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Abstract
Gene expression studies are generally performed through multi-step analysis processes,

which require the integrated use of a number of analysis tools. In order to facilitate tool/data

integration, an increasing number of analysis tools have been developed as or adapted to

semantic web services. In recent years, some approaches have been defined for the devel-

opment and semantic annotation of web services created from legacy software tools, but

these approaches still present many limitations. In addition, to the best of our knowledge,

no suitable approach has been defined for the functional genomics domain. Therefore, this

paper aims at defining an integrated methodology for the implementation of RESTful

semantic web services created from gene expression analysis tools and the semantic anno-

tation of such services. We have applied our methodology to the development of a number

of services to support the analysis of different types of gene expression data, including

microarray and RNASeq. All developed services are publicly available in the Gene Expres-

sion Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Addition-

ally, we have used a number of the developed services to create different integrated

analysis scenarios to reproduce parts of two gene expression studies documented in the lit-

erature. The first study involves the analysis of one-color microarray data obtained from

multiple sclerosis patients and healthy donors. The second study comprises the analysis of

RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller

BRG1 in the proliferation and morphology of these cells. Our methodology provides con-

crete guidelines and technical details in order to facilitate the systematic development of

semantic web services. Moreover, it encourages the development and reuse of these ser-

vices for the creation of semantically integrated solutions for gene expression analysis.
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Introduction
Gene expression analysis has become a powerful tool for acquiring new knowledge about the
mechanisms involved in a number of biological processes and diseases. Gene expression studies
usually require the execution of various analysis activities on data, including normalization,
identification of differentially expressed genes, cluster analysis and functional analysis, among
others. Different software tools have been developed to support one or more of these activities
individually.

Gene expression analysis usually demands the integrated use of a number of analysis tools.
The integration of a series of tools to carry out an analysis process requires users to manually
transfer data between different tools and/or to convert data formats due to data structural dif-
ferences. This process can be time consuming and error prone due to the increasing number of
analysis tools and data formats available in this domain [1, 2]. Therefore, the availability of
integrated environments is highly desirable in this domain.

A number of research platforms have been proposed for the (semi) automatic integration of
computational resources in the functional genomics domain [3–7]. These genomic research
platforms enable the (semi) automatic interconnection and execution of a number of activities
defined as part of an analysis process. In general, they assist users in the execution of an analy-
sis process by individually performing each process activity and automatically transferring data
between different tools in order to exempt users from the underlying details of the integration
process [1, 8]. Genomic research platforms can benefit from the explicit use of semantics to
improve their integration capabilities. For example, the creation of workflows in Galaxy [7]
could be improved by augmenting tool descriptions with semantic annotations, thus yielding
to the creation of semantically integrated workflows.

Some genomic research platforms can not be easily extended in order to cope with new
tools and data types [1]. In order to overcome this limitation, an increasing number of analysis
tools in this domain have been developed as, or adapted to, web services [9–13]. Web services
provide standardized programming interfaces, which facilitate programmatic access to tools
and interoperability between different computer resources, therefore facilitating data/tool
integration.

The integrated use of a set of web services to perform a more complex task is called service
composition. Currently, one of the main goals of the web services research community is to
enable automated support for service composition. In order to facilitate the development of
web services and their (automated) composition, data produced and/or consumed by these ser-
vices are usually specified using a standard machine-parsable language, such as HTML, XML
or JSON. The use of such languages facilitates the automatic interconnection of services shar-
ing syntactically compatible data. Nevertheless, different languages can be used to specify data
produced and/or consumed by a web service. Further, the same data can even be represented
differently using the same language. In this context, automatic composition of services with
syntactically incompatible data is unfeasible, regardless of actual data meaning. Thus, auto-
mated service composition requires explicit definition of semantics to enable accurate inter-
connection of services and data exchange [14, 15]. Once there is an agreement on the meaning
of exchanged data and service operations, data can easily be transformed from one representa-
tion to another thus creating semantically integrated service compositions.

The Semantic Web consists in a web of structured data that can be processed and compre-
hended by machines [16]. Semantic web technologies enable the assignment of semantics to
structured data published on the Web through the use of ontologies, which are computational
resources used to represent knowledge in specific domains [16, 17]. Ontologies provide a set of
concepts and associated relationships explicitly defined in some formal logic. Semantic web
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services consist of web services to which semantics has been assigned by using ontologies [18].
The semantic enrichment of services enables the assignment of unambiguous meaning to data
and service operations.

In general, semantic web services can be accessed through message exchange based on stan-
dards and architectural styles, such as Simple Object Access Protocol (SOAP) [19] and Repre-
sentational State Transfer (REST) [20], respectively. Different approaches have been proposed
for semantically describing both SOAP-based and RESTful web services, such as OWL-S [21],
SAWSDL [22] and SA-REST [23].

In recent years, a number of approaches have been defined for the development of web ser-
vices from legacy software tools, and for the semantic annotation of web services. Most of these
approaches can be considered model-driven, which are usually domain-specific. However, to
the best of our knowledge, no suitable approach has been defined for the functional genomics
domain. In addition, these approaches lack concrete guidelines for the creation of web services
from existing analysis tools, in general, and for the creation of RESTful web services, in particu-
lar. Furthermore, they also lack support for the semantic annotation of web services.

In this paper, we present a methodology for the development of RESTful semantic web ser-
vices for gene expression analysis. This methodology aims at providing a systematic approach
for both the implementation of RESTful web services from existing analysis tools and the
semantic annotation of these services. In contrast to other existing approaches [24, 25], our
methodology relies on state-of-the-art standard technologies and provides a fair amount of
technical details thus facilitating its application. In order to illustrate its usage, we have applied
the proposed methodology to the development of a number of RESTful semantic web services
for gene expression analysis. Finally, we have integrated some of the developed services to cre-
ate two frequently used gene expression analysis scenarios. The first scenario was used to
reproduce part of a study already documented in the literature involving the analysis of one-
color microarray data obtained from multiple sclerosis patients and healthy donors [26]. The
second scenario was also used to reproduce part of a study involving the analysis of RNA-Seq
data to investigate the role of the remodeller transcription activator BRG1 gene in the prolifera-
tion and morphology of melanoma cells [27]. The proposed scenarios emphasize the impor-
tance of our methodology to encourage the development and reuse of services towards the
creation of integrated solutions for gene expression analysis.

Methods
We carried out the following steps in order to define our methodology: 1) study of technologies
for the development of RESTful semantic web services; 2) study of gene expression technolo-
gies and analysis tools; 3) definition of activities and concrete guidelines for the development of
RESTful semantic web services from existing software tools; 4) application of the proposed
methodology to the development of a number of RESTful semantic web services for gene
expression analysis; 5) definition of two integration scenarios including some previously devel-
oped web services for the integrated analysis of gene expression data.

RESTful web services
Representational State Transfer (REST) [20] is a client-server architectural style that provides a
behavioral model for client applications and web services. REST describes a number of design
principles and constraints, such as stateless communication and the use of uniform interfaces
and self-descriptive messages that should be applied in REST-based services.

Services developed according to the REST style are usually referred to as RESTful web ser-
vices. Each RESTful web service should expose a set of resources, i.e., any type of information
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exclusively identified by a Uniform Resource Identifier (URI) that can be referenced through
the web. The access to a resource occurs through a uniform interface that provides standard
access methods for handling the resource. When a particular resource is accessed by a client
application, a representation of this resource reflecting its current state should be returned in
response to the request. The decoupling of a resource from its representation enables a service
provider to return different representations for the same resource in order to provide enhanced
flexibility for different client applications. In general, resources are represented in either Exten-
sible Markup Language (XML) or JavaScript Object Notation (JSON) formats.

RESTful web services provide uniform interfaces accessed only through HTTP methods, so
that interoperability among different web services can be accomplished, and the development
of client applications to interact with RESTful web services is simplified. Moreover, REST-
based technologies provide a simple, lightweight interaction model and have been increasingly
used in the development of web services [28, 29].

Semantic Annotations for WSDL (SAWSDL)
Web Services Description Language Version 2 (WSDL 2.0) [30] is an XML-based language
that can be used for the description of web services, including RESTful services. The WSDL
description of a RESTful web service specifies the operations provided by the service, the for-
mats of input and output messages, the technical details to communicate with the service and
the service location. Since WSDL is a machine-readable language, it enables client applications
to interpret service descriptions and automatically interact with services.

Although WSDL enables the syntactical description of different service features, it does not
provide any intrinsic mechanism for the association of semantics to WSDL components. To
cope with this limitation, the Semantic Annotations for WSDL (SAWSDL) [22] approach was
created to provide mechanisms for the semantic annotation of WSDL components. This
approach defines a set of extension attributes that can be used to semantically annotate WSDL
service descriptions. Basically, three extension attributes are defined in this approach:modelRe-
ference, liftingSchemaMapping and loweringSchemaMapping.

ThemodelReference extension attribute can be used to associate a WSDL or XML Schema
element to one or more ontological concepts. This attribute can be used to annotate XML
Schema type definitions, element declarations and attributes, as well as WSDL interfaces, oper-
ations and faults. The annotations are used to provide a description of the main components of
WSDL or XML Schema documents based on a set of concepts formally defined in an ontology.
Thus, themodelReference attribute is useful for semantically describing input/output data, as
well as the functionality provided by a service.

The liftingSchemaMapping and loweringSchemaMapping extension attributes can be used to
associate XML Schema components to lifting and lowering mappings, respectively. A lifting
mapping enables the transformation of XML structures contained in service messages into
ontological concepts, whereas a lowering mapping enables the transformation of ontological
concepts into concrete XML messages. These mappings enable different XML structures from
client applications and services to be mapped onto ontological concepts in order to resolve syn-
tactical differences, allowing the communication between client applications and services.

Gene expression analysis
In order to apply the proposed methodology we have selected different software resources to be
wrapped by RESTful semantic web services for the analysis of gene expression data. The follow-
ing resources were considered: affy (version 1.44.0) [31] and limma (version 3.22.3) [32] R pack-
ages, used for one/two-color microarray data preprocessing using Robust Multi-array Average
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(RMA), subtract, loess and average quantile methods; R standard libraries (version 3.1.1), used
for the identification of differentially expressed genes in one-color and two-color microarray data
using fold change or Student’s t test analysis; the DESeq2 R package (version 1.6.3) [33], used for
the identification of differentially expressed genes in RNA-Seq data using a model based on the
negative binomial distribution; Cluster 3.0 [34], used for hierarchical and k-means clustering of
microarray data (one-color or two-color); Java TreeView 1.1.6 [35], used for visualization of hier-
archically clustered microarray data; the gProfileR R package (version 0.5) [36], used for enrich-
ment analysis of gene expression data using the hypergeometric statistical test; the SOAP-based
DAVID web service (version 1.1) [13], used for enrichment analysis of gene expression data
using the Fisher’s Exact test; the gage R package (version 2.16.0) [37], used for gene set enrich-
ment analysis of gene expression data; and the pathview R package (version 1.6.0) [38], used for
visualization of gene expression data rendered into KEGG pathways [39].

We have then defined two scenarios for integrated analysis of gene expression data using
some of the developed services. Each scenario was implemented as a web application. These
web applications were developed using Javascript [40], jQuery (https://api.jquery.com/) and
Java Servlet [41] technologies. In the first scenario, one-color microarray data were initially
normalized and then a set of differentially expressed genes was identified. In the sequel, rele-
vant biological pathways/processes related to the differentially expressed genes were identified
and, finally, relevant KEGG pathways were visually analyzed. Agilent Whole Human Genome
one-color microarray data, available in ArrayExpress under the accession number E-MEXP-
3905, was obtained fromMesenchymal Stromal Cells (MSCs) that were isolated from a group
of patients diagnosed with Multiple Sclerosis (MS) and treated with high dose immunossupres-
sion followed by Autologous Hematopoietic Stem Cell Transplantation (AHSCT) [26]. Pre-
transplantation MSCs samples, post-transplantation MSCs samples, as well as healthy controls
MSCs samples were used in this study.

In the second scenario, a set of differentially expressed genes was initially identified from
RNA-Seq data. The relevant biological processes related to the differentially expressed genes
were then identified and analyzed. Illumina HiSeq 2500 based RNA-Seq data, available in Gene
Expression Omnibus (GEO) under accession number GSE61966, was obtained from 501Mel
melanoma cells to address the function of the remodeller BRG1 in the proliferation and mor-
phology of these cells [27]. In order to investigate the role of BRG1, the authors performed the
si/shRNA knockdown of both BRG1 and MITF genes and performed a comparative analysis.
BRG1 knockdown cell samples, MITF knockdown cell samples, as well as control samples were
used in this study.

Results

Methodology for the Development of RESTful SWS
This section presents our methodology for the systematic development of RESTful semantic
web services from existing software tools. This methodology consists of four general activities:
(i) create a RESTful web service from an existing software tool; (ii) automatically generate a
WSDL service description from the service implementation; (iii) define domain and service
ontologies; and (iv) use these ontologies to semantically annotate the WSDL service description
according to the SAWSDL approach. Each of these activities is discussed in the sequel and the
application of the methodology is illustrated in sectionMethodology Application.

Service Implementation. This activity aims at implementing a RESTful web service as a
wrapper of a software tool, i.e., software application, service or library component, in order to
expose a set of existing functions as a web service without modifying the implementation of the
software tool.
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In software engineering, a design pattern is a generic solution that can be applied to solve a
particular type of recurring problem in the development of different software systems. A design
pattern provides an abstract description of a set of components and their interactions that can
be used to guide the development of a particular software system. The creation of wrappers can
be carried out according to the well-defined Adapter design pattern [42].

When wrapping a software tool into a web service, a subset of the functions provided by this
tool can be accessed by one or more service operations. The service designer may disregard
some functions of the tool when designing the wrapper, due to reasons possibly related to the
way in which the wrapper is expected to be used. Moreover, additional operations, which do
not directly access the tool itself, can also be defined by the service developer in order to enable
proper remote access to the tool. For example, a service developer may have to define an opera-
tion to manage the execution of an analysis been performed by the tool or to return the result
of a completed analysis. Fig 1 shows the architecture of a generic web service implemented as a
wrapper of an existing software application.

The implementation of a wrapper service can be carried out according to the following
steps:

1. Selection of core functions: the existing software tool can provide a number of different func-
tions. This step aims at identifying and selecting a subset of these functions to be accessed
through the wrapper service. In this step, we create a functional specification listing the
main functions of the existing tool. This list provides a better understanding of the functions
provided by the tool and also serves as a basis for selecting the functions to be accessed by
the service.

2. Definition of interaction model: this step aims at defining an interaction model to describe
the set of interactions between the service under development and the software tool being
wrapped, and between the service and potential client applications. The development of an
interaction model can be carried out in two steps through the creation of UML use cases
and sequence diagrams [43, 44].

Fig 1. Architecture of a generic web service (wrapper). Service operations A and B provide access to
different functions of an existing software application, while the service operation C was independently
implemented of the tool being wrapped. Functionality 4 of the software application is not accessed by the
service.

doi:10.1371/journal.pone.0134011.g001
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In the first step, we create a set of use cases in order to capture in an abstract way informa-
tion regarding the execution of the relevant functions to be provided by the service under
development. Each use case describes the required interactions between external entities (client
application and software tool being wrapped) and the service to achieve a defined goal. These
interactions are described through the specification of a typical course of events and, possibly,
alternative courses of events. During the definition of the use cases, each identified core func-
tion of the existing software tool is associated with at least one use case.

In the second step, we create a set of UML sequence diagrams from the previously created
use cases in order to capture the set of concrete interactions that should occur between the
external entities and the service being developed. The creation of sequence diagrams aims at
identifying the set of operations that should be provided by the service. During this step, we
create at least one sequence diagram for each typical course of events defined in each use case.
Each event defined in the typical course of events is mapped to a message in the sequence dia-
gram, so that the temporal order of message exchange in the sequence diagram follows the
course of events defined in the use case. If alternative courses of events have been defined in a
use case, a sequence diagram can also be created to represent each one of them.

During the definition of the interaction model, each identified core function of the existing
software tool is mapped to at least one service operation. There are four basic types of RESTful
web service operations, generally referred as CRUD operations: CREATE, used for the creation
of a resource on the server; READ, used for the retrieval of a resource stored on the server;
UPDATE, used for the update of a previously stored resource on the server; and DELETE, used
for the removal of a previously stored resource on the server. These different types of service
operations can be used separately or can be combined in the definition of an interaction model.

