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Abstract: Despite the non-coding nature of their small RNA genomes, the visible 

symptoms of viroid infection resemble those associated with many plant virus diseases. 

Recent evidence indicates that viroid-derived small RNAs acting through host RNA 

silencing pathways play a key role in viroid pathogenicity. Host responses to viroid 

infection are complex, involving signaling cascades containing host-encoded protein 

kinases and crosstalk between hormonal and defense-signaling pathways. Studies of 

viroid-host interaction in the context of entire biochemical or developmental pathways are 

just beginning, and many working hypotheses have yet to be critically tested. 
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Introduction 

Even before the non-coding nature of viroid genomes had been established, how such a small RNA 

molecule could induce disease was a matter of intense interest. In a 1971 paper comparing the 

properties of potato spindle tuber “virus” with those of conventional plant viruses and proposing the 

existence of a new class of pathogens to be known as viroids, T.O. Diener suggested that the genome 

of Potato spindle tuber viroid (PSTVd) might function, not as a messenger RNA, but rather as an 

abnormal regulatory RNA [1]. Several years later, determination of its complete nucleotide sequence 

confirmed the non-coding nature of the PSTVd genome [2], and shortly thereafter, comparison of mild 
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and severe PSTVd isolates by RNA fingerprinting revealed that only minor changes in sequence could 

lead to dramatic effects on symptom expression [3]. As this pioneering era of viroid research drew to a 

close and the focus began to shift to studies at the molecular level, much effort was devoted to 

identifying sequence motifs involved in disease induction. Identification of the so-called 

“pathogenicity domain” in PSTVd and related viroids [4] was soon followed by a proposal that 

symptom expression might be regulated by the ability of nucleotides within this portion of the 

molecule to interact with unspecified host components [5]. For many years, the ability of viroids to 

cause disease was assumed to result from as-yet-unidentified alterations in the normal pattern of RNA-

protein interactions. 

In 2004, Wang et al. [6] reported that expression of a PSTVd-derived hairpin RNA in transgenic 

tomatoes leads to the appearance of leaf symptoms very similar to those observed in infected plants. 

Because this hairpin RNA contained less than a full genome equivalent of viroid sequence, these 

transgenic plants contained no replicating PSTVd. Several earlier studies [7-11] had shown that viroid-

infected plants contain small RNAs derived from the invading viroid genome; thus, attention has 

shifted from RNA-protein interactions to RNA silencing as the primary mediator of viroid 

pathogenicity. In this review, we draw together key observations from several areas of research on 

viroid pathogenicity in order to illustrate the history of this area of viroid research and identify 

promising directions for future studies. In doing so, we depend on several published reviews [e.g., 12-

15] as well as the accompanying articles by Ding and Flores elsewhere in this issue to provide the 

reader with basic information about viroid structure and replication. Here, we focus on studies dealing 

with i) identification of specific structural elements within viroids that modulate symptom expression, 

ii) characterization of molecular interactions between these structural elements and specific host 

components, and iii) determination of the effects of these interactions on host gene expression. 

Identification of structural motifs modulating viroid pathogenicity  

Determination of the complete nucleotide sequence of PSTVd by Gross and colleagues [2] was 

rapidly followed by several similar reports involving other viroids and sequence variants. In 1985, 

Keese and Symons [4] used this information to propose that PSTVd and related viroids contain five 

structural and functional domains. As shown in Figure 1, these domains include i) a conserved central 

domain [C] capable of forming two (or more) alternative structures that may regulate the replication 

cycle, ii) a domain associated with pathogenicity [P], iii) a domain exhibiting high sequence variability 

[V], and iv) two terminal domains that are interchangeable between viroids [TL and TR]. In addition to 

focusing attention on the possible role of a defined pathogenicity domain in regulating the disease 

process, this seminal paper also drew attention to the probable role of RNA recombination in viroid 

evolution. More than 1700 viroid sequences are now available in the Subviral RNA Database 

(http://subviral.med.uottawa.ca/). 
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Figure 1. Secondary structures of PSTVd and Peach latent mosaic viroid (PLMVd). (A) 

The rod-like secondary structure of PSTVd (intermediate strain) showing the five domains 

characteristic of members of the family Pospiviroidae: the Terminal Left (TL), 

Pathogenicity (P), Central (C), Variable (V), and Terminal Right (TR). The Central 

Conserved Region (CCR) is located within the C domain and contains a UV-sensitive loop 

