 2000 respectively. In this
study, to demonstrate how well the model perform on unseen data, we show the ROC

Figure 5. The ROC curve of CHF detection. (a) The RR segment length N = 500; (b)The RR segment length N = 1000; (c)
The RR segment length N = 2000.

In [21], Wang et al. employed the traditional 10-fold cross validation and achieved
the mean accuracy of 86.42%, 87.76% and 86.63% with N = 500, 1000 and 2000 length RR
intervals, respectively. However, the shuffled signals of all the patients were divided them
into training set and test set. Such division method is against the inter-patient experiment
of Association for the Advancement of Medical Instrumentation (AAMI) standard [37].
To overcome such issue, they also employed the blindfold testing to evaluate the result [21].
They randomly selected the RR intervals of 12 subjects as the test data, and achieved an
accuracy of 82.51%, 86.68% and 87.55% when N = 500, 1000 and 2000 respectively. In this
study, to demonstrate how well the model perform on unseen data, we show the ROC
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curves corresponding to 10 folds when 2000 intervals are employed, as in Figure 6. It is
clear that the AUCs vary greatly from fold to fold. The largest AUC is 1 with accuracy of
95.95% (fold 2) whereas the smallest AUC is only 0.75 with accuracy of 78.54% (fold 3).

Table 3. Comparison of the proposed method against existing methods on CHF detection.

Author (year) Classifier Features Length Accuracy

Li (2018) [20] Inception-V4 Fuzzy GMEn 300 81.85%

Sharma (2018) [36] LS-SVM k-NN entropy and correntropy 2000 87.15%

Liu (2017) [15] SVM Multiscale entropy of RR 1000 85.5%
2000 85.6%

Wang (2019) [16] Ensemble classifier Expert features and deep-learning features
500 83.84%
1000 87.54%
2000 85.71%

Wang (2019) [21] LSTM based Inception -
500 82.51%
1000 86.68%
2000 87.55%

Our proposed method Improved UNet++ -
500 85.64%
1000 86.65%
2000 88.79%

Compared with other methods, the proposed model achieves the best performance
of 85.64%, 86.65% and 88.79% when N = 500, 1000 and 2000, respectively. One potential
reason is that the proposed method is able to extract more reliable signal features in high
dimensional space. UNet ++ shortens the information gap between encoder and decoder
through the information fusion between different layers, which makes full use of RR signals.
Furthermore, the SE residual blocks is able to emphasize the salient features and suppress
the irrelevant information [22].

Figure 6. The ROC curve of 10 folds with 2000 sample length.
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3.4. Performance Evaluation in More Practical Scenario

In real-world applications, clinicians need to differentiate CHF subjects with non-
CHF subjects, rather than only the normal subjects. Therefore, to fairly demonstrate the
performance of the proposed method in realistic scenario, other types of heart rhythm
abnormalities should be considered. In this study, we further evaluate the performance
when the RR intervals of atrial fibrillation (AF) patients are also employed as the non-CHF
signals. These ECG signals are from public-available long-term AF database which includes
84 long-term (24-h) ECG recordings [38]. After pre-processing, 4333 RR segments of AF
(when the segment length N = 2000) are obtained. To avoid the problem of class imbalance,
we mixed the signals from the Normal Sinus Rhythm (NSR) RR interval Database and
long-term AF database, and then randomly selected 2800 RR segments from them. Table 4
illustrates the details of these datasets.

Table 4. The number of ECG recordings in each dataset when the segment length N = 2000.

Classes Database Total Segments (N = 2000)

Non-CHF NSR RR interval Database 2808
Long-Term AF Database 4333

CHF After random sampling 2800
CHF RR interval Database 1558

As shown in Table 5, the average accuracy after 70 epochs is 89.33% when the RR
intervals of both NSR and AF subjects are utilized as the non-CHF data. The result
is similar to that in differentiating NSR and CHF patients. However, this study is a
preliminary attempt to automatically diagnose CHF, and many other types of heart rhythm
abnormalities will be considered in the future research.

Table 5. The overall performance with different kinds of non-CHF signals when the segment length
N = 2000.

Data
Evaluation

Recall Precision F1-Score Accuracy

CHF vs. NSR 80.18% 86.85% 82.81% 88.79%

CHF vs. NSR and AF 78.67% 88.26% 82.24% 89.33%

4. Discussion and Conclusions

In this work, an automatic classifier for CHF diagnosis via short length HRV signals is
proposed. In comparison with previous CHF detection methods, the developed method em-
ploys an end-to-end deep learning model to extract features and make decision. To be more
specific, the improved 1-D UNet++ architecture involves a residual block to distinguish
CHF patients from normal subjects as well as a SE block to highlight the useful features
and suppress the useless information. Such classification model obtains information from
HRV signals with minimal information reduction and provides the optimal feature of
the input RR interval segments. The proposed model outperformed the previous CHF
diagnosis with a state-of-art accuracy of 85.64%, 86.65% and 88.79% when 500, 1000 and
2000 RR intervals are employed, respectively. This pilot study demonstrates that the deep
learning-based automatic diagnosis can be an important tool to assist clinicians in making
wise decisions. Moreover, CHF diagnosis via short-term RR intervals can be transplanted
to mobile devices like smartphones easily. It contributes to monitoring the changes of
cardiac autonomic nervous function with CHF patients.

Although the proposed method has provided promising results, there are still a few
limitations to overcome. First, more training data, especially from many other types of
heart rhythm abnormalities, is required to provide more reliable diagnosis. Second, CHF
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is categorized into four stages by the American College of Cardiology Foundation [39].
The proposed method can only determine whether the patients suffer from CHF or not,
but cannot determine the precise CHF stage due to limited numbers of subjects available in
stage I and II CHF.
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