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Abstract: As a prevalent progressive neurodegenerative disorder, Parkinson’s disease (PD) is char-
acterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic)
innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several famil-
ial forms of PD have been reported to be associated with several gene variants, most cases in nature
are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous
epidemiological studies during the past two decades have shown positive associations between PD
and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy
metals as well as traumatic brain injury. Other environmental factors that have been implicated
as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water
consumption, and rural residence. In this review, we summarize the environmental toxicology of PD
with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms
associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT),
dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular,
animal, and human studies of PD provides information for possible intervention strategies aimed at
halting the initiation and exacerbation of environmentally linked PD.

Keywords: environmental factors; pesticides; metals; mitochondrial dysfunction; neuroinflammation;
histone modification; protein misfolding; oxidative stress; neurotoxicity; Parkinson’s disease

1. Introduction

PD is a slowly progressing neurodegenerative disorder that predominantly affects
elderly populations. Worldwide, up to 10 million people suffer from PD, and approximately
60,000 more Americans are diagnosed with PD every year. The overall incidence rate of
PD is expected to significantly increase over time. According to the US Census Bureau
population projections, 680,000 people in the U.S. older than 45 had PD in 2010, whereas in
2020, the number had risen to approximately 930,000, and by 2030, the number is expected
to be 1,238,000. Clinically, PD is associated with various motor symptoms, including
bradykinesia, resting tremor, and rigidity, and a broad spectrum of non-motor symptoms
involving hyposmia, sleep disorders, depression, constipation, early satiety, and excessive
sweating [1,2]. As a prevalent movement disorder, this disease dramatically impacts
the quality of life of affected patients and imposes a long-term socioeconomic burden
on families, the healthcare system, and society. According to a systematic analysis of
the global PD burden sponsored by the Bill and Melinda Gates Foundation, its burden
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is substantially increasing due to a longer life expectancy and the consequent increasing
number of elderly people, longer disease duration in individuals, as well as the contribution
from environmental factors [3].

PD is recognized pathologically by the progressive loss of DAergic neurons in the
substantia nigra pars compacta (SNpc) and aberrant deposition of misfolded proteins
(α-synuclein aggregation) in Lewy neurites and Lewy bodies (LB). Compared to DAergic
neurons in the SNpc, those in the ventral tegmental area (VTA) are more resistant to de-
generation in PD. Although it has been more than 200 years since PD was first medically
identified as a neurological syndrome by James Parkinson, the pathogenesis of PD remains
unresolved. Previous studies have implicated some disease-related genetic alleles to the
onset of PD, such as SNCA, LRRK2 (PARK8) and VPS35 (PARK17) associated with the
autosomal-dominant forms of PD, or parkin (PARK-2), PINK1 (PARK6), DJ-1 (PARK7),
and ATP13A2 (PARK9) that cause autosomal-recessive PD [4,5]. However, with familial
PD only accounting for less than 10% of PD occurrences, most cases are sporadic. Over
the past decades, mounting evidence from meta-analyses of mechanistic research and
epidemiological studies confirms that the risk for sporadic PD is modulated by environ-
mental factors [6–8]. This directs attention to the potential environmental risks, such as
traumatic brain injury, cigarette smoking, living in a rural area, well water consumption,
farming, agricultural land use, and occupational exposure to metals. A systematic review
of extensive multiple PD case studies has also validated that the factors above, particularly
pesticides/herbicides, solvents, and metals, are strongly associated with an elevated risk
of developing PD in the exposed population [8–11]. Although the male bias (i.e., 1.4-fold)
did not change significantly over the years, more frequent occupational exposures in men
might contribute to this gender difference [12].

Several pesticides/herbicides have been implicated in the etiology of PD. Among
them, the synthetic meperidine analog MPTP has been widely used to mimic pathophys-
iological features of PD in multiple organisms, including mice, cats, guinea pigs, and
nonhuman primates [13]. PQ is a neurotoxic pesticide that is still widely used in the world.
It shares similarities in structure with MPTP and is known to increase oxidative derivatives.
Prospective case-control epidemiological studies reveal that PQ exposure increases PD risk
two-fold [8]. Similar to PQ, rotenone, a natural chemical produced by leguminous plants
native to Southeast Asia and South America, can induce loss of nigral DAergic neurons and
behavioral changes in humans. However, unlike PQ, rotenone directly inhibits mitochon-
drial complex I and results in mitochondria deficits [14]. DAergic neurons are responsible
for DA metabolism and are autonomous pacemakers, which places them under intense
bioenergetic demand and makes them more vulnerable to rotenone-induced oxidative
stress compared to non-DAergic neuron populations [15,16]. The synthetic pesticide DDT
has been reported to induce the formation of extracellular vesicles [17]. Additionally, DDT
disrupts DA transport by inhibiting the vesicular monoamine transporter (VMAT2) and the
plasma membrane DA transporter (DAT) [18]. The organochlorine pesticide dieldrin has
been shown to trigger epigenetic modification, perturb proteasomal homeostasis, and acti-
vate the apoptotic protein kinase C delta (PKCδ) signaling pathway [19,20]. Some evidence
also reveals that the severity of all pesticide neurotoxicity depends on the duration and
dosage of the exposure, though high-quality epidemiological proof has been challenging
to obtain in the real world as the actual exposure duration is difficult to track and most
PD subjects only get diagnosed at the onset of late-stage symptoms [21,22]. In addition to
pesticides, several heavy metals have also been associated with PD pathogenesis. Excessive
exposure to Mn leads to its accumulation in the human brain and triggers neurotoxicity,
even resulting in the development of manganism, a PD-like movement disorder [23]. An-
other metal pollutant, vanadium (V), which easily crosses the blood-brain barrier (BBB),
often occurs with other metals in occupational exposure, particularly Mn. V generates
iron-mediated reactive oxygen species (ROS) and therefore induces neurotoxic damage
to the brain [24]. Oxidative stress from most of these environmental neurotoxins leads to
disruption of calcium (Ca2+) homeostasis [25–27]. Studies using cell culture models have
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demonstrated that transient increases of intracellular free Ca2+ ions may induce cytoplas-
mic aggregates of α-synuclein [26]. Interestingly, exposure to environmental neurotoxins
not only impacts motor symptoms but also influences the host gut microbiome [28,29].

In addition to neurotoxic pesticides/herbicides and metals, traumatic brain injury
(TBI) has also been linked as a risk factor for several neurodegenerative diseases, but the
strongest emerging evidence is associated with the development of PD. Inflammation,
metabolic dysregulation, and protein accumulation have been implicated as potential
mechanisms through which TBI can initiate or accelerate PD. Alpha-synuclein, amyloid
precursor protein (APP), hyper-phosphorylated tau, and TAR DNA-binding protein 43
(TDP-43), which are proteins closely associated with PD, are some of the most frequently
reported proteins upregulated following TBI [30].

A critical emerging question is therefore how these diverse neurotoxicants contribute
to the pathogenesis of PD. To address it, this review will focus on the chemical neurotox-
icity of some key pesticides and metals that may contribute to the disease, specifically
MPTP, rotenone, PQ, dieldrin, DDT, Mn and V. We will examine the evidence regarding
their molecular and cellular signaling on neurodegeneration from various mechanistic
perspectives: mitochondrial dysfunction, neuroinflammation, oxidative stress, histone mod-
ification, and protein misfolding/aggregation, as well as a review of our recent findings
(Figure 1 and Table 1) [24,31–34].Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  4 of 32 
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Figure 1. Cellular stress signaling in neurotoxicant-induced neuronal degeneration. Mitochondrial
dysfunction is a central driver of PD and plays a significant role in PD pathogenesis. In the brain,
MPTP is first metabolized to MPP+ by the enzyme MAO-B in glial cells. Upon uptake via DA
transporter, MPP+ inhibits mitochondrial complex I. Similar to MPTP, rotenone, dieldrin, and PQ
inhibit the mitochondrial respiratory chain, induce increased ROS release, and alter epigenetic
modifications directly or indirectly via mitonuclear communication. Rotenone and dieldrin can also
favor ROS production through PKCδ and NOX1, while PQ induces the generation of superoxide by
transforming from PQ2+ to PQ+. Like other pesticides, DDT exposure induces oxidative stress, and
it also causes mitochondrial impairment by altering the gene expression of the apoptosis regulator
Bcl-2. DTT also induces neuroinflammation through the NFκB pathway. Similarly, excessive Mn
increases the levels of inflammatory mediators, such as NLRP3, IL-1β, IL-6, and TNFα. Mn overload
likely puts mitochondria under stress and promotes α-synuclein aggregation. V overexposure can
not only induce neuroinflammation but also can bring about ROS production and DNA damage.
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Table 1. Summary of the role of environmental risk factors in Parkinson’s disease.

Neurotoxins Pathogenesis Mechanism of Toxicity Molecular and Cellular
Alterations References

MPTP

- DAergic neurons in SNPc ↓
- Striatal DA ↓

- Neurodegeneration in locus
coeruleus

- α-synuclein ↑
- Astrogliosis and microglial

activation

- Crosses BBB and metabolized
into the toxic cation MPP+

- Taken up by DA neurons via DAT
- Concentrates in mitochondria

and causes complex I defect
- Reactive oxygen species ↑

- Mitochondrial fragmentation
and mitophagy ↑

- Mitochondrial biogenesis ↓
- Intracellular Ca2+ ions ↑

- NFκB- dependent transactivation
of iNOS, ↑ JNK and Bax,

cytochrome c release, and
caspase-3 and -9 activation

leading to apoptosis

[13,35–49]

Rotenone

- DAergic neurodegeneration
- α-synuclein rich LB-like

inclusions
- TH ↓

- Microglial activation and
augmented neuroinflammation

- Crosses BBB
- Mitochondrial complex I

inhibition
- Reactive oxygen species ↑

- Microtubule destabilizing activity

- ATP synthesis ↓
- Mitochondrial fragmentation ↑

and altered mitochondrial
fission/fusion and biogenesis

- Intracellular Ca2+ ions ↑
- Altered

PI3K/Akt/GSK-3β/CREB
signaling pathway

- Mitochondrial impairment by
Parkin ↓ and PINK1 ↑

- Caspase-3 and -9 activation
leading to apoptosis

[50–72]

Paraquat
- DAergic neurons in SN ↓

- α-synuclein accumulation and
aggregation

- Enters DAergic neurons via DAT
- Generates oxygen-free radicals

- Produces H202 via mitochondrial
complex III

- Oxidative stress, cytochrome c
release, caspase-3 and -9

activation, mitophagy and
apoptosis

- Ca2+ dyshomeostasis
- Altered DA signaling pathway

- Dysregulation of histone
acetylation

[27,73–79]

DDT Inconclusive evidence

- CNS excitation by sustained
depolarization of nerve membrane
- Mitochondrial complex II and V

inhibition

- Cytosolic Ca2+ release and
activation of apoptotic factors

- Bcl2 ↓ and apoptosis induction
through caspase-3 and -9 and

GSK-3β
- p53, NFκB and caspase-3 ↑

- Inhibition of DAT and VMAT

[18,80–84]

Dieldrin - DAergic neurodegeneration

- Crosses BBB
- May impair mitochondrial

electron transport chain
- Exacerbates MPTP and
α-synuclein pre-formed
fibril-mediated toxicity

- Mitochondrial dysfunction and
oxidative stress

- Caspase-3 activity ↑ and
Fyn-mediated PKCδ activation

followed by apoptosis
- Ubiquitin-proteasome system

dysfunction
- Histone 3 and 4 acetylation ↑

[19,20,85–90]

Manganese

- DAergic neurons in SNPc ↓
- Striatal DA ↓

- Olfactory dysfunction
- Microglial activation

- Impaired neurogenesis

- Reactive oxygen species ↑

- Mitochondrial dysfunction and
Ca2+ homeostasis disruption

- Altered mitochondrial
fission/fusion and biogenesis

- Apoptosis-associated activation
of PKCδ

- Release of proinflammatory
cytokines IL-1β, IL-6 and TNFα

- Epigenetic dysregulation

[34,91–114]

Vanadium

- DAergic neurotransmission in
olfactory bulb ↓

- Hippocampal CA1 pyramidal
and cerebellar Purkinje cells ↓

- Changes in catecholaminergic
levels

- Astrogliosis and microgliosis

- Crosses BBB
- Reactive oxygen species ↑

- Mitochondrial oxidative stress
- Cytochrome c release, caspase-3

and -9 activation, and PKCδ
activation leading to apoptosis

[115–123]

2. MPTP

Although environmental risk factors for PD have gained considerable attention during
the 20th century, definitive proof of the implications of any specific agent as a cause of PD
is still inconclusive [124]. The most compelling evidence emerged with discovery of the
synthetic heroin analog MPTP in 1982 when several drug users in California developed sub-
acute onset of severe parkinsonism [125]. It is now well established that MPTP induces, in
humans, nonhuman primates, and mice, irreversible and severe motor abnormalities repli-
cating all the clinical features of PD, including tremor, rigidity, bradykinesia, and postural
instability. Neuropathological data in both primates and mice indicate that MPTP primarily



Int. J. Mol. Sci. 2022, 23, 10808 5 of 30

damages the nigrostriatal DAergic pathway in a pattern similar to that seen in PD patients,
including the selective loss of DAergic neurons in the SNpc and a significant reduction in
striatal DA content [13]. As in PD, the toxin also induces additional neurodegeneration in
the locus coeruleus [35,36]. Moreover, reminiscent of PD in humans, an excellent response
to levodopa and DA receptor agonists and the development of motor complications after
long-term manipulation of levodopa were observed in MPTP-treated primates [126]. There-
fore, MPTP administration has been extensively used as a toxicant-induced PD model for
studying the disease.