Additionally, the stateless nature of RESTful web services should be taken into account dur-
ing the definition of the interaction model. According to this characteristic, request messages
sent from a client application to a service provider must be self-descriptive, i.e., they must con-
tain all the information needed for the provider to handle the request. As a consequence, some
mechanism should be used to simulate client sessions if necessary. One example of such a
mechanism is the use of an identifier to uniquely associate a virtual client session to a work-
space (server directory) so that each workspace is accessible only through its unique identifier.
Each workspace then maintains all information related to a unique client section, including
submitted and processed data, as well as the task execution status.

3. Implementation of service operations: once the interaction model has been defined, we imple-
ment all service operations defined in the model. In the context of this work, the implemen-
tation of the service operations has been carried out using the Java API for RESTful Web
Services (JAX-RS) [45].

A RESTful web service is implemented as a Java class, and each service operation is imple-
mented as a separate method of this class, responsible for performing the required service.
Each method implementation embodies any necessary calls to the application core functions,
corresponding to one or more methods of the application API. Communication between the
RESTful service and the software resource being wrapped can be implemented using the Java
Native Interface (JNI) programming interface (http://docs.oracle.com/javase/7/docs/
technotes/guides/jni/), which enables Java applications to communicate with applications and
libraries implemented in other programming languages.

Once the service operations have been implemented, we need to explicitly map each opera-
tion to a corresponding HTTP method. Particularly, the CREATE, READ, UPDATE and
DELETE operations should be mapped to the POST, GET, PUT and DELETE methods of the
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HTTP protocol, respectively. This mapping can be carried out using the @POST, @GET,
@PUT and @DELETE annotations provided by the JAX-RS API, respectively.

According to the REST model, any interaction with a RESTful web service is intended to
access a resource. Thus, each service should provide a set of web resources exclusively identified
by URIs. The @Path annotation provided by the JAX-RS allows the assignment of URIs to
resources. The JAX-RS API provides a number of additional annotations that can optionally be
associated to the implemented Java methods. For example, the @PathParam annotation is used
to extract values from parameters embedded in URIs and convert them to parameters of the
associated Java method.

4. Test of the developed RESTful web service: This step aims at verifying whether the service
behavior has been properly implemented and correcting possible implementation errors. In
this step, we implement a (simple) client application to interact with the developed service
only for test purposes. Simple client applications can be automatically created using the Jer-
sey Reference Implementation of JAX-RS (http://jersey.java.net/).

During this step, all service operations are individually tested in order to ensure that the
behavior of each operation has been properly implemented and the expected results are pro-
duced. Since the RESTful service is implemented as a wrapper for an existing software applica-
tion, we also ensure that the communication between a service operation and the associated
functionality provided by the existing application has been properly implemented. Finally,
after testing each individual service operation, we test each execution sequence identified dur-
ing the definition of the interaction model in order to ensure that the overall service behavior
has been properly implemented.

Service Description Generation. This activity aims at automatically generating a WSDL
2.0 service description from the Java service implementation. In order to perform this activity,
the Java2WSDL tool provided as part of the Apache Axis2/Java project (http://axis.apache.org/
axis2/java/core/) can be used. This tool can be accessed through the Axis2 Code Generator
plug-in for Eclipse. Optionally, the functionality provided by Java2WSDL can also be accessed
through different tasks defined in an Ant script, so that automation can be improved.

Since WSDL 2.0 can be used for the description of SOAP-based and RESTful web services,
the generated service description contains three bindings, namely SOAP1.1, SOAP1.2 and
HTTP. Since the SOAP bindings are not used for the developed RESTful service, they can be
ignored. These SOAP bindings and their references can be removed if the designer wants to
clean up the generated WSDL document, either manually, or by using a Java parser for the
manipulation of WSDL 2.0 documents provided by the Apache Woden project (http://ws.
apache.org/woden/). This parser can be also used to validate the generated WSDL 2.0 service
description.

In order to facilitate this activity, we have also developed a Java support tool, named
Wsdl2Generator, for the creation, edition and validation of WSDL 2.0 service descriptions. Fig
2 displays a screenshot of our Wsdl2Generator tool.

Ontology Definition. This activity aims at defining domain and service ontologies, and
creating cross-references between them. First, a domain ontology is defined to provide con-
cepts and associated relationships that describe the knowledge domain to which the service
under development belongs. Since domain ontologies describe well-established knowledge
domains, they are usually stable and can be used in the development of a number of services
pertaining to the domain. During this activity, we initially search for a suitable ontology. How-
ever, in case no suitable domain ontology is identified, an appropriate domain ontology is
developed, preferably by reusing existing ontologies. Ontology development is carried out with
the assistance of a domain specialist.
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Second, a service ontology is defined to provide concepts and associated relationships that
describe the core functions provided by the service under development, including concepts
related to required inputs and expected outputs. Service ontologies, in contrast, are not as stable
as domain ontologies and they often need to be extended to cope with new services pertaining
to the same knowledge domain.

Finally, after the definition of the domain and service ontologies, we define cross-references
between these two ontologies. In general, the definition of cross-references between concepts
from different ontologies allows the qualification or semantic enhancement of the concepts.
The definition of cross-references aims at semantically enhancing the concepts provided by the
service ontology with concepts from the domain ontology. This activity is required because
some concepts defined in the service ontology may have (slightly) different meanings across
various knowledge domains.

Different methodologies have already been proposed for the development of ontologies. A
comprehensive review of the existing methodologies for ontology development can be found at
[46, 47]. The development process used for the creation of the domain and service ontologies is
out of the scope of this work. In this work, we specify the domain and service ontologies using
the Web Ontology Language Version 2 (OWL 2) [48]. An ontology written in OWL can be
serialized and shared using a number of distinct syntaxes, including the RDF/XML syntax. The
development of such ontologies can be carried out using the Protégé [49] ontology editor,
which enables the design, editing and visualization of ontologies.

Fig 2. Screenshot of theWsdl2Generator support tool.

doi:10.1371/journal.pone.0134011.g002
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Semantic Annotation of Service Description. This activity aims at semantically annotat-
ing the generated WSDL 2.0 service description according to the SAWSDL approach. The
semantic annotation of a service description is also carried out with the support of a domain
specialist, who has the necessary knowledge to accurately map semantic information to the ser-
vice description.

The semantic annotation of service descriptions according to the SAWSDL approach can be
carried out using three extension attributes, namelymodelReference, liftingSchemaMapping
and loweringSchemaMapping. The semantic annotation of WSDL service descriptions using
SAWSDL can be performed manually. However, the use of a supporting tool, such as Radiant
[50], facilitates this activity. Optionally, the semantic annotations can be specified using graphi-
cal languages, such as UML, to facilitate the visualization of the annotations.

In our methodology, we prescribe the application of themodelReference attribute to WSDL
operations defined in the WSDL interface component in order to associate ontological con-
cepts that describe the functions provided by the service with these WSDL elements. General-
purpose service operations, such as operations for the submission, retrieval or removal of data,
do not need to be annotated, in contrast with their inputs and outputs, which are annotated.

ThemodelReference attribute is also applied to simple/complex XML Schema type defini-
tions defined in the WSDL types component in order to associate ontological concepts describ-
ing the service required inputs and expected outputs with these type definitions. When a top-
level XML Schema element is declared in terms of simple types, we consider that only the sim-
ple types themselves need to be annotated with themodelReference attribute. This approach
takes into account that a simple type annotation also applies to any top-level element using
that type definition.

When a top-level XML Schema element is declared in terms of complex types, the annota-
tion of its complex types can be carried out in two alternative ways: at the member element
level and at the complex type container level. In the former, all member elements contained in
a complex type are annotated with themodelReference attribute, while in the latter, the complex
types themselves are annotated. Furthermore, it is possible to combine these two approaches
since these types of annotations are independent. In this case, the complex types themselves
and also their member elements are annotated with themodelReference attribute.

Fig 3 presents a UML class diagram representing the main components of a WSDL service
description and the annotation of these components with themodelReference attribute. These
components are annotated with themodelReference extension attribute to associate them with
concepts from the service ontology. Although this extension attribute can be applied both to
XML Schema type definitions, element declarations and attributes, and to WSDL interfaces,
operations and faults, we consider the annotation of XML Schema top-level element declara-
tions and attributes, as well as of WSDL interfaces and faults, as an optional step in the context
of this work.

Optionally, the liftingSchemaMapping and loweringSchemaMapping extension attributes
can be used to associate XML Schema components to lifting and lowering schema mappings,
respectively. Usually, lifting schema mappings can be defined in XSLT [51] and lowering
schema mappings can be defined using SPARQL [52] and XSLT. SchemaMapping attributes
can be applied to XML Schema type definitions and/or element declarations in order to enable
semantic data exchange between a potential client application and the service provider. The
annotation of a XML type definition with a SchemaMapping attribute is only propagated to the
top-level element of that type if the element itself does not declare any schema mapping. This
mechanism allows types to provide generic schema mappings, and elements to specify more
concrete mappings appropriate for the specific use of that type definition.
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After the semantic annotation of the WSDL 2.0 service description, the parser provided by
the Apache Woden project or the Wsdl2Generator tool can be used again to validate the anno-
tated service description.

Methodology Application
After the definition of our methodology, we have applied this methodology to the development
of a number of RESTful semantic web services for gene expression analysis. This section dis-
cusses in details the application of the proposed methodology in the development of a RESTful
semantic web service, called KeggPathwayViewer, for gene expression data rendering into
KEGG pathway graphs.

Service Implementation. The KeggPathwayViewer service wraps the pathview R package
[38]. This package provides a number of functions, but we have selected only one of them to be
accessed via the wrapper service, namely the function that enables mapping and rendering of
gene expression data into KEGG pathway graphs.

During the definition of an interaction model for the KeggPathwayViewer service, a single
UML use case was initially defined containing a typical course of events and two alternative

Fig 3. Annotation of WSDL elements using themodelReference attribute according to the proposed
methodology. A named rectangle represents a UML class. A white class represents aWSDL element, while
a gray class represents a service ontology element. A directed dashed line (UML dependency) indicates that
a WSDL element references another one. A solid line with an hollow diamond (UML aggregation) is used to
indicate a WSDL element contained as part of another one. A solid line with an hollow triangle as an
arrowhead (UML generalization) represents a subsumption relation between ontology concepts. Finally, a
directed solid line (UML association) stereotyped as < <modelReference > > represents the use of the
modelReference attribute to annotate aWSDL element with an ontology concept. Each general-purpose
WSDL operation is associated to an ontological concept representing a service functionality. Each simple/
complex XML Schema type definition is associated to an ontological concept representing a data format. The
annotation of complex types is presented only at the member element level.

doi:10.1371/journal.pone.0134011.g003
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courses of events. Then, a UML sequence diagram was defined for each course of events previ-
ously defined in the use case. Fig 4 presents the UML sequence diagram defined for the typical
course of events associated with this service. This diagram presents the ordered sequence of
interactions that should occur between the external entities (client-application and pathview R
package) and the KeggPathwayViewer service for rendering gene expression data into a KEGG
pathway graph.

The developed interaction model contains eight operations: generateID, sendFile, generate-
KeggPathwayImage, getSpecies, getPathways, getGeneIdentifierTypes, getStatus and getPathway-
Image. All operations were then implemented using the JAX-RS API. Most operations were
implemented as READ operations, since they allow the retrieval of different resources stored
on the server. Exceptions are operations sendFile and generateKeggPathwayImage, which were
implemented as CREATE operations, since they allow the creation of different resources on the
server. Operation generateKeggPathwayImage was directly mapped to the identified core func-
tionality of the pathview R package.

Operation generateID creates a workspace (server directory) associated with a unique iden-
tifier used to store normalized gene expression data to be analyzed by the service and the results
generated by the analysis, and returns this identifier.

Operation sendFile enables the submission of a text file containing normalized gene expres-
sion data. This operation requires as input the unique identifier provided by operation genera-
teID, a text file to be stored (File object) and a filename.

Operation generateKeggPathwayImagemaps and renders previously submitted normalized
gene expression data into a KEGG pathway graph. This operation requires as input the identi-
fier provided by the operation generateID, an identifier representing a biological species, an
identifier representing a KEGG pathway and a gene identifier type. As a result of this operation,
a PNG image that represents gene expression data into a KEGG pathway graph is generated.
The image itself is produced by an external tool named R Server using the pathview package
and then stored in the service workspace. Communication between Java and R is carried out
using the Rserve package [53] (http://cran.r-project.org/web/packages/Rserve/index.html),
which allows the integration of programs written in Java with the R Server using a TCP
connection.

Fig 4. KeggPathwayViewer service interaction model. Each named rectangle represents an individual participant in an interaction. A (dashed) vertical
line following the rectangle represents the lifetime of the participant. A line connecting the lifetimes of two participants represents a message exchanged
between participants. A solid line with a solid arrowhead at its end represents a synchronous communication (call and reply). A solid line with a stick
arrowhead at its end represents an asynchronous communication.

doi:10.1371/journal.pone.0134011.g004
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The implementation of resource representations in XML was facilitated using the Java
Architecture for XML Binding (JAXB) [54] API, which provides mechanisms for handling
XML documents in Java. Operations getSpecies, getPathways and getGeneIdentifierTypes return
JAXB objects that represent XML files. The JAXB object returned by operation getSpecies con-
tains a list of identifiers representing all biological species that can be analyzed. The JAXB
object returned by operation getPathways contains a list of identifiers representing all KEGG
pathways that can be generated for a particular species. Finally, the JAXB object returned by
operation getGeneIdentifierTypes contains a list of gene identifier types that can be specified in
normalized gene expression data for a particular species. Operations getPathways and getGen-
eIdentifierTypes require as input an identifier representing a biological species.

Operation getStatus requires as input the identifier provided by operation generateID, and
returns the execution status of an analysis being performed by the service.

Finally, operation getPathwayImage allows the retrieval of the resulting PNG image that
represents gene expression data into a KEGG pathway graph. This operation should be invoked
only when the analysis is successfully finished. Operation getPathwayImage requires as input
only the identifier provided by the operation generateID.

The KeggPathwayViewer service should be used as follows. First, the operation generateID
should be invoked to generate a unique identifier that should be provided as input for the sub-
sequent operations. Next, the operation sendFile should be invoked. This operation is used to
submit a text file containing normalized gene expression data. At this point, the operation gen-
erateKeggPathwayImage can be invoked to start the analysis of the submitted data. This opera-
tion requires tree parameters: an identifier representing a biological species, an identifier
representing a KEGG pathway and a gene identifier type. In case the user needs help to set one
or more of these parameters, the operations getSpecies, getPathways and getGeneIdentifierTypes
could optionally be invoked before operation generateKeggPathwayImage. Once the operation
generateKeggPathwayImage is invoked, the operation getStatus should be periodically invoked
to verify the execution status of the analysis being performed. Finally, when the analysis is fin-
ished, i.e., the operation getStatus returns “finished”, the operation getPathwayImage should be
invoked to retrieve the analysis result.

Once all service operations have been implemented as Java methods, they were mapped
onto specific HTTP methods. Java methods sendFile and generateKeggPathwayImage were
annotated with the @POST annotation provided by the JAX-RS API. All other Java methods
were annotated with the @GET annotation. Moreover, all implemented Java methods were
annotated with the @Path annotation. The @PathParam annotation was also associated to
each parameter defined in the Java methods.

Lastly, a simple client application was implemented using the JAX-RS Jersey Reference
Implementation to test the KeggPathwayViewer service.

Service Description Generation. After the service implementation, we automatically gen-
erated a WSDL 2.0 description for the service using the Java2WSDL tool, and we removed the
SOAP bindings contained in the service description. Finally, we validated the generated WSDL
2.0 service description using the Wsdl2Generator tool.

Ontology Definition. In this step, we have developed two OWL ontologies: the Gene
Expression Ontology (GEXPO) [55] and the Gene Expression Analysis Services Ontology
(GEXPASO). The GEXPO ontology provides concepts and associated relationships to describe
the functional genomics domain, which includes the description of the biological process of
gene expression and related experimental processes for gene expression measurement, such as
DNAmicroarrays [56] and RNA-Seq [57]. During the development of this ontology, most con-
cepts that represent biomolecules involved in the described processes were reused from two
other ontologies, namely the Gene Ontology (GO) [58] and the Sequence Ontology (SO) [59].
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The GEXPASO ontology provides concepts and associated relationships to describe not
only analysis processes commonly performed in gene expression data, but also structural and
behavioral aspects of the service under development. The Software Ontology (SWO) (http://
theswo.sourceforge.net/index.html) was developed to provide a framework for the description
of software tools, so that we could use this ontology as the basis for the definition of the most
general concepts of the GEXPASO ontology. Furthermore, after the definition of the GEX-
PASO ontology, we established a number of cross-references between this ontology and the
GEXPO ontology.

Fig 5 presents a UML class diagram representing an excerpt of the GEXPASO ontology that
concerns gene expression data rendering into KEGG pathway graphs. Each concept of the
ontology is represented by a UML class. Further, all relationships between concepts are repre-
sented using a notation similar to the one proposed in [60]. Fig 5 shows only the concepts and
relationships that are relevant to the application of our methodology in the development of the
KeggPathwayViewer service.

The class gene expression data rendering into graph (subclass of information processing) rep-
resents a process responsible for mapping and rendering gene expression data into a graph.
This class is associated to the class normalized gene expression data through a has participant
relation, indicating that the process of rendering gene expression data into a graph requires
normalized gene expression data as participant. The class normalized gene expression data is
associated to the classes gene identifier and gene expression value through has part relations,
indicating that such data contain gene identifiers and expression values, respectively. The class
gene identifier is associated to the class gene through a represents relation, indicating that gene

Fig 5. UML class diagram representing an excerpt of the GEXPASO ontology. A named rectangle
represents a class. Classes in white represent concepts introduced in the GEXPASO ontology, while classes
in gray represent concepts reused from other ontologies. A solid line with a stick arrowhead at its end
represents a relationship between two concepts (UML association). A solid line with a hollow diamond at its
end represents an aggregation relationship (UML aggregation). Finally, a solid line with an hollow triangle as
an arrowhead represents a generalization relationship (UML generalization).

doi:10.1371/journal.pone.0134011.g005
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identifiers are used to represent genes. Additionally, the class gene identifier is associated to the
class gene identifier type through a has type relation, indicating that gene identifiers have associ-
ated types. Different types were modeled as instances of the class gene identifier type, including
Entrez gene identifier, gene name and official gene symbol (not depicted in Fig 5).

The class gene expression data rendering into graph is specialized by the class gene expression
data rendering into KEGG pathway graph, which represents the process of mapping and ren-
dering gene expression data into a KEGG pathway graph. This class is associated to the classes
gene identifier type, analysis identifier, KEGG pathway graph identifier and biological species
identifier through has specified input relations, indicating that this process requires a gene iden-
tifier type and identifiers representing an analysis (workspace), a KEGG pathway graph and a
biological species as input, respectively. Classes gene identifier type, KEGG pathway graph iden-
tifier and biological species identifier are associated to the classes gene identifier types list, KEGG
pathway graph identifiers list and biological species identifiers list through has part relations,
respectively. These relations indicate that these lists have one or more gene identifier types,
KEGG pathway graph identifiers and biological species identifiers as their parts, respectively.

Additionally, the has status relation defined between classes gene expression data rendering
into KEGG pathway graph and analysis status indicates that the process of rendering gene
expression data into a KEGG pathway graph is associated to some status. Classes gene expres-
sion data rendering into KEGG pathway graph and KEGG pathway graph are associated
through a produced by relation, indicating that a KEGG graph is produced by this type of pro-
cess. Furthermore, the is executed in relation defined between classes gene expression data ren-
dering into KEGG pathway graph and KeggPathwayViewer Web service indicates that the
process of rendering gene expression data into a KEGG pathway is performed by the Kegg-
PathwayViewer web service.

Semantic Annotation of Service Description. After the definition of the GEXPO and
GEXPASO ontologies, we have semantically annotated the WSDL 2.0 service description using
the Radiant plug-in for Eclipse. In order to demonstrate this step, we have used themodelRefer-
ence extension attribute to associate WSDL operations, inputs and outputs to concepts from
the GEXPASO ontology.

Fig 6 shows a UML class diagram representing the syntactical structure and semantic anno-
tation of WSDL operation generateKeggPathwayImage. This WSDL operation was associated
to the GEXPASO concept gene expression data rendering into KEGG pathway graph and the
input elements of this operation, identifier, speciesIdentifier, pathwayIdentifier and geneId-
Type, were associated to the GEXPASO concepts analysis identifier, biological species identifier,
KEGG pathway graph identifier and gene identifier type, respectively.

After providing these semantic annotations, we validated the WSDL 2.0 service description
once more using the Wsdl2Generator tool.

Gene Expression Analysis Services (GEAS) Repository
We have developed a number of semantic web services to support different activities in gene
expression analysis. The following services were developed to support the analysis of microar-
ray data:

• MicroNorm, which allows the preprocessing of one- and two-color microarray data gener-
ated from three different platforms, viz., Affymetrix, Genepix (two-color) and Agilent (one-
color). This service is implemented as a wrapper for the affy and limma R packages. The pre-
processing of Affymetrix microarray data is carried out using the Robust Multi-array Aver-
age (RMA) method of the affy package. The preprocessing of Genepix (two-color)
microarray data is carried out using the subtract, loess and Aquantile methods of the affy
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package. Finally, the preprocessing of Agilent (one-color) microarray data is carried out
using the subtract, quantiles and avereps methods of the limma package;

• MicroOneDifferentialAnalysis andMicroTwoDifferentialAnalysis, which allow the identifica-
tion of differentially expressed genes in one-color and two-color microarray data, respec-
tively. Each of these services is implemented as a wrapper for different R standard libraries.
The identification of differentially expressed genes is carried out in these libraries using fold
change or Student’s t test analysis;

• MicroHCluster, which allows the hierarchical clustering of both one-color and two-color
microarray data. This service is implemented as a wrapper for the Cluster 3.0 tool;

• MicroKCluster, which allows the k-means clustering of both one-color and two-color micro-
array data. This service is also implemented as a wrapper for the Cluster 3.0 tool;

• MicroHClusterViewer, which allows the visualization of hierarchically clustered microarray
data. This service is implemented as a wrapper for the Java TreeView tool.

The following service was developed specifically to support the analysis of RNA-Seq data:

• RnaSeqDifferentialAnalysis, which allows the identification of differentially expressed genes
in RNA-Seq data. This service is implemented as a wrapper for the DESeq2 R package. The
identification of differentially expressed genes is carried out in this package using a model
based on the negative binomial distribution.

Finally, the following services were developed to support the analysis of gene expression
data obtained not only from microarray and RNA-Seq technologies but also other
technologies:

• EnrichmentAnalysis, which allows the enrichment analysis of gene expression data. This ser-
vice is implemented as a wrapper for the gProfileR R package. The enrichment analysis of
gene expression data is carried out in this package using the hypergeometric statistical test;

Fig 6. UML class diagram representing the semantic annotation of theWSDL operation generateKeggPathwayImage. A named rectangle represents
a UML class. A white class represents a WSDL element, while a gray class represents a concept from the GEXPASO ontology. A directed solid line (UML
association) stereotyped as < < sawsdl:modelReference > > represents the use of themodelReference extension attribute to annotate aWSDL element with
a GEXPASO concept. A directed dashed line (UML dependency) stereotyped as < < references > > indicates that a WSDL element references another one.
Finally, a solid line with an hollow diamond (UML aggregation) is used to indicate a WSDL element contained as part of another one.

doi:10.1371/journal.pone.0134011.g006
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• DAVID-REST, which also allows the enrichment analysis of gene expression data. This ser-
vice is implemented as a wrapper for the SOAP-based DAVID web service. The enrichment
analysis of gene expression data is carried out in the DAVID web service using the Fisher’s
Exact statistical test;

• GeneSetEnrichmentAnalysis, which allows the gene set enrichment analysis of gene expres-
sion data. This service is implemented as a wrapper for the gage R package. The gene set
enrichment analysis of gene expression data is carried out in this package using the method
called Generally Applicable Gene-set Enrichment (GAGE);

• KeggPathwayViewer, which allows the mapping and rendering of gene expression data into
KEGG pathways [39]. This service is implemented as a wrapper for the pathview R package.

We grouped these semantic web services into a publicly available service repository named
Gene Expression Analysis Services (GEAS) Repository (available at http://dcm.ffclrp.usp.br/
lssb/geas/). The GEAS Repository provides not only access to all available services, but also to
detailed documentation about these services. The organization of the GEAS Repository was
based on the DAVIDWeb Service repository [13], which represents a SOAP-based service
repository that can be used by bioinformaticians to programmatically interact with DAVID in
order to automate user tasks.

The documentation about each service in the GEAS repository is structured in six parts.
The first part includes a general description about the service. The second part includes the ser-
vice endpoint location (URL). The third part includes the description of the service itself (all
supported operations). Each service operation is described in terms of its purpose, associated
parameters and return type. The fourth part includes a graphical description specifying the ser-
vice execution behavior from a user point of view. This specification consists of a workflow
model in a graphical notation that represents the sequence of operation invocations (including
alternate flows when relevant) expected by each service. The fifth part includes (sample) Java
client codes that can be used to programmatically access the service functionality. We provide
two separate sets of code files including at least one Java client code file that supports the invo-
cation of each service operation and one Java sample analysis code file that illustrates how the
provided Java client code can be used by implementing one possible sequence of operation
invocation, as described by the expected service behaviour. This sample code can be modified
to perform the intended analysis. We also include detailed instructions to help users use the
sample code files. Finally, the sixth part includes the semantically annotated WSDL file defined
for the service. The GEXPO and GEXPASO ontologies, which were used to semantically anno-
tate all WSDL files, are also publicly available in our repository.

Table 1 summarizes all services available in the GEAS Repository, their goals and corre-
sponding wrapped software tools.

Integrated Analysis of Gene Expression Data
This section presents two integration scenarios in which a number of services developed in the
context of this work are applied. The first scenario was devised to reproduce part of a study
presented in [26] comprising the analysis of one-color microarray data. The second was
devised to reproduce part of a study presented in [27] comprising the analysis of RNA-Seq
data.

Each integration scenario is publicly available as a web-application at the GEAS Repository
(see Sample Analysis Scenarios). Using these web-applications, it is possible to directly execute
the integration scenarios in order to reproduce in real-time the results of our analysis. In addi-
tion, the source gene expression data files used in our integration scenarios as well as the
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intermediary results obtained from the execution of each analysis activity can be downloaded.
Finally, all parameters used in our analysis are set as the default options for each analysis activ-
ity. However, it is possible to change them in order to explore other results.

Microarray Data Analysis. The study comprised the analysis of different sets of microar-
ray data. Initially, gene expression profiles of bone marrow-derived multipotent Mesenchymal
Stromal Cells (MSCs) isolated from healthy donors and Multiple Sclerosis (MS) patients before
treatment with Autologous Hematopoietic Stem Cell Transplantation (AHSCT) were com-
pared. Then, gene expression profiles of bone marrow-derived MSCs isolated fromMS patients
before and after treatment with AHSCT were also evaluated.

In order to reproduce each analysis, a number of activities were carried out in the following
order: microarray data normalization, differential gene expression analysis, functional analysis
and pathway visualization.

After defining this sequence of activities, we have selected different services to perform each
defined activity. We have selected theMicroNorm andMicroOneDifferentialAnalysis services
for normalization and differential analysis, respectively. For the functional analysis activity, we
have initially selected the EnrichmentAnalysis service. However, the results obtained using this
service were limited when compared to the results obtained using the DAVID-REST service
due to differences in the statistical methods. Therefore, we have then selected the DAVID-REST
service for functional analysis. Finally, we have selected the KeggPathwayViewer service for the
visualization of KEGG pathways.

In our integration scenario, Agilent one-color microarray data were initially normalized
using theMicroNorm service. Normalized microarray data was then submitted to theMicroO-
neDifferentialAnalysis service for the identification of differentially expressed genes. In order to
facilitate the execution of theMicroOneDifferentialAnalysis service, normalized microarray
data stored on a single multi-column dataset should be partitioned into two different datasets,
each containing a distinct experimental condition. The resulting list of differentially expressed
genes was then submitted to the DAVID-REST service for the identification of the most rele-
vant KEGG biological pathways and Gene Ontology (GO) terms associated to the interest
genes. Once again, in order to facilitate the execution of the DAVID-REST service, the list of
differentially expressed genes should be partitioned into two different datasets, each represent-
ing up-regulated and down-regulated genes, respectively. Additionally, Agilent probe identifi-
ers stored on these lists should be converted into respective Entrez gene identifiers [61].

Table 1. RESTful semantic web services available in the GEAS Repository.

Service Service goal Wrapped tool

MicroNorm Preprocessing of one/two-color microarray data affy and limma R packages

MicroOneDifferentialAnalysis Differential analysis of one-color microarray data R standard libraries

MicroTwoDifferentialAnalysis Differential analysis of two-color microarray data R standard libraries

RnaSeqDifferentialAnalysis Differential analysis of RNA-Seq DESeq2 R package

MicroHCluster Hierarchical clustering of one/two-color microarray data Cluster 3.0 tool

MicroKCluster K-means clustering of one/two-color microarray data Cluster 3.0 tool

MicroHClusterViewer Visualization of hierarchically clustered microarray data Java TreeView tool

EnrichmentAnalysis Enrichment analysis of gene expression data gProfileR R package

DAVID-REST Enrichment analysis of gene expression data SOAP-based DAVID web service

GeneSetEnrichmentAnalysis Gene set enrichment analysis of gene expression data gage R package

KeggPathwayViewer Visualization of gene expression data rendered into KEGG pathways pathview R package

doi:10.1371/journal.pone.0134011.t001
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The resulting enriched and normalized data were then submitted to the KeggPathwayViewer
service for the visualization of gene expression data rendered into previous identified KEGG
pathways. In order to facilitate the execution of the KeggPathwayViewer service, enriched data
should be filtered in order to select only relevant KEGG pathways and associated genes. Addi-
tionally, normalized microarray data should be filtered in order to select only expression values
related to the genes associated to each selected KEGG pathway.

During the definition of this scenario, we have realized that interactions among services in
our pipeline were not straightforward, and that some adaptation of the data to be exchanged
would be required in order to guarantee service interoperability. Thus, in order to compose
one service output with another service input we have defined a number of software connec-
tors. A software connector is an architectural element used to accommodate different types of
interactions among computational/data components of a software system through the defini-
tion of a set of rules that govern these interactions. In general, software connectors allow the
transfer of data and/or control between different components of a software system. The identi-
fied connectors were initially developed as standalone applications using the methodology pro-
posed in [55] and latter wrapped as RESTful web services using the methodology proposed in
this work. The development and benefits of using semantic software connectors are discussed
in [55]. Fig 7 shows the architecture of our analysis scenario with focus on the data flow.

Three software connectors were developed to integrate one-color microarray data to the
MicroOneDifferentialAnalysis, DAVID-REST and KeggPathwayViewer services: connector C1
partitions normalized microarray data produced by theMicroNorm service into two separate
datasets to facilitate identification of differentially expressed genes by theMicroOneDifferentia-
lAnalysis service; connector C2 converts the list of gene identifiers produced by theMicroOne-
DifferentialAnalysis service and partitions this list into two separate datasets to facilitate
enrichment analysis by the DAVID-REST service; and connector C3 processes enriched data
produced by the DAVID-REST service and normalized data produced by theMicroNorm ser-
vice in order to facilitate visualization of KEGG pathways by the KeggPathwayViewer service.

Initially, different files used to store one-color microarray data, each representing a separate
biological sample, were submitted to theMicroNorm service. This service was responsible for
reading all these files and for producing a single (multi-column) file containing normalized
data for all samples (each represented in a single column). This output file was then submitted
to connector C1, which was responsible for reading this file and for producing two (multi-col-
umn) files containing normalized data partitioned according to two different experimental
conditions: bone marrow-derived multipotent MSCs obtained fromMS patients at pre-
AHSCT and bone marrow-derived MSCs obtained from healthy donors. Connector C1 also
received two user-provided inputs specifying which columns represent each of the two experi-
mental conditions, respectively.

After that, the two output files produced by connector C1 were submitted to theMicroOne-
DifferentialAnalysis service. This service was responsible for selecting genes that had a greater
than two-fold (user-defined) increase/decrease in expression between the two experimental
conditions and for producing a list of differentially expressed genes. The resulting list was then
submitted to connector C2, which was responsible for reading gene identifiers stored in this
list, converting them into respective Entrez gene identifiers according to a user-provided map-
ping file, and for partitioning this list into two different datasets, each representing up-regu-
lated and down-regulated genes, respectively. The two lists produced by connector C2 were
then submitted to the DAVID-REST service.

The DAVID-REST service was responsible for reading Entrez gene identifiers stored in the
lists, and for identifying the most relevant KEGG pathways and GO terms associated to the
interest genes. After that, resulting enriched data and normalized data were then submitted to
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connector C3, which was responsible for selecting only relevant KEGG pathways and associ-
ated genes on enriched data. For each selected KEGG pathway, connector C3 was also respon-
sible for filtering normalized data in order to select only expression values related to the
associated genes, and for producing a multi-column file containing these values for all samples
(each represented in a single column). Connector C3 also received a user-provided mapping
file to enable filtering of normalized data containing Agilent probe identifiers according to
Entrez gene identifiers specified in enriched data. Finally, each file produced by connector C3
for each relevant KEGG pathway was submitted to the KeggPathwayViewer service, which was
responsible for producing a corresponding image that shows gene expression data rendered
into the KEGG pathway graph.

Fig 7. One-color microarray data analysis scenario service architecture. A rectangle represents a data
source, while a rectangle with rounded corners represents a RESTful analysis service. A dotted circle
represents a RESTful software connector. An one-way arrow represents a directed flow of data and/or
control.

doi:10.1371/journal.pone.0134011.g007
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The differential analysis of the transcriptional profiles of pre-AHSCTMS patients and
healthy controls using theMicroOneDifferentialAnalysis service identified 488 differentially
expressed genes (p< 0.05; fold-change� 2.0), comprising 234 down-regulated and 254 up-
regulated genes. Enrichment analysis performed by the DAVID-REST service revealed that
most down-regulated genes were included in the following GO categories: lymphocyte activa-
tion, T cell activation, leukocyte activation, gamma-delta T cell activation and activation of
immune response. Up-regulated genes were included in the following GO categories: cell surface
receptor linked signal transduction, neurological system process, G-protein coupled receptor pro-
tein signaling pathway and regulation of tissue remodeling. Additionally, this analysis revealed
up-regulated genes involved into two different KEGG pathways, including the Neuroactive
ligand-receptor interaction pathway. These pathways were then visualized using the Kegg-
PathwayViewer service.

The differential analysis of the transcriptional profiles of pre-AHSCT and post-AHSCTMS
patients using theMicroOneDifferentialAnalysis service identified 75 differentially expressed
genes (p< 0.05; fold-change� 2.0), all up-regulated in post-transplantation MSCs. Enrich-
ment analysis performed by the DAVID-REST service revealed that most genes were included
in the following GO categories: protein-DNA complex assembly, cellular macromolecular com-
plex assembly, cellular macromolecular complex subunit organization, translation and transla-
tion elongation. Additionally, this analysis also revealed a set of genes involved in the Ribosome
KEGG pathway, which were then visualized using the KeggPathwayViewer service.

RNA-Seq Data Analysis. This study comprised the analysis of different sets of RNA-Seq
data. Initially, gene expression profiles of BRG1 knockdown melanoma cells and control mela-
noma cells were compared. Then, gene expression profiles of MITF knockdown melanoma
cells and control melanoma cells were also evaluated. Finally, the results obtained for each
dataset were compared.

In order to reproduce the study, two activities were carried out in the following order: iden-
tification of differentially expressed genes and functional analysis. The RnaSeqDifferentialAna-
lysis and DAVID-REST services were selected for differential and functional analysis,
respectively.

In this integration scenario, the two Illumina HiSeq 2500 RNA-Seq datasets comprising
BRG1-control and MITF-control data were initially submitted to the RnaSeqDifferentialAnaly-
sis service for the identification of differentially expressed genes. In order to facilitate the execu-
tion of the DAVID-REST service, each resulting list of differentially expressed genes should be
partitioned into two different datasets, each representing up-regulated and down-regulated
genes, respectively. The resulting datasets of up-regulated genes for BRG1-control and MITF-
control were then compared and the commonly up-regulated genes were extracted to a single
dataset. Similarly, the resulting datasets of down-regulated genes were compared and the com-
monly down-regulated genes were extracted to another dataset. Finally, the resulting datasets
comprising commonly up-regulated and down-regulated genes were submitted to the
DAVID-REST service for the identification of the most relevant Gene Ontology (GO) terms
associated to the interest genes contained in each dataset.

One software connector was developed to integrate RNA-Seq data between the RnaSeqDif-
ferentialAnalysis and DAVID-REST services: connector C4 partitions each list of gene identifi-
ers produced by the RnaSeqDifferentialAnalysis into two separate datasets and extracts
commonly up-regulated and down-regulated genes into two other separate datasets to facilitate
enrichment analysis by the DAVID-REST service.

Initially, different files used to store RNA-Seq data, each representing a separate biological
sample, were submitted to the RnaSeqDifferentialAnalysis service. This service was responsible
for reading all these files and for selecting genes that had a greater than two-fold (user-defined)
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increase/decrease in expression between the two experimental conditions and for producing a
list of differentially expressed genes. This first step was separately performed for both
BRG1-control and MITF-control datasets. After that, the two output files produced by RnaSeq-
DifferentialAnalysis service were submitted to connector C4. This connector was responsible
for reading the files and for partitioning each file into two different datasets, each representing
up-regulated and down-regulated genes, respectively. Connector C4 was also responsible for
extracting commonly up-regulated and down-regulated genes between BRG1-control and
MITF-control. The resulting datasets comprising commonly up-regulated and down-regulated
genes were finally submitted to the DAVID-REST service, which was responsible for reading
gene identifiers stored in the datasets, and for identifying the most relevant GO terms associ-
ated to the interest genes.

The differential analysis of the transcriptional profiles of BRG1 knockdown and control
cells using the RnaSeqDifferentialAnalysis service revealed 8762 differentially expressed genes
(p.adj< 0.05; fold-change� 2.0), comprising 3924 down-regulated and 4838 up-regulated
genes. The differential analysis of the transcriptional profiles of MITF knockdown and control
cells revealed 1266 differentially expressed genes (p.adj< 0.05; fold-change� 2.0), comprising
532 down-regulated and 734 up-regulated genes. Around 90% of genes encountered by differ-
ential analysis using the RnaSeqDifferentialAnalysis service were also revealed in the original
study [27]. Additionally, similar results were obtained regarding commonly expressed genes in
BRG1-control and MITF-control datasets: 327 (61%) genes down-regulated by shMITF pre-
sented loss of expression upon shBRG1 and 272 (37%) commonly up-regulated genes were
revealed.

Similar results were also obtained in the enrichment analyses performed by the DAVID-R-
EST service. The analysis of commonly down-regulated genes revealed genes included in the
following GO categories: neuronal synaptic plasticity, intracellular signalling cascade, transcrip-
tion regulation, cell division,mitosis and organelle fission. The analysis of commonly up-regu-
lated genes revealed genes included in the following GO categories: cell adhesion, angiogenesis,
cell projection organization, regulation of cell proliferation, cell morphogenesis and cell migra-
tion. These results are consistent with the results obtained from the original study.

Discussion
We have proposed a systematic methodology for the development of RESTful semantic web
services for gene expression analysis. Our methodology supports not only the development of a
RESTful web service from an existing application but also the semantic annotation of the corre-
sponding service description using SAWSDL. The methodology was then applied to the devel-
opment of a representative set of services for gene expression analysis, which have been applied
in two scenarios.

In our opinion, the creation of semantic web services in the biomedical domain has not yet
been addressed extensively enough. The SADI project [24] defines an architecture pattern spec-
ification to support the creation and integration of services in this domain. However, SADI-
compliant services are created according to a non-standard service architecture specification
and, unlike our approach, relies on the use of RDF and OWL (version 1) languages for data
representation and semantic modelling.

Domain-independent approaches have been defined for the development of RESTful web
services from existing tools. For example, Liu et al. [62] propose a common process for re-engi-
neering data and entity-driven systems with RESTful web services. In this process, candidate
web services are identified by analysing the legacy systems to be made accessible. Mapping
rules are then defined for the generation of URIs, and finally the generated URIs are refined
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and split to represent the RESTful web services. Laitkorpi et al. [63] introduce a model-driven
process for the development of RESTful web services from functional specifications originated
either from new services or from legacy services requirements. In this work, the process phases
and model transformations required to transform these functional specifications into WADL
service descriptions are specified. However, code generation is out of scope of their work.
Finally, Oldevik et al. [25] present a model-driven approach for the specification and genera-
tion of SOAP-based or RESTful web services from existing software applications. In this work,
the authors define a UML profile and a set of code generators for generating service wrappers.

Other works focus on the semantic annotation of web services using SAWSDL. For exam-
ple, Belouadha et al. [64] present a model-driven approach for the development and composi-
tion of SAWSDL semantic web services. In this approach, web services are modeled according
to a UML profile and transformation rules are specified to map these created models to
SAWSDL service descriptions. Zhang et al. [65] propose a semi-automatic method for the
semantic annotation of XML Schema elements contained in WSDL documents using
SAWSDL. According to this method, XML Schema elements are mapped onto OWL elements
of a schematic ontology based on defined transformation rules. Once a schematic ontology is
constructed, they use a specific algorithm for evaluating semantic affinity between concepts of
this ontology and concepts contained in domain ontologies. The terms from domain ontologies
with highest semantic affinity values are used to annotate XML Schema elements contained in
a WSDL document using the SAWSDL attributemodelReference. Lastly, Gordon et al. [66]
present a real-world application of the SAWSDL approach in the context of the BioMOBY
project, which aims at providing interoperability between biological data. In this work, the
authors present a software system that allows the creation of Moby-compliant semantic web
services by simply adding SAWSDL annotations to existing WSDL documents.

In contrast to both sets of approaches that independently tackle either the development of
wrappers for creating RESTful web services from legacy software applications or the semantic
annotation of these services, our work provides the first comprehensive methodology that
addresses both service development and semantic annotation. Still, the development of REST-
ful semantic web services could be achieved using two independently defined approaches.
However, the combined use of such approaches is likely to require some adaptations in order
to make them compatible. Furthermore, many model-driven and usually domain-specific
approaches have been reported in the literature, and, to the best of our knowledge, no suitable
approach has already been defined for the gene expression analysis domain.

Since different standalone tools have already been developed for the execution of one or
more gene expression analysis activities, the primary focus of our methodology was to facilitate
the development of a web service based on an existing standalone tool and then the semantic
annotation of this service. Our methodology does not address the development of a RESTful
web service from scratch. Nevertheless, in order to address the development of such services, it
would only be necessary to modify (extend) the proposed service implementation activity to
include a suitable set of software development activities to cope with the whole software devel-
opment cycle. The remaining activities of our methodology would likely to be kept
unmodified.

In recent years, the explicit use of semantics has been highlighted as crucial to enable auto-
matic service composition. In the context of this work, we have simply used the semantic anno-
tations assigned to the developed services implicitly in the development of our integrated
analysis scenario. These semantic annotations were used to reason about service functionality,
inputs and outputs, thus assisting the manual selection of the most suitable services at each
step of our analysis scenario. However, we believe our work contributes to the development of
a complete solution for (semi) automatic service composition. We have proposed a
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methodology for the development of semantic web services, applied this methodology to the
development of a representative set of services and validated the use of these services through a
real case study. Additionally, even though no complete solution to automatic service composi-
tion is available, a biologist can still benefit from the provided semantic annotations to properly
select/discover a suitable service for performing a task at hand.

We have demonstrated the validity and usefulness of the developed RESTful semantic web
services through the creation of two integrated analysis scenarios to analyze real sets of gene
expression data. In the first scenario, by using the available set of services, we were able to
reproduce a specific set of results reported in [26]. The results of the analysis of transcriptional
profiles (pre-AHSCT versus control and pre-AHSCT versus post-AHSCT) included 44.5% and
92.6% of the differentially expressed genes reported in the original study, respectively. These
differences do not indicate a limitation of our services, since we have used a distinct set of tools
and statistical methods than those used in the original study for data normalization and differ-
ential analysis. Most importantly, the subsequent enrichment analysis carried out on resulting
data partially revealed a different set of relevant GO categories and KEGG pathways than those
found in the original study, including activation of immune response, tissue homeostasis, trans-
lational elongation, translation, chromatin and ribosome. The biological relevancy of these find-
ings is yet to be determined in additional studies, but this falls outside the scope of this work.

In the second scenario, we were able to reproduce a specific set of results reported in [27].
The results of the analysis of transcriptional profiles (BRG1 knockdown versus control and
MITF knockdown versus control) included 91.6% and 88.8% of the differentially expressed
genes reported in the original study, respectively. The comparative analysis of transcriptional
profiles (BRG1-control versus MITF-control) included 86.9% and 93.6% of commonly down-
regulated and up-regulated genes reported in the original study, respectively. The subsequent
enrichment analysis carried out on resulting data revealed a very similar set of relevant GO cat-
egories than those found in the original study, including all categories that were considered
most relevant.

Finally, the proposed methodology entails a fair amount of technical details, which make it
unlikely to be grasped by a biologist. However, bioinformaticians and associated IT personnel
can greatly benefit from our systematic approach to the development of RESTful semantic web
services for gene expression analysis, since they represent the target users of our methodology.
Similarly to our methodology, the GEAS repository target users are bioinformaticians/IT per-
sonnel. In this sense, the available set of services can be used for the creation of integrated anal-
ysis environments suitable to the needs of specific end users.

To the best of our knowledge, our work provides the first methodology for the development
and semantic annotation of RESTful web services from existing software tools in the gene
expression analysis domain. We provide not only a methodology for the creation of such ser-
vices, but also two support ontologies that can be possibly used in the semantic annotation of
other services pertaining to this domain. In contrast to other existing approaches, our method-
ology provides a generic solution that does not constrain the type and/or structure of services
being developed. Therefore, our methodology provides a flexible solution for service develop-
ment and reuse through the adaptation of different types of analysis tools.

Additionally, most existing approaches lack concrete guidelines concerning the technical
issues of the implementation and semantic annotation of RESTful web services, which are cov-
ered in our methodology. We have also discussed the application of our methodology in the
development of a representative web service for gene expression data rendering into KEGG
pathways in sufficient detail so that it can be reproduced or applied to other tools. This detailed
description was also intended to reduce the learning time of our methodology, thus facilitating
its application.
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Service-oriented architecture has been increasingly used in the development of computer
systems in a wide range of knowledge domains. The benefits of service-based development
include faster and cheaper development since services can be reused to create new services, and
increased reliability due to the reuse of tested solutions. In particular, our work encourages the
development of new services and subsequent reuse of such services for the creation of inte-
grated solutions for gene expression analysis. Although our methodology has been defined for
this particular domain, it can be easily extended to cope with other biological domains simply
by replacing our domain ontology by an ontology suitable for the new domain and by adapting
the service ontology, if necessary.

The gene expression analysis scenarios proposed in this paper were implemented by manually
composing a number of available services and making implicit use of the semantics assigned to
the developed services. However, (semi) automatic service composition requires the explicit use
of semantics throughout the service composition life-cycle, including requirement specification,
service discovery, service composition and service execution. Therefore, as future research we
intend to investigate the (semi) automatic composition of gene expression analysis services, mak-
ing explicit use of the semantic annotations we assigned to our developed services.

Conclusions
Semantic web services have been increasingly used in the biomedical domain. Not only new
services have been created from scratch, but also existing software tools have been adapted to
be accessed through semantic web services. In this work, we have defined an integrated meth-
odology that addresses both the implementation and semantic annotation of RESTful web ser-
vices created from existing analysis tools. Our methodology provides concrete guidelines and
technical details, thus facilitating the systematic adaptation of analysis tools. Moreover, we
believe our methodology fosters the development and reuse of semantic web services for the
creation of integrated solutions for gene expression analysis.

Our methodology has been applied to the development of a suite of services for the analysis
of one/two-color microarray data and RNA-Seq data. This suite of services provides support
for data normalization, differential analysis, hierarchical and k-means clustering, clustering
visualization, enrichment analysis and pathway visualization. A number of these services were
successfully combined to create two semantically integrated analysis scenarios aiming at repro-
ducing parts of different studies documented in the literature.

Future research includes the development of new services to support new analysis activities,
such as gene network inference. Finally, in the future we intend to work towards the definition
of an approach for the (semi) automatic composition of gene expression analysis services. This
approach should rely on the use of semantic software connectors to facilitate the interconnec-
tion of different services. Ultimately, we intend to build an environment to support the (partly)
automated composition of RESTful semantic web services in the gene expression domain and
to assist the biologist when creating suitable analysis solutions.
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