E motif with non-canonical base-pairs (denoted by circles). The TL domain of posiviroids 

contains either a Terminal Conserved Region (TCR) or Terminal Conserved Hairpin 

(location not shown). The TR domain may contain 1-2 copies of a protein-binding RY 

motif [16]. (B) The branched secondary structure of PLMVd, a member of the ribozyme-

containing family Avsunviroidae. Boundaries of the plus and minus strand self-cleavage 

domains are indicated by flags, nucleotides conserved in most natural hammerhead 

structures by bars, and the self-cleavage sites by arrows. Filled and open symbols refer to 

plus and minus polarities, respectively. Nucleotides involved in a pseudoknot supported by 

chemical probing are indicated by broken lines. Co-variation analysis suggests that a 

second pseudoknot may exist between loops A (location of the short insertion responsible 

for peach calico) and B.  
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Many of the studies subsequently carried out to identify structural motifs modulating viroid 

pathogenicity have focused on PSTVd and related viroids. PSTVd and closely-related viroids like 

Citrus exocortis viroid (CEVd) or Tomato apical stunt viroid (TASVd) all infect tomato, and when 

bioassays are carried out using certain sensitive cultivars (e.g. Rutgers), infected plants exhibit a 

characteristic range of symptoms (see Figure 2). Tomato bioassays are both rapid and convenient – 

requiring only 4-6 weeks for completion compared to the months or more required for assays 

involving their natural hosts. As discussed below, the results of many (but not all) of these studies 

point to small RNAs and RNA silencing as key intermediaries in the disease process. 

Two lines of evidence indicate that nucleotides within in the P domain play an important role in 

PSTVd symptom induction: First, the fact that only 1-2 changes in this portion of molecule are 

sufficient to dramatically alter symptom expression in tomato [3]; second, the association of a larger 

number of sequence changes restricted mainly to the P and V domains of CEVd with similar effects 

[17]. For several naturally-occurring isolates of PSTVd, thermodynamic calculations indicate that 

virulence is correlated with the instability of a single structural motif; i.e., the so-called “virulence 

modulating region” within the P domain. Based on this correlation, Schnölzer et al. [5] proposed that 

PSTVd virulence is determined by the ability of nucleotides within this VM region to interact with one 

or more unidentified host factors. 

The first indication that the molecular mechanism(s) underlying viroid pathogenicity might not be 

quite so simple came soon thereafter when analysis of CEVd isolates failed to reveal a similar 

correlation [17]. To investigate the possible contributions of other structural domains to pathogenicity, 

Sano and colleagues [18] constructed a series of interspecific chimeras between CEVd and TASVd 

and examined infected plants for differences in various features of symptom development; e.g., 

stunting, veinal necrosis, and epinasty. The individual contributions of the TL (terminal left) and P 

domains to symptom induction were not completely separable from effects on viroid titer, but 

sequence differences in the TL domain appeared to have a greater effect on symptom severity than 

changes in the P domain. Three discrete regions of sequence and/or structural variability were 

identified that may correspond to these pathogenicity determinants. 

Characterization of naturally-occurring variants of several other viroids -- Hop stunt viroid (HSVd), 

Coconut cadang-cadang viroid (CCCVd), Avocado sunblotch viroid (ASBVd), Chrysanthemum 

chlorotic mottle viroid (CChMVd), and PLMVd – has identified still more pathogenicity determinants. 

For example, HSVd variants isolated from citrus trees exhibiting symptoms of cachexia contain a 

characteristic cluster of six specific changes in the V domain [19,20]. Cachexia and xyloporosis are 

graft-transmissible diseases of citrus that are characterized by the development of severe gumming, 

discoloration, and stem-pitting symptoms in specific indicator hosts. CCCVd is the smallest known 

pospiviroid (i.e., 246 nt) and causes a lethal disease of coconut palm in the Philippines. Artificial 

passage of CCCVd led to the appearance of a severe lamina-depleting symptom (“brooming”) that was 

associated with sequence changes at three sites in the P and C domains [21]. Changes were observed at 

one or two of these sites, but not at all three sites simultaneously. Interestingly, certain of these 

changes were located just outside the loop E motif of CCCVd, a motif shown by the work of Ding and 

colleagues to play an important role in PSTVd replication and pathogenicity (see below). 
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Figure 2. Symptoms associated with viroid infection. (A,C) Infection of sensitive tomato 

cultivars with PSTVd or related viroids like CEVd and TASVd leads to stunting, epinasty 

(a downward curling of the leaves), and veinal necrosis. Note the differences in symptom 

severity associated with different strains of PSTVd (A) or different viroids (C). (B) 

Symptoms of PSTVd in its natural host (potato); the control tuber on the left is from a 

healthy plant. (D) Fruit from viroid-infected woody hosts like apple or plum may exhibit 

abnormal pigmentation; i.e., “color break”. Left, healthy apple; right, Apple scar skin 

viroid (ASSVd)-infected apple. (F) Infection of peach by certain variants of PLMVd leads 

to extreme chlorosis and loss of chlorophyll from large portions of the leaves (courtesy of 

Francesco Di Serio). (E) Many viroid-infected plants (especially herbaceous ornamentals 

like this Tomato chlorotic dwarf viroid (TCDVd)-infected petunia) may show no visible 

symptoms. Vegetative propagation of latently infected plant material dramatically 

increases the number of viroid-infected plants, thereby increasing the opportunity for 

accidental transfer (i.e., “escape”) to other sensitive species growing nearby.  

 



Viruses 2009, 1              

 

 

303

ASBVd is a member of the Avsunviroidae, a second family of ribozyme-containing viroids that 

replicate in the chloroplast, and its rod-like secondary structure does not contain the five 

structural/functional domains found in PSTVd and related viroids. Characterization of ASBVd variants 

associated with bleached, variegated, or symptomless leaf tissue suggest a transition in sunblotch 

disease from a severe acute to a persistent mild form of infection [22]. During this transition, sequence 

changes accumulating in the right terminal loop may lead to a more open structure of this portion of 

the molecule, potentially altering its ability to bind RNA polymerase. Similar results were reported by 

Schnell et al. [23]. PLMVd and CChMVd are two other ribozyme-containing viroids whose branched 

secondary structures differ dramatically from the overall rod-like structure of ASBVd (see Figure 2). 

Comparisons of symptomatic and asymptomatic strains of CChMVd have shown that sequence 

changes in a single hairpin loop are sufficient to convert a symptomatic strain to an asymptomatic one. 

The substitution involved (i.e., UUUCGAAA) creates a highly stable GNRA tetraloop that, in 

addition to abolishing symptom expression, also reduces overall fitness [24, 25]. Peach trees infected 

with certain isolates of PLMVd exhibit an extreme chlorosis covering most of the leaf area that is 

known as “peach calico”. Sequence analysis of full-length cDNAs derived from such isolates revealed 

two groups of variants, one containing a 12-13 nt insertion in the hairpin loop that caps the 

hammerhead stem (see Figure 2). Using site-directed mutagenesis and bioassays on a sensitive 

indicator host, Malfitano et al. [26] were able to show that i) variants lacking this insertion replicate 

without eliciting symptoms and ii) that this insertion can sporadically emerge de novo. 

How these proposed pathogenicity determinants actually influence the disease process remains to 

be determined. In many cases, the most likely mechanism appears to involve synthesis of viroid-

related siRNAs and RNA silencing. Highly stable GNRA tetraloops like the one found in CChMVd 

are known for their ability to act as protein-binding sites [27], however, and the presence of such a 

structure in small siRNAs would tend to interfere with their ability to base-pair with a potential mRNA 

target. A second example of a viroid pathogenicity determinant likely to act in the context of the 

genomic RNA is the loop E motif located in the central domain of PSTVd. 

Loop E motifs are a common feature of many cellular RNAs, where they help to organize multi-

helix loops and other elements of tertiary structure [28]. The presence of such a highly-structured, UV-

sensitive motif loop in the central domain of PSTVd and related viroids was first recognized in 1985 

[29], but its possible function(s) remained obscure until Wassenegger and colleagues [30] reported that 

replacement of the C residue normally found at PSTVd position 259 with U dramatically increased the 

viroid’s ability to replicate in tobacco. Several years later, Qi and Ding [31] reported that a U/A 

change at nearby position 257 results in a very unusual “flat top” phenotype. This mutation did not 

enhance the rate of PSTVd replication/accumulation, and its effects were independent of symptom 

determinants located in the P domain. The loop E motif of PSTVd was recently subjected to a very 

comprehensive mutational analysis [32] whose results were in remarkable agreement with structural 

predictions derived from earlier studies of loop E motifs in other RNAs. Like GNRA tetraloops, loop E 

motifs often act as sites for RNA-protein interaction [33]; furthermore, the sequences which interact to 

form the PSTVd loop E motif are widely separated in the genomic RNA. No cellular proteins have yet 

been shown to interact with the loop E motif of PSTVd, but among the more intriguing candidates is a 

tobacco RIP (ribosome-inactivating protein)-like protein with dual enzymatic activity [34]. The 
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conserved hairpin loop in mammalian rRNA recognized by the cytotoxic proteins -sarcin and ricin 

contains a loop E motif very similar to the one found in PSTVd. 

Viroid-protein interaction as a potential trigger for symptom induction 

Several groups have examined the ability of viroids to interact with cellular proteins. In one early 

study, Wolff et al. [35] used one-dimensional SDS-PAGE and Northwestern analysis to demonstrate 

the ability of circular PSTVd to interact with several different tomato proteins; namely, all four 

histones plus two larger nuclear proteins approximately 31 kDa and 41 kDa in size. Follow-up studies 

by Klaff et al. [36] compared the ability of tomato nuclear proteins to interact in vitro with either linear 

PSTVd RNA transcripts or circular PSTVd. Other experiments used a combination of UV cross-

linking followed by RNase digestion to identify several viroid-protein complexes in isolated nuclei. A 

43 kDa protein could be isolated from the cellular complexes by RNase digestion, but the 

identity/cellular function of this protein was not determined. Yet another study from the Riesner 

laboratory demonstrated the ability of purified wheat germ RNA polymerase II to interact with both 

PSTVd terminal loops [37], the first time that a viroid-protein interaction had been mapped to a 

specific structural motif. Relatively recently, PSTVd (-)strand RNA synthesis was shown to initiate in 

the left terminal loop of the circular (+)strand template [38].  

Over the years, several additional viroid-binding proteins have been characterized. A series of 

studies from the Tabler-Tsagris laboratory [e.g.,16,39] have characterized a bromodomain-containing 

tomato protein known as VIRP1 that specifically binds to an AGG/CCUUC motif found in the right 

terminal domain of PSTVd (see Figure 1). This interaction with VIRP1 appears to play an important 

role in the long distance movement of PSTVd and other pospiviroids in the host vascular system. A 

second cellular protein that appears to be involved in long distance movement of viroids is the phloem 

lectin known as PP2, a moderately basic 49-kDa dimeric protein that preferentially binds N-

acetylglucosamine oligomers and is one of the two most abundant proteins in phloem exudate. 

Cucumber PP2 interacts with HSVd both in vitro [40,41] and in vivo [42]; furthermore, 

characterization of the gene encoding cucumber PP2 revealed the presence of a potential dsRNA-

binding motif. Because the interaction between HSVd and PP2 appears rather non-specific (i.e., PP2 

can bind a number of other RNA molecules), it would seem to be an unlikely trigger for pathogenesis. 

Finally, the genome of ASBVd has been shown to interact with two small chloroplast RNA binding 

proteins encoded by the nuclear genome of its host [43]. Binding of PARBP33 and PARBP35 to 

multimeric ASBVd RNA transcripts stimulates hammerhead ribozyme-mediated self-cleavage in vitro, 

an interaction that seems more likely to be involved in replication rather than disease induction.  

Signaling cascades involving at least two host-encoded protein kinases appear to play a role in 

modulating viroid pathogenicity. PSTVd infection of tomato leads to the autophosphorylation of a 

plant-encoded 68 kDa analog of PKR, the mammalian double-stranded RNA-dependent protein kinase 

implicated in the regulation of animal RNA virus replication [44,45]; furthermore, incubation of 

purified mammalian PKR with RNA transcripts derived from a severe strain of PSTVd resulted in 10-

fold greater activation than incubation of the kinase with transcripts derived from a mild strain [46]. 

Although these observations strongly suggest a direct interaction between PKR and a sequence motif 

in the pathogenicity domain of PSTVd, direct evidence for such an interaction is lacking. To date, all 
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attempts to extend these studies by cloning the mRNA and/or gene encoding tomato PKR have been 

unsuccessful. Infection of tomato seedlings with either the intermediate or a severe strain of PSTVd 

also results in the transcriptional activation of a second, 55 kDa protein kinase known as PKV (i.e., 

protein kinase viroid-induced; 47). Sequence analysis of the gene encoding PKV (pkv) revealed 

significant homologies to cyclic nucleotide-dependent protein kinases, and the ability of recombinant 

PKV protein to autophosphorylate on serine and tyrosine residues in vitro suggests that it belongs to 

the class of dual-specificity protein kinases. Further analysis of PKV revealed that it is a novel member 

of the AGC VIIIa protein kinase superfamily [48], however, little is known about the role of AGC 

VIIIa kinases in plants. Within subgroup AGC VIIIa, only PINOID [49] and Adi3 [50] have been 

genetically characterized, and have been shown to play fundamental roles in auxin signaling and plant 

cell death, respectively. As discussed in more detail below, recent studies have shown that PKV may 

play a role in gibberellic acid (GA) signaling. While infection by certain strains of PSTVd results in 

transcriptional activation of pkv, it is not known if PSTVd directly binds to the PKV protein to trigger 

pathogenesis.  

Host responses to viroid infection 

The visible symptoms of viroid infection resemble those associated with many plant virus diseases 

and include stunting, epinasty, leaf distortion, vein discoloration or necrosis, vein clearing, chlorotic or 

necrotic spots, mottling and necrosis of leaves, and (rarely) death of the entire plant. As discussed by 

Diener [51], this similarity in symptomology suggests that the host metabolic pathways affected by 

viroid and virus infection are very similar. At the cellular level, viroid infection has been associated 

with disruption/proliferation of the plasma membrane as well as various abnormalities affecting the 

chloroplast and cell wall. Members of the Avsunviroidae including ASBVd or PLMVd replicate in the 

chloroplast; thus, their ability to disrupt chloroplast structure, thereby leading to leaf chlorosis and 

bleaching, is not unexpected [22,26]. Effects on chloroplast metabolism may be a more common 

consequence of viroid infection than generally recognized, however, because PSTVd and several 

related viroids replicating in the nucleus have similar effects. 

At the molecular level, the effects of viroid infection on host gene expression have been examined 

at both the transcriptional and post-transcriptional levels. Several studies have described the effect of 

viroid infection on the transcription levels of individual genes. For example, viroid infection of tomato 

results in increased transcription of stress-induced and defense-related genes, including those encoding 

pathogenesis related (PR) proteins, PR1a and PR1b, and β-1, 3-glucanases, among others; in this 

respect, the plant response to viroid infection is similar to the response to bacterial, fungal, and/or viral 

infection [52-54]. In addition to transcriptional activation of host genes, PSTVd infection of tomato 

also results in reduced transcription of the LeExp2 expansin gene, suggesting that stunting results from 

restricted cell expansion [31]. Growth reduction in citrus caused by infection with Citrus exocortis 

viroid (CEVd) was correlated with reduced levels of gibberellin 20-oxidase mRNA [55].  

As described earlier, PSTVd infection of tomato results in the transcriptional activation of the 

serine-threonine protein kinase-encoding pkv gene. Further studies focused on the biological role of 

PKV in plant development revealed that over-expression of PKV in tobacco resulted in dwarfing and 

reduced root formation, similar to symptoms of PSTVd infection in tomato [48]. Hormone 
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supplementation and gene expression analyses suggested that gibberellic acid biosynthetic and/or 

signaling pathways are regulated by PKV, resulting in lower levels of active GAs and a resulting dwarf 

phenotype. While both positive and negative signaling components in GA signal transduction 

pathways have been characterized, and include the DELLA proteins and bZIP transcriptional 

activators/repressors [56,57], their role in biochemical pathways responsible for the dwarfing 

phenotype in viroid-infected plants is not yet understood. 

Host responses to viroid infection are complex and may involve crosstalk between hormonal and 

defense-signaling pathways. Unlike viroid-infected tomato plants, transcription of PR genes is not 

induced in tobacco plants that over-express PKV, suggesting that pkv downstream signaling is not 

through salicylic acid- or jasmonic acid-dependent pathways. The putative promoter region of pkv 

contains G- (CACGTG) and H-box (GGTAGG) cis elements [47] which are known to interact with, 

and to be transcriptionally activated by, bZIP transcriptional factors. These cis elements are thought to 

be responsible for early responses to pathogen attack [58], but they also function in the regulation of 

genes by developmental stimuli [59]. The genes encoding PKV and the PR proteins may be 

transcriptionally activated by the same bZIP transcription factors but, in tomato, their gene products 

appear to diverge into separate signaling pathways. There may also be spatial and temporal regulation 

of the host response to viroid infection. A more global analysis of gene expression may provide 

answers to these questions.  

Only two published studies [60,61] have examined the effects of viroid infection at the 

transcriptional level. Using a collection of 1,156 partial tomato cDNA clones obtained by PCR-based 

cDNA library subtraction, Itaya et al. [60] compared changes in gene expression induced by mild and 

severe strains of PSTVd with those caused by Tobacco mosaic virus (TMV). Of 55 genes whose 

expression levels were altered by viroid infection, approximately one-third were also affected by 

TMV. These genes encode products involved in defense/stress responses, cell wall structure, 

chloroplast function, and protein metabolism. One of five up-regulated genes detected by differential 

display analysis of Etrog citron leaves infected by Citrus viroid III encodes a calmodulin-related 

suppressor of RNA silencing [61]. Clearly, viroid infection triggers a complex series of host responses, 

but additional studies using larger arrays and improved technologies (e.g., high through-put cloning 

and sequencing) are required to identify individual signaling pathways involved. A recent analysis of 

changes in Arabidopsis gene expression associated with geminivirus infection, for example, uncovered 

5,365 genes that are differentially expressed 12 dpi [62]. The Affymetrix ATH1 GeneChip used for 

this analysis contains probes for approximately 24,000 genes. 

Role(s) of RNA silencing in viroid pathogenesis  

Over the last decade, small (20-30 nt) RNAs have emerged as critical regulators of eukaryotic gene 

expression, and many excellent reviews summarizing progress in characterizing the diverse pathways 

and regulatory mechanisms involved have appeared [e.g., 63-67]. The first evidence that RNA 

silencing might play a key role in modulating viroid-host interaction appeared in 1994 when 

Wassenegger et al. [68] reported that certain PSTVd cDNAs became specifically methylated following 

introduction into the tobacco genome via Agrobacterium-mediated leaf-disc transformation. The 

involvement of small RNAs in this process was not yet apparent, but one eventual link to RNA 
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silencing was clear; i.e., methylation was dependent upon viroid replication, and non-infectious 

PSTVd cDNAs remained unmethylated. Several years later as interest in RNA silencing as a key 

regulator of eukaryotic gene expression was rapidly increasing, several groups reported the presence of 

small, viroid-related RNAs in plants infected via conventional routes of inoculation. A recent review 

summarizing the evidence that RNA silencing plays a major role in viroid pathogenesis and evolution 

[69] concludes with a model that links synthesis of trans-acting small interfering RNA (ta-siRNA) 

with viroid replication and pathogenesis. We focus here on several gaps in this evidence where 

additional studies appear most promising.  

As shown in Table 1, the two currently recognized broad classes of plant small RNAs - microRNAs 

(miRNAs) and small interfering (si)RNAs – differ in several important respects. In Arabidopsis, four 

different DICER-LIKE (DCL) activities and a variety of other proteins (including as many as six 

RNA-dependent RNA polymerases) are involved in small RNA synthesis. Cleavage of the respective 

precursor molecules releases different sized small RNAs, and genetic analysis has revealed 

considerable overlap/redundancy in DCL activity. Viroid-derived (vd)siRNAs have been detected in 

plants infected by several different viroids, some replicating in the nucleus (PSTVd, CEVd, HLVd, 

and HSVd) and others in the chloroplast (i.e., ASBVd). There is no consistent relationship between 

(vd)siRNA concentration and symptom severity, but development of visible symptoms in PSTVd-

infected plants is accompanied by a shift from 21-22 to larger 24-nt siRNAs [70].  

Table 1. Major pathways of plant small RNA synthesis. 

 miRNA synthesis siRNA synthesis 

Dicer DCL1 DCL2 DCL3 DCL4 

Precursor Pri-miRNA 

 

   

Primary product 

(size) 

miRNA 

(21-nt) 

siRNA 

(22-nt) 

siRNA 

(24-nt) 

siRNA 

(21-nt) 

     

Downstream 

events 

Transcript cleavage  DNA and histone 

methylation 

 

     

Additional factors 

involved 

RDR6 

DCL4 > DCL2  

 RDR2 

RNA pol IV 

 

     

Secondary product Ta-siRNAs    

 

Several lines of evidence suggest that a significant proportion of (PSTVd)siRNA is derived from 

the genomic RNA. Incubation of PSTVd or PLMVd RNA transcripts with DCR-containing extracts in 

vitro results in the release of ~21-nt small RNAs [71,72]. Sequence analysis of PSTVd [70,71] and 

CEVd [73] siRNAs recovered from infected tomato plants indicates that a large majority of 21-nt 

(vd)siRNAs originate from “hotspots” on the genomic RNA that do not include the pathogenicity 

domain (a portion of the genome known to play a key role in modulating PSTVd symptom 
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expression). To date, the amplification and cloning methodologies used for (vd)sirRNA analysis have 

been 5’-ligation-dependent; thus, molecules with modified 5’-termini may have been severely under-

represented. While the distribution of PSTVd-related small RNAs isolated from transgenic tomatoes 

expressing a less-than-full-length PSTVd hairpin RNA appears very similar to that observed with 

infected plants [74], a large proportion of the siRNAs generated by incubation of dsPSTVd RNA with 

recombinant Dicer in vitro were derived from the pathogenicity domain [71]. New and improved “deep 

sequencing” strategies will undoubtedly lead to significant changes in current ideas regarding 

(vd)siRNA biogenesis. 

How (vd)siRNAs induce disease in susceptible hosts is not yet clear. GFP-reporter genes fused to 

partial sequence of PSTVd are silenced when expressed in PSTVd-infected plants [71,76] indicating 

that (PSTVd)siRNAs can directly target host mRNAs for RISC-mediated degradation. Interestingly, 

PSTVd replication itself appears resistant to RNA silencing (71; for an opposing view, see 77). Viroid 

siRNAs might also act indirectly by altering levels of host siRNA metabolism. For example, miRNA-

based regulation is integral to pathways controlling plant growth and development, and miRNA 

biogenesis is known to be affected by both abiotic and biotic stresses [64]. Certain symptoms such as 

epinasty and rugosity commonly associated with viroid infection reflect changes in leaf developmental 

patterns, so this question needs to be addressed. In the case of CEVd-infected tomato, however, the 

answer appears to be “No”. Expression levels of four miRNAs, transcripts encoding the DCL1 and 

AGO1 activities required for miRNA synthesis, as well as two miRNAs regulating DCL1 and AGO1 

expression were not affected by CEVd infection [73].  

A recent study from the Pallás laboratory [78] showing that symptom development in transgenic 

Nicotiana benthamiana plants that express a dimeric form of HSVd is dependent upon expression of 

RNA-dependent RNA polymerase 6 (RDR6) adds yet another level of complexity to this situation. In 

non-transgenic plants, symptom development can be suppressed by growth at low temperatures (i.e., 

14o C), temperatures at which RNA silencing is also reduced [79]. As discussed by Gómez et al. [69], 

RDR6 plays a key role in tasiRNA synthesis, and the template for (HSVd)ta-siRNA synthesis may be 

the monomeric linear progeny released when DCL cleaves multimeric HSVd (+)strand RNA within a 

so-called “trihelical region” formed by base-pairing between two copies of an imperfect inverted 

repeat in the upper portion of the C domain (80; see also the accompanying review by Flores). In 

contrast to the intramolecular nature of this HSVd cleavage reaction, cleavage of cellular (pre)ta-

siRNAs requires miRNA binding. Figure 3 shows some of the pathways by which (vd)siRNAs may 

influence host gene expression, thereby resulting in visible disease.  
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Figure 3. Schematic overview of viroid pathogenicity illustrating both direct and indirect 

interaction between the viroid genome and host cell. As discussed by Gomez et al. [69], 

RNA silencing mediated by (vd)ta-siRNAs appears likely to play a major role in disease 

induction by viroids like PSTVd or HSVd that replicate in the nucleus. The resulting 

cleavage of host mRNAs could lead to either loss or gain of function at protein level. 

PSTVd (and presumably other viroid RNAs) also activates at least two protein kinases, one 

of which (PKV) may be associated with the plasma membrane. Activation of the signaling 

cascades containing these kinases would then lead to perturbations in plant defense and 

hormone signaling pathways. Very little is known about siRNA synthesis associated with 

viroid replication in the chloroplast. Viroid replication in both the nucleus and cytoplasm 

proceeds via a rolling circle mechanism (indicated by open circles with opposing arrows). 

For viroids like PSTVd that replicate in the nucleus, various stages of replication appear to 

be localized in either the nucleoplasm or the nucleolus [75].  
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Potential targets of viroid-mediated RNA silencing 

Microarray analysis and other forms of transcriptome profiling allow the study of host-pathogen 

interactions in the context of entire biochemical or developmental pathways. As discussed in several 

recent reviews [e.g., 81-83], virus infection has been shown to i) induce a variety of plant defense and 

stress responses and ii) down-regulate other genes with potential roles in plant growth and 

development. Processes affected include hormone and developmental signaling, transport in the 

vascular system, cell reprogramming, RNA silencing, and protein modification/ 

relocation/degradation. Salicylic acid (SA)-mediated signaling plays a key role in compatible 

interactions between RNA viruses and their plant hosts [82]; for small DNA viruses like Cabbage leaf 

curl virus whose genomes are dependent on the DNA replication machinery of the host, infection 

results in altered expression of numerous cell cycle-associated genes [62]. Similarities in the visible 

symptoms induced suggest that plants respond to the presence of viroids and viruses in a very similar 

fashion, but this hypothesis has yet to be critically tested. 

At the present time, PSTVd and its experimental host, tomato, provide the most suitable viroid/host 

combination for transcriptome profiling studies. Arabidopsis would normally be the host of choice for 

such studies, but unknown factors severely restrict viroid replication and movement in this model plant 

[84]. Sequencing of the tomato genome is now almost 50% complete, and several critical 

bioinformatics tools have recently been added to the Tomato Functional Genomics Database 

(http://ted.bti.cornell.edu/); i.e., sRNA and miRNA databases as well as web-based tools to predict 

sRNA:mRNA interactions and identify changed pathways and biological processes from gene/protein 

expression and metabolite profile datasets. Our laboratories are currently comparing the changes in 

transcriptome profiles associated with PSTVd infection in two different tomato cultivars with those 

observed in transgenic plants expressing a noninfectious PSTVd hairpin RNA [6]; analysis of results 

from preliminary studies is now complete, and results from the entire study should be available soon. 

Among the questions that can be addressed using these new bioinformatics tools: What proportion of 

down-regulated genes contain potential binding site(s) for (PSTVd)siRNAs? Is there evidence for 

mRNA cleavage at the predicted binding sites? 

Beyond genes and pathways… 

PSTVd (and presumably other pospiviroids) is known to accumulate in the nucleolus of infected 

cells where its presence is associated with the redistribution of small nucleolar RNA U3 [75,85]. The 

nucleolus is a dynamic subnuclear structure with roles in ribosome biogenesis, mediation of cell-stress 

responses and regulation of cell growth, and its structure and proteome are constantly changing in 

response to metabolic conditions. Many RNA and DNA viruses interact with the nucleolus to usurp 

host-cell functions and recruit nucleolar proteins to facilitate virus replication [86], and transcriptome 

profiling may reveal whether or not viroid infection has similar effects. Datasets for geminiviruses [62] 

and a plant rhabdovirus that replicates in the nucleus [87] are available for comparison. It is not 

difficult to imagine how this still poorly-understood process could disrupt normal transport of host 

proteins and RNAs – with far-reaching consequences on both regulatory and metabolic pathways. 

Finally, recent progress in dissecting the mechanisms through which virus-host interactions affect 

host physiology [88] suggest that it may be time to take a fresh look at the metabolic changes 
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associated with viroid infection. For example, the same phenylpropanoid-derived isoflavonoids that 

serve as primary defense compounds and key signaling molecules mediating plant-microbe 

interactions [89] also act as anti-oxidants that buffer plant cells against changes in redox status. Redox 

potential appears to have been used for signal transduction from very early evolutionary times, and 

changes in cellular redox status have been shown, in animals, to regulate signal transduction and many 

other important physiological processes [90]. Senescence and disease-related responses involving 

programmed cell death have long been known to increase the rate and alter the pattern of 

phenylpropanoid biosynthesis [91]. Because secondary metabolites like the products of 

phenylpropanoid metabolism are transported across membranes by specific carrier proteins, it may be 

possible to use changes in apoplastic phenolics to monitor metabolic changes associated with viroid 

infection inside host cells. Moreover, crosstalk between salicylic acid/jasmonic acid plant defense 

signaling pathways and hormone signaling pathways [92] likely plays a role in viroid pathogenesis and 

presents challenges in unraveling the complex interactions leading to symptom formation. 
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