Evidence from epidemiological studies on MPTP showing acute and irreversible Parkin-
sonism in human and non-human primates demonstrates its inducement of mitochondrial
dysfunction and oxidative stress in PD [125,127]. MPTP is a lipophilic molecule that can
easily cross the BBB and be metabolized to 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP)
in a reaction catalyzed by the monoamine oxidase B (MAOB) in glial cells. This unstable
metabolite is further metabolized to the pyridinium ion (MPP+, 1-methyl-4-phenylpyridinium
iron), the active toxic compound [36]. MPP+ is then selectively taken up by the DA neurons
via the dopamine transporter (DAT), where it is concentrated in mitochondria, causes the
complex I defect and in turn produces ROS, activating microglia, promoting α-synuclein
aggregation, and leading ultimately to cell death [36–41]. MPP+ causes mitochondrial O2

−

formation, which reacts with endogenous ·NO to form ONOO−. This increases oxidative
stress resulting in cyclosporin A (CsA)-sensitive mitochondrial depolarization and Ca2+ ef-
flux by opening a nonspecific pore in the mitochondrial inner membrane, which leads to
oxidant-induced cell death and contributes to the neurotoxicity of MPTP and MPP+ [25].
Additionally, MPP+ induces Drp1-dependent mitochondrial fission causing mitochondrial
fragmentation, which facilitates mitophagy and enhances neuronal death [47,48]. Upon treat-
ment of cells with MPP+, the mitochondrial biogenesis-regulating proteins, SIRT1 and PGC1α,
are substantially decreased via increased pAMPK [49]. MPP+-induced oxidative stress can
also activate transient receptor potential melastatin type 2 (TRPM2) channels, which are Ca2+

permeable non-selective channels highly expressed in SN neurons, leading to Ca2+ influx that
increases calpain activation and subsequent apoptosis [26]. MPP+ can also be taken up by the
DAergic synaptic vesicles via vesicular monoamine transporter 2 (VMAT2) [128–130]. This
uptake may cause the cytoplasmic distribution of DA, leading to increased DA-dependent
oxidative stress [131]. Many downstream apoptotic events that are responsible for MPTP-
mediated degeneration of SNpc neurons have been identified. These include NFκB-dependent
transactivation of iNOS [42], up-regulation of JNK [43] and Bax [44], release of cytochrome c
and activation of caspase-3 and caspase-9 [45]. In in vivo studies, subacute MPTP exposure
increased α-synuclein levels and the number of astrocytes and damaged the BBB without
visible motor deficits [46]. However, chronic exposure in adult and aged mice leads to motor
defects along with progressive neurodegeneration and induced microglial activation and
astrogliosis. Contrary to acute treatments, long-term exposure does not induce mortality [132].
Although some argue that the MPTP-treated monkey PD model lacks DAergic neuronal loss
beyond the nigrostriatal system, critical data display a pattern of DAergic denervation as
well as olfactory dysfunction resembling PD patients. The comparative evidence suggests the
chronically MPTP-treated nonhuman primate model would be a good choice when studying
non-motor features [133].

3. Rotenone

Rotenone is a botanical pesticide derived from the roots and stems of certain tropical
plants. It was widely used as a chemical to control insect pests of crops, animals, and
households, and is still used in fisheries management. Since its discovery in the 1930s,
rotenone was believed to be relatively harmless to warm-blooded vertebrates, including
humans, and was particularly used in organic farming in the form of sprays and other
formulations as a broad-spectrum insecticide because of its non-synthetic nature [134–136].
Human occupational exposure to rotenone can occur by inhalation during its extraction
and preparation, as well as during its formulation and application as a pesticide. Exposure
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to rotenone can also occur by ingestion of contaminated food and water [135,137]. The
practice of mixing different pesticides, coupled with variable concentrations and personal
protective measures, makes it difficult to estimate occupational exposure to rotenone [138].
According to the Environmental Protection Agency (EPA) Reregistration Eligibility Decision
for Rotenone approved in 2007, rotenone causes high acute toxicity on exposure by oral
and inhalation routes (Category I) and low acute toxicity on exposure via the dermal route
(Category IV) [139]. However, up until 2006, rotenone was frequently used in the US on
food crops [135]. Studies on rotenone persistence in soil and residue in food are sparse. The
half-life of rotenone residues under field conditions is reported to be less than 4 days on
lettuce, tomatoes [140], cabbage and soil [141], and 4 days on olives, with residue levels
higher than maximum residue levels present in olive oil [142]. Soil temperature has been
shown to affect rotenone degradation under both field and lab conditions [141,143]. The
EPA effectively canceled the registration of rotenone for food uses by 2011 due to the lack
of sufficient safety data to establish maximum contaminant levels, and since then only
supports rotenone registration for piscicidal purposes as no discernible risk of exposure to
toxic rotenone levels is purported from piscicidal use [139,144]. While the EU and Canada
also phased out and banned all non-piscicidal sales of rotenone, its current use in global
organic farming has been difficult to estimate. Rotenone continues to be exempt from
requirements for tolerance [145], so the risk of exposure from imports continues [146].

Rotenone is known to be a potent toxin that inhibits the transfer in complex I of
electrons from iron-sulfur clusters to ubiquinone in the mitochondrial respiratory chain,
thus blocking oxidative phosphorylation, compromising ATP synthesis [50] and generating
ROS [51,52]. Additionally, rotenone has been demonstrated to have microtubule destabiliz-
ing activity and to suppress microtubule assembly [53]. Rotenone-induced mitochondrial
damage and microtubule dysfunction may lead to apoptosis [51,147] and inhibit cell prolif-
eration [148], respectively. Being a lipophilic compound, rotenone can easily cross biological
membranes including the BBB [54]. Mitochondrial complex I inhibition and oxidative stress
have been characterized as the pathophysiologic mechanisms underlying PD [149], and
epidemiologic evidence suggests a link between chronic rotenone exposure and PD in
humans [14,138]. A case-control study by Dhillon et al. [150] found a link between self-
reported occupational and environmental exposure to rotenone and the risk of developing
PD in an east Texas population. Farmers with occupational exposure to pesticides and
their spouses from Iowa and North Carolina were assessed in the Agricultural Health
Study, and while effects of other pesticides could not be excluded, associations were found
between rotenone use and risk of PD [151]. The Farming and Movement Evaluation Study
linked rotenone to PD regardless of protective glove use in a small sample of pesticide
applicators [152]. One epidemiological study also reported a higher incidence of PD in
farmers with prolonged exposure to pesticides like rotenone in the French agricultural
cohort AGRICAN [153].

Experimentally, rotenone has proven to mimic the pathological hallmarks and neu-
rochemical features of PD in various animal models [54,154]. Rotenone PD models show
great promise for the investigation of PD-related pathology, neuropathogenesis and gene-
environment interactions [54]. Studies show that chronic exposure to rotenone leads to
behavioral symptoms of PD in rats whose brains histologically exhibit progressive degener-
ation of the DAergic neuronal system as well as α-synuclein-rich LB-like inclusions [55–58].
Similarly, chronic oral administration of rotenone induces DAergic neurodegeneration and
motor deficits in C57BL/6 mice [155]. An intrastriatal rotenone rat model showed less TH
immunoreactivity in the striatum and SN, indicating a loss of DA neurons [59]. Rotenone
treatment of rat embryonic midbrain neuronal cultures selectively induced DAergic neu-
rodegeneration due to microtubule depolymerization, which leads to disruption in vesicular
transport and oxidative stress [156]. Studies by Chu et al. [60,61] reported rotenone induces
activation of the autophagy protein microtubule-associated-protein-1-light chain-3 (LC3)
and redistribution of cardiolipin to the outer mitochondrial membrane, thereby promoting
the mitophagy mechanism in both primary cortical and SH-SY5Y neuronal cells. Similarly,
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it was reported that rotenone induces LC3-positive autophagic vacuole formation, and
these vacuoles colocalize with α-synuclein aggregates via oxidative stress and mitochon-
drial dysfunction both in vitro and in vivo [157]. At high concentrations, rotenone also
affects peroxisome morphology and distribution induced by its microtubule destabilizing
activity in COS-7 cells, which affects the peroxisome–mitochondria redox relationship and
may contribute to PD pathogenesis [53].

Although their neuropathologies are somewhat variable, several studies have estab-
lished a link between rotenone toxicity and its relevance to PD. It was demonstrated that
rotenone decreases phospho-CREB levels and causes degeneration of human DAergic SH-
SY5Y cells via the PI3K/Akt/GSK-3β/CREB signaling pathway [62,63]. Rotenone increases
intracellular free Ca2+ ions, which activates calcium/calmodulin-dependent protein kinase
II and subsequently induces neuronal apoptosis [70]. Additionally, a calcium channel an-
tagonist prevented rotenone-induced apoptosis in patient-derived DAergic neurons [158].
Rotenone has been shown to promote α-synuclein aggregation and phosphorylation by
modulating the calcium/GSK3β signaling pathway in the catecholamine-secreting rat PC12
cells [159]. Silva et al. [160] characterized the biophysical interaction between rotenone
and α-synuclein using electron microscopy and Fourier transform infrared spectroscopy to
show that rotenone interacts with α-synuclein to accelerate its fibrillation. Ramalingam
et al. [64] reported that rotenone treatments induced α-synuclein aggregation in SH-SY5Y
cells and mouse midbrain and striatum, as well as reduced TH-positive cell viability.

Rotenone exposure contributes to early neuropathologic mechanisms in PD by al-
tering mitochondrial dynamics. Rotenone-exposed PC12 cells have smaller, fragmented
mitochondria and altered levels of proteins involved in mitochondrial fission, fusion and
biogenesis [71,72]. In a chronic rotenone exposure model, an early compensatory increase
in mitochondrial fusion was later accompanied by detrimental fission [161]. Another study
reported functional alteration of mitochondria in rotenone-treated rats and SH-SY5Y cells.
The mitochondria appeared abnormal with electron-dense inclusion bodies and both the
number of mitochondria and mitobiogenesis markers decreased [162]. Rotenone treatment
in SH-SY5Y cells and mouse midbrain and striatum downregulated Parkin expression and
upregulated PINK1 expression, which contributes to mitochondrial impairment, oxida-
tive stress and cell death [64]. Chronic rotenone exposure in the SN and striatum of an
experimental rat PD model downregulates TH signaling and the cytoprotective proteins
Parkin, DJ1 and Hsp70, upregulates Hsp60, and activates caspase-3 and caspase-9 [65].
Rotenone can also promote rapid mitochondrial fragmentation before inducing other cyto-
toxic cellular changes in primary cortical neurons [163]. Rotenone-induced neurotoxicity
is also attributed to NADPH oxidase-derived superoxide release from microglia [66]. In
a rotenone rat PD model, pronounced microglial activation occurred prior to DAergic
neuronal degeneration [67]. Our studies also show that rotenone treatment significantly im-
pairs mitochondrial respiration in mouse microglia and augments the neuroinflammatory
response by promoting microglial PKCδ and NLRP3 inflammasome activation via ROS
generation and autophagy dysfunction [68,69].

4. Paraquat

PQ is a widely used herbicide in many places around the world. Typical exposure to
PQ in humans happens through respiratory inhalation and dermal absorption [164–166].
In cases where proper PPE is worn, accidental PQ exposure through respiratory inhalation
remains below the threshold limit established by the National Institute for Occupational
Safety and Health (NIOSH) [166]. Dermal exposure to PQ is the most concerning. At levels
of 5 g/L of the PQ cation in solution, potentially fatal systemic poisoning may occur [165].

Experimental evidence suggests that PQ can dose-dependently generate oxygen-free
radicals that are highly damaging to mitochondria, causing oxidative stress, cytochrome
c release and caspase-9 recruitment, and eventually leading to mitophagy and apopto-
sis [73,78]. In rat brains, PQ has been observed to use complex III of the electron transport
chain to produce H2O2 [73]. The free radical H2O2 may also produce O2 and HO- [167].
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Additional studies in mice show that PQ can induce α-synuclein upregulation and ag-
gregation [79]. In zebrafish embryos, a 24 h exposure to 100 µM of PQ reduces maximal
respiration [168]. While no mortality or deformities were visible in the larvae, an up-
regulation of certain stress genes and mitochondrial dysfunction did occur, presumably
because of increased ROS production [73]. The mRNA levels in two components of the DA
signaling pathway, dat and drd3, were also altered by PQ exposure.

The neural toxicity of PQ is an additional area of interest. In its typical form, PQ is
known as PQ2+, and is taken up by DAT and OCT3 when in the presence of a reducing
agent or NADPH oxidase in microglia [74]. As PQ2+, it is not toxic, but as PQ+, it increases
ROS production and cytotoxicity [74,169]. DAT is the mechanism PQ uses to enter DAergic
neurons, while astrocyte entry is made possible through OCT3 [74]. In human SHSY-
5Y neuroblastoma cells, PQ causes oxidative stress through ROS production [75]. This
increases the rate of caspase-3 activation, leading to apoptosis and DNA fragmentation [75].
Depolarization of the mitochondrial membrane potential also occurs [76]. This study was
validated by a similar one in adult rats, which found that rats receiving intraperitoneal
injections of PQ thrice weekly showed ~65% DAergic neuron loss within the SN and
increased oxidative stress [76]. The SN may be uniquely sensitive to PQ because of its
lower percentage of calcium-D28k-containing neurons, which bind Ca2+ and can ameliorate
some degree of PQ toxicity [170]. Oxidative stress caused by PQ has also been shown to
decrease plasma membrane Ca2+-ATPase activity, leading to Ca2+ dyshomeostasis and
further toxicity [27].

Many people are routinely exposed to PQ. In Thailand, where PQ use is widespread,
agricultural field workers, especially pregnant women, had a significantly higher concentra-
tion of PQ within their urine and in their children’s meconium than those who did not [171].
Similar findings were reported for mothers who drank community well water, even if they
did not live or work on a farm [171]. A shockingly high number of their newborns, 55%,
had measurable PQ concentrations [171].

Epidemiological studies on adults have further clarified the potential link between
PQ exposure and developing PD later in life. One study focusing on specific gene types
in humans and the associated PD risk found that two variations of the GSTT1 gene had
completely different risks with PQ usage. Those with a GSTT1*0 genotype experienced
a 7.4-fold greater risk than those with a GSTT1*1 genotype when exposed to PQ [172].
This interaction remained after statistical accommodation for non-PQ pesticide usage [172].
Metabolic genetic variants appear to significantly change an individual’s associated risk of
PD due to specific toxicant usage. Despite some epidemiological evidence, the link between
PQ usage and PD remains a controversial subject. One common concern in self-reporting
studies of this type is that recall memory of specific pesticide use may not always be
accurate. Some studies also suggest that to increase PD risk, PQ exposure needs to co-occur
with one or more other common toxicants such as Maneb [173].

Due to the accumulating evidence pointing to the involvement of PQ in PD onset, epi-
genetic modification, especially of histone acetylation, has been under intense investigation.
Histone acetylation regulation is responsible for activating differential gene expression,
which is crucial throughout life in regulating cellular responses to the environment. Dys-
regulation of histone acetylation homeostasis can perturb gene expression with detrimental
effects. A previous study [77] from our group characterized the disrupted histone acety-
lation following PQ treatment in N27 DAergic neuronal cells. Exposure to PQ induced
acetylation accumulation on the core histone H3 yet kept the acetylation level of histone H4
unchanged in N27 cells. In addition, the PQ insult decreased histone deacetylase (HDAC)
activity, particularly HDAC4 and 7. Treatment with a histone acetyltransferase (HAT)
inhibitor, anacardic acid, protected against PQ-induced apoptotic cell death by suppressing
caspase-3 and PKCδ activity and thus blocked PQ-induced cytotoxicity [77]. These findings
suggest dysregulation of epigenetic posttranscriptional modifications of histones as an
emerging theme involved in PQ-induced neurotoxicity in DAergic neuronal cells.
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5. DDT

DDT is an organochlorine pesticide that has been implicated in PD. The popularity of
DDT reached its peak around World War II, as a pesticide used to control insect-transmitted
diseases such as malaria and typhus (116). DDT-controlled agricultural pests include the
European corn borer and the pink bollworm (116). Typical DDT exposure in humans occurs
through food consumption. Meat, dairy, poultry, and fish are the primary dietary sources
of DDT exposure [174]. Other routes of exposure, such as air and water contamination, are
not considered significant [175].

DDT is an effective pesticide and insecticide due to its mode of action. It moves
easily into cell membranes using passive diffusion via lipid complexes [176]. Primary
neurotoxicity of DDT occurs from CNS excitation enabled by the sustained depolarization
of the nerve membrane [80]. This is caused by the combined action of inhibiting both
calcium ion transport and the opening of potassium gates as well as by delaying the closing
of sodium ion channels [80]. The stereochemistry of DDT may change its neurotoxicity
pathway. R-DDT is considered more neurotoxic than S-DDT [81]. In a study looking at
PC12 cell exposure to R-DDT, it was found to upregulate p53, NFκB, and caspase 3 [81].
Depending on other toxicants present in the body, the transmembrane potential of the
mitochondria can be depressed through exposure to DDT, releasing Ca2+ into the cytosol
of the cell and triggering various apoptotic factors [84]. These results point toward a
cytotoxic pathway that causes apoptosis [81]. In contrast, exposure of PC12 cells to S-DDT
caused an increase in SOD, MDA, and HSP70 when compared to the R-form [81]; SOD
is an antioxidant commonly upregulated during mitochondrial stress, while MDA is an
oxidant. This points to S-DDT inducing oxidative stress rather than activating a cytotoxic
pathway. Additional studies suggest that DDT achieves this by inhibiting complexes II and
V, encouraging mitochondrial dysfunction and ultimately apoptosis [83,84].

The exact role of DDT and how it relates to PD are still much debated. In vitro studies
look promising. One study exposed SK-N-MC cells, which stably produce DA, to DDT [18].
The treated cells showed vesicular VMAT2 and DAT inhibition [18]. VMAT2 and DAT are
important for DA transportation, and their inhibition could explain some of the neurotoxic
effects of DDT. In mouse embryonic neuronal cells, treatment with DDT reduced the mRNA
and protein expression of Bcl-2 and induced apoptosis through caspase-9, caspase-3, and
GSK3β [82]. Unfortunately, in vivo studies are much more inconclusive. Exposing mice to
DDT at similar or slightly higher levels than the current environmental concentration had
no significant effect on stride length, open field activity, or any of the typical markers of
neurochemical changes in PD brains such as DAT, VMAT2, TH, α-synuclein aggregation
or oxidative stress [18]. A review on pesticide usage and PD heralded DDT not as a cause
of PD but as a biomarker of more serious pesticide exposure given its presence in PD
brains [18]. While DDT may not directly cause PD, some researchers have implicated DDT
in extracellular vesicle formation, which could distribute α-synuclein aggregates [177].

Currently, DDT is still in use in some countries for malaria-bearing mosquitos. DDT
binds Na channels by holding them open longer, which enhances the likelihood of action
potentials developing, thus creating a condition of hyperexcitability leading to the clinical
symptom tremors [178]. DDT mainly metabolizes to two major metabolites DDD and
DDE [18]. Increased serum DDE levels were shown to associate with elevated risk for
Alzheimer’s disease (AD) [179].

6. Dieldrin

Dieldrin was first synthesized in the US in 1946 and was commercially distributed
as an insecticide in 1950. It was thereafter extensively used to kill insects of public health
importance and on crops, such as corn and cotton, until the USDA canceled all uses of
dieldrin in 1970 [180,181]. Soon after that, in 1974, the EPA also suspended the use of dield-
rin for agricultural purposes but retained its use in termite control [182], which continued
till 1987 when most manufacturers canceled dieldrin registration for use in controlling
termites [85,183,184]. Despite not being in use for decades, dieldrin is a persistent pesticide
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that is ubiquitously distributed in the environment. Due to its lipophilic nature, dieldrin
bio-accumulates and bio-magnifies through terrestrial as well as aquatic food chains and
can cross the BBB [85,185,186] as this highly toxic insecticide targets the CNS. As an in-
secticide, dieldrin’s toxicological mechanism of action involves a potent blocking of the
GABA receptors, which leads to convulsions and other excitatory effects [85,187]. Dieldrin
is acutely toxic and carcinogenic to laboratory animals by inhalation and dermal and oral
routes, and the target organ for dieldrin intoxication in these animals is the liver [85,183].
Additionally, dieldrin was found to impair the mitochondrial electron transport chain in the
rat liver [87]. In humans, accidental and occupational exposure to dieldrin may occur from
ingestion or absorption through the skin. Dieldrin poisoning in humans, for which even
acute intoxication can be fatal, is characterized by convulsions and neurological symptoms,
such as headaches, dizziness, incoordination, and nausea [85,183].

Increasing evidence from epidemiological as well as in vivo and in vitro studies links
dieldrin exposure to DAergic neurodegeneration and PD [85,86]. A few epidemiological
studies from as early as the 1990s found a significant correlation between dieldrin accumu-
lation and PD development when comparing postmortem brain samples from PD patients
and control cases [85,188–190]. Sanchez-Ramos et al. [191] have shown that DAergic neu-
rons are the most sensitive to dieldrin exposure in rat or mouse primary mesencephalic
neuronal cultures. More recent studies have also found a stronger association between
dieldrin, compared to other persistent organochlorine pesticides, and PD, which supports
earlier findings [192,193]. In vivo animal studies also show that dieldrin exposure leads to
selective targeting of and neurodegeneration in the DAergic system. Richardson et al. [194]
showed that developmental exposure to dieldrin in mice renders DAergic neurons more
vulnerable to subsequent exposure to the neurotoxin MPTP, enhancing the MPTP-induced
increase in GFAP and α-synuclein levels. These findings are supported by Gezer et al. [195],
showing that developmental dieldrin exposure, specifically in male mice, exacerbates
α-synuclein preformed fibril-induced striatal DA turnover and motor deficits.

Dieldrin causes neurochemical changes consistent with mitochondrial dysfunction and
oxidative stress in the nigrostriatal DA system upon low-level exposure in mice [88], as well
as acute exposure in rat DAergic PC12 cells [196,197], which may contribute to apoptotic
cell death and PD pathogenesis. We previously observed that dieldrin dose-dependently
increases caspase-3 activity, which is followed by PKCδ activation and execution of the
caspase-dependent apoptotic pathway in rat N27 DAergic neuronal cells as well as rat brain
slices [89]. We further showed the involvement of the pro-apoptotic non-receptor tyrosine
kinase, Fyn, in this dieldrin-induced PKCδ-mediated apoptotic cell death pathway [20].
Similarly, Sharma et al. [198] showed that combined exposure to dieldrin and another
organochlorine pesticide, lindane, synergistically induced ROS generation and caspase-
3/7 activation. Our lab also reported that dieldrin dose-dependently induces ubiquitin-
proteasome system dysfunction, as well as exacerbates proteasomal dysfunction in α-
synuclein-overexpressing cells, which precedes cell death in DAergic neurons [90]. Dieldrin
treatment in N27 DAergic cells similarly results in neurotoxicity and PD pathogenesis by
impairing mitochondrial bioenergetics that may be associated with endoplasmic reticulum
(ER) stress [199].

In a similar manner to PQ insult, Song et al. showed that dieldrin overexposure
stimulates epigenetic histone acetylation modification [19]. However, unlike PQ, exposure
to dieldrin in in vitro and in vivo experiments upregulated the acetylation deposition on
both histones H3 and H4. Mechanistically, this hyperacetylation is mediated by proteasomal
dysfunction and accumulation of HAT [19]. Other studies also show that developmental
exposure of C57BL/6 mice to dieldrin increases neuronal susceptibility through DNA
methylation at Nr4a2 and Lmx1b genes [200].

7. Manganese

Mn is a ubiquitous trace element that is essential for cellular growth, development,
and homeostasis. As the 12th most abundant element in the earth’s crust (~0.1%), Mn
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does not exist in its pure or elemental form naturally but is a component of more than
100 minerals. It presents in trace amounts in all organs of the body. Mn is found in an
assortment of food, such as whole grains, nuts, legumes, fruits, tea, leafy vegetables, infant
formulas, and some fish and meat. For most people, food is the most common source of Mn
exposure [201]. According to human studies, a daily intake range of 1.8 to 2.3 mg Mn/day
for adults on Western and vegetarian diets is suggested. In terms of the tolerable upper
intake, it is 11 mg Mn/day [202].

Excessive Mn from the environment and industry has been identified as a significant
inhaled pollutant. As an environmental risk factor to human health, Mn has been implicated
as an etiologic agent in environmentally linked PD and Parkinsonism [7,91,93,103,203,204].
Mn overexposure causes a neurological disorder called manganism, whose clinical mani-
festation is an extrapyramidal symptom resembling PD and is therefore considered Parkin-
sonism [7,93,203,205]. The first case of Mn neurotoxicity was from a bleaching powder
manufacturer reported by Couper dating back to 1828. The next outbreak occurred in 1912
due to the relatively new technology of chlorine generation using Mn. In 1924, a landmark
human autopsy study demonstrated Mn-caused damage in basal ganglia. In 1955, Rodier
et al. reported Mn poisoning in Moroccan miners, while in 1932 Beintker et al. showed
the first case in welders and Mosheim et al. in battery workers [201,203]. Since then, as the
commercial applications for Mn became more widely used, e.g., electric arc welding, battery
making, and mineral extraction, the concept of Mn neurotoxicity consequently gained recog-
nition [7,203,206–208]. Later, the World Health Organization (WHO, Geneva, Switzerland)
and the United States EPA developed guidelines for Mn in drinking water to protect public
health. In addition to contaminated drinking water, mining-impacted communities in the
U.S.A. also aroused public attention, as other research indicated that infants and children
are vulnerable to the harmful effects of Mn dust intoxication [209,210] revealed by a robust
and consistent correlation between Mn-containing dust concentration and Mn body burden.
School-age children in Brazil with high Mn concentration in their hair have poorer cogni-
tive performance, typically in the verbal domain [211]. Similar findings report a negative
association between hair Mn and child IQ scores in East Liverpool, Ohio, USA [212]. For
adults, epidemiological studies of 98 cases of Mn-exposed workers indicate the association
between welding operations and neurological impairment [213]. The other major sources
of Mn exposure in humans include mineral processing, fossil fuel combustion, Mn additive
in gasoline (methylcyclopentadienyl manganese tricarbonyl, MMT), metal (alloy, iron, and
steel), manufacturing emissions, pesticides (e.g., manganese ethylene-bis-dithiocarbamate,
Maneb), fertilizers, Mn violet in paint and cosmetics, dry-cell manufacturing, and a street drug
‘Bazooka’ (a cocaine-based drug contaminated with Mn) [91]. Another psychostimulant drug,
methcathinone, also known as ‘ephedrone’ or ‘Russian cocktail,’ presented extrapyramidal
abnormalities, alterations in the MRI signal in the basal ganglia, movement disorders, and in-
creased blood Mn in its abusers following multiple intravenous injections for weeks or months,
typically due to impurities, including Mn, in this homemade chemical mixture [214,215]. As
epidemiological studies have shown, Mn overexposure has a greater neurotoxic impact on
the brain than once thought. In general, the relative prevalence of clinical symptoms of Mn
toxicity is headache and insomnia (88%), exaggerated tendon reflexes (83%), hyper-myotonia
(75%), memory loss (75%), emotional instability (35%), tremor (23%), speech disturbances
(6%), and festinating gait (3%) [216]. In an early stage of manganism, some symptoms might
be too mild to be recognized.

Neuropathologically, Mn targets the corpus striatum, including putamen, caudate
nucleus, and globus pallidus, as an exploratory, neurohistopathological study on prolonged
low-level Mn exposure in South African mine workers has shown [93,94]. Manganism’s
PD-like neurobehavioral dysfunctions occur in the striatum, while PD impacts the SNpc.
Therefore, pathologically unlike PD, whose DA deficiency comes from the loss of DAer-
gic neurons in SNpc, manganism suppresses DA release from the striatum, leading to
behavioral deficits similar to PD [92,93]. Changes are not limited only to the basal gangliar
region. An increase in olfactory perception, an early neurotoxic indicator, was also seen in a
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cross-sectional study of 35 male Mn-exposed subjects [217], who also showed significantly
higher counts of white blood cells than controls in this study. The altered numbers of
leukocytes suggest Mn perturbs the immune system [217]. In clinical manifestations, a
meta-analysis of aggregated data from eight studies with 579 Mn-exposed and 433 reference
participants found lower performances, short-term memory, and deficits in attention in
Mn-exposed individuals. Further details revealed that slow response is the most distinct
feature of performances in Mn-intoxicated patients [218]. Overall, human epidemiologic
studies of PD patients representing populations from Europe, Asia, and America have well
documented the association between Mn overload and increased Mn concentration in the
body, PD-like neuropathology, and Parkinsonian syndrome [204,214,219–222]. However,
existing evidence is merely suggestive in linking Mn levels and PD, failing to confirm the
certainty that high Mn release significantly elevates PD incidence.

In the body, Mn uptake is affected by three dose-dependent processes involving
biliary excretion, intestinal absorption, and intestinal elimination [204]. The efficiency of
absorption varies for different Mn salts and exposure routes. For example, Mn chloride
is more efficiently absorbed than Mn sulfate or acetate salts. Inhalation is more rapid
than ingestion, as inhalation bypasses the control processes of the gastrointestinal tract.
Mn is barely absorbed by the skin. Data from animal experiments reveal that following
inhalation, small Mn particles are transported in a retrograde direction from the olfactory
epithelium directly into the striatum of the midbrain [223]. Through olfactory nerve
endings in the striatum, the uptake of Mn may impair brain cells [223]. Interestingly,
growing evidence implicates chronic Mn exposure in both occupational and environmental
settings in olfactory dysfunction [95–102]. Of note, Mn retention might be greater in
infants. Unfortunately, no regulatory maximum of Mn for infant formulas is issued in the
U.S.A. [224]. Mn spreads all through the tissues of the body with the highest concentration
in the kidneys, liver, pancreas, and adrenals [225]. In contrast, bone and fat have the lowest
concentrations [225]. In plasma, most Mn2+ (~80%) is bound to albumin or α-macroglobulin,
whereas merely a small amount of Mn3+ is bound to transferrin [225]. Within the cell, Mn
metabolic homeostasis is regulated by Mn transporters. For membrane transportation,
transferrin receptor (TfR), divalent metal transporter1 (DMT1), DAT, ZIP8/ZIP14, calcium
channels, choline transporter, citrate transporter, and ceruloplasmin take charge of the
influx, while ferroportin, SLC30A10, and NCX are responsible for the efflux [205,225].
For passively transported ion channels, store-operated Ca2+ channels (SOCC) or voltage-
gated Ca2+ channels (VGCC) escort Mn2+ across the cell membrane [91]. In terms of
intracellular transportation, the Mn level is controlled by TfR and DMT1 in endosomes,
PARK9/ATP13A2 in lysosomes, SPCA1, HIP14, SLC30A10 and Ca channels in Golgi, and
DMT1, TfR, citrate transporter and Ca transporter in mitochondria [205,225,226].

Mn elimination primarily relies on fecal hepatobiliary excretion and to a lesser extent
on urinary excretion [204]. A minimal amount of unabsorbed Mn is excreted in sweat [227].
In the brain, Mn quickly deposits and binds with proteins, forming complexes in structures
like the globus pallidus and hippocampus. The half-life of Mn in these regions approximates
5~7 days [204]. In bones, a comparative study estimates that its half-life averages 143 days
(range 77–690 days), but in humans, it takes 4.6–41.3 years [204,228].

The cellular mechanisms of Mn neurotoxicity consist of neuroinflammation [23,91,94,229],
mitochondrial dysfunction and oxidative stress [34,91,103,104], dysregulated epigenetic modifi-
cation [105–108,230–235], impaired neurogenesis [110–112,236–244], and gut dysfunction [28,29].
Neuroinflammation is associated with microglia, the resident immune cells in the brain. Studies
on South African miners show higher mean microglia density than non-Mn workers. The longer
the miners have worked in Mn mines, the higher the density of microglia in their brains [94].
Microglial activation induced by Mn releases the proinflammatory cytokines IL-1β, IL-6, and
TNFα, which are neurotoxic and consequently lead to cellular apoptosis. Evidence from a
welding fume study shows that exposure to Mn nanoparticle aggregates remarkably upregu-
lates the inflammation biomarkers IL-6 and IL-8 among Swedish welders. Even though this
exposure is below Sweden’s 8-h TWA threshold limit for respirable dust, symptomatic welders
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showed a tenfold higher level of exhaled breath condensate (EBC) for analysis of leukotriene B4
(LT-B4), compared to people with no symptoms [229]. Inducible nitric oxide synthase (iNOS)
produces excessive nitric oxide (NO) during neuroinflammation. Consistent with these results,
a human PD study revealed that PD patients and animal models of PD exhibit elevated levels
of NO [245]. We found that Mn induces the release of exosomal ASC, which results in NLRP3
inflammasome propagation [23]. The inflammasome is a large macromolecular complex formed
by caspase 1, ASC, and the inflammasome component (e.g., NLRPP3, NLRC4, NLRP1, AIM2).
The inflammasome plays an essential role in cleaving pro-IL-1β to its mature form IL-1 β or
producing IL-18 to enhance and maintain inflammation [246]. Exosomes, as membrane-bound
extracellular nanovesicles, function as cargo carriers transporting molecules from one place to
another. Serum exosomes and serum from the welders demonstrate both a higher ASC load
and more elevated levels of proinflammatory cytokines compared to age-matched subjects [23].
Interestingly, Pajarillo et al. [247] reported that astrocytic transcription factor Yin Yang 1 (YY1)
may play a role in Mn-induced neurotoxicity by reducing astrocytic GLAST/GLT-1.

Mitochondrial dysfunction, oxidative stress, neuroinflammation and protein misfold-
ing have been implicated in the pathogenesis of PD. Excessive Mn increases mitochondria-
derived ROS production, impairs mitochondrial function, disturbs cellular metabolites,
and activates apoptosis-linked cytochrome c release [34,91,103,104]. Mn-induced oxidative
stress promotes the accumulation of intra-mitochondrial Ca2+ by preventing its efflux,
thereby inducing mitochondrial dysfunction by disrupting Ca2+ homeostasis [113]. Huang
et al. [248] showed in DAergic SH-SY5Y cells that the mitophagy receptor protein BNIP3 can
mediate MnCl2-induced mitophagy, leading to neurotoxicity through ROS. Our lab [114]
revealed that Mn exposure impairs mitochondrial biogenesis and dysregulates mitochon-
drial fission/fusion processes in both mouse and human astrocytes, which exacerbates
neuroinflammation and Mn-induced DAergic neurotoxicity. We observed that Mn nanopar-
ticles can be effectively internalized, promote upregulation of the Mn transporter protein
transferrin, increase ROS release, and activate apoptosis-associated PKCδ in N27 DAergic
cells [104]. Further findings reveal that through the PKCδ–PP2A signaling pathway, Mn
exposure impairs TH activity in the N27 DAergic neuronal cell line and induces apoptotic
cell death [249]. Moreover, in the mitochondrial dysfunction-inherited MitoPark mouse
model of PD, a 4-week Mn exposure exacerbated progressive motor deficits, olfactory
dysfunction, depletion of striatal DA, nigral TH loss, oxidative damage, and mitochondrial
deficits, compared to the untreated MitoPark group [34].

In terms of protein misfolding, Mn induced spatial memory and synaptic plasticity
via α-synuclein [250]. Our lab [251] revealed that Mn alters the stability of prion proteins,
suggesting its relevance to prion protein misfolding and prion disease pathogenesis.

Similar to pesticides, Mn neurotoxicity can induce abnormal epigenetic modifications.
Chronic exposure of human neuroblastoma SH-SY5Y cells to Mn significantly decreases
the expression level of the miRNAs miR-7 and miR-433, which reportedly modulate synap-
tic transmission and apoptosis and target SNCA (the gene that expresses α-synuclein)
and FGF-20 (a growth factor) [105]. Mn exposure also induces cellular damage through
histone acetylation changes in neuronal PC2 cells [106], while in human neuroblastoma
SH-SY5Y cells, Mn alters DNA methylation on TH, PARK2, and PINK1 genes that are
vitally involved in the onset of Parkinsonism [107]. Human studies of PD patients show
that Mn inhalation-exposed subjects have altered DNA methylation (which suppresses
transcriptional gene expression, e.g., APC, p16, p53 and RASSF1A) [108,109], histone modi-
fications (e.g., H3K4me2 and H3K9ac on histones from blood leukocytes) [231], miRNA
content (e.g., miR-222, miR-21) [232,233], and α-synuclein aggregation-associated miRNA
exosome cargo [233]. Interestingly, the levels of DNA methylation in healthy subjects from
a mining district in Antofagasta, Chile, are higher than in Santiago, a city having little
association with mining [234]. A clinical study in older men added novel evidence to the
findings that, due to the close correlation between DNA hypermethylation and toxicity of
Mn overexposure, DNA methylation-based measures could be a useful predictor to identify
subjects at risk of Mn toxicity-induced disease [235].



Int. J. Mol. Sci. 2022, 23, 10808 14 of 30

In addition to epigenetic dysregulation, Mn overload can impair adult neurogenesis.
Neurogenesis in the adult brain functions in cell proliferation, enhanced cell survival,
migration to target regions, and differentiation to new neurons [240]. These functions occur
in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) [238,240].
In the neurogenic niche of the SVZ, neural progenitor cells proliferate and migrate through
the rostral migratory stream (RMS) into the olfactory bulb (OB) to supply newly generated
neurons for neural repair and functional integrity [238,240]. Severe hippocampal atrophy
and impaired hippocampal adult neurogenesis have been shown along with motor and non-
motor (e.g., depression) symptoms in transgenic animal models and human postmortem
brains of PD [110–112]. Since airborne Mn is actively transported to the brain via the
olfactory tract, the resulting impaired olfactory function serves as a predictive sign of
Mn-induced Parkinsonism [244]. Maternal Mn exposure leads to the sustained disruption
of hippocampal neurogenesis in the offspring of animal models [108,252]. This malfunction
of developmental neurogenesis is mediated by aberrant epigenetic gene regulation through
hypermethylation [242]. Interestingly, although Mn overexposure reduces the overall adult
neurogenesis in the OB, this exposure initially enhances cell proliferation in the SVZ [237].
Further studies indicate that Mn alters SVZ and RMS neurogenesis by disturbing divalent
metal transporter-1 (DMT1) and cellular Cu regulation [236].

Accumulating evidence reveals that the gut communicates with the brain to form a
bidirectional signaling axis between the gastrointestinal tract (GIT) and the central ner-
vous system (CNS) through spinal afferents and the vagus nerve, and an abnormal gut
microbiome disturbed by environmental factors can be an indicator for early PD symp-
toms [253,254]. To support this claim, Ghaisas et al. showed that Mn exposure to mice via
oral gavage modified gut physiology and altered its metabolic profile [29].

Despite over 3000 publications being listed by PubMed in the past decade related to
Mn toxicity research, no protective strategy is available to date. One remedial option is
the immediate removal of the exposure source [204]. When comparing improvements in
clinical symptoms, levodopa treatment achieved a much poorer response in Mn-poisoned
subjects than in idiopathic PD patients, presumably because of the latter’s relatively intact
nigrostriatal pathway [255]. A treatment chelation therapy involving EDTA can elevate
the toxicant’s excretion in urine and reduce Mn body load [103,205]. However, its efficacy
in ameliorating neurological symptoms was under question [206]. Promisingly, several
clinical cases reveal the potential efficacy of p-aminosalicylic acid as a treatment [256–258].
In another case, a small dose of clonazepam reportedly showed partial success [206]. Un-
fortunately, currently available treatments for Mn overload are far from satisfactory. To
address this shortcoming, recently some scientists turned to mitochondria for exploring
new options. It is reported that the amino acid taurine is enriched in the human brain as
it is essential in regulating mitochondrial function. An in vitro study indicated taurine
protects mitochondria against Mn-induced cytotoxicity [259]. In a Mn-intoxicated in vivo
mouse model, taurine mitigated locomotor deficits and oxidative stress, and improved
indices of mitochondrial functionality and impaired spatial cognitive ability [260,261]. With
respect to interventions at the genetic level, accumulating evidence demonstrates that Mn
neurotoxicity induces α-synuclein aggregation and subsequently activates the pathophysi-
ology of PD [262]. By alleviating α-synuclein aggregation, scientists discovered that PARK9
(also known as ATP13A2) protects DAergic neuronal cells from Mn neurotoxicity [263]. We
also identified an interesting physiological function of normal α-synuclein that can protect
against a neurotoxic challenge during the early stages of Mn exposure in N27 cells stably
expressing α-synuclein [264].

8. Vanadium

Vanadium (V; atomic number 23), is a ubiquitous transition metal present in most
living organisms [265]. As the 22nd most abundant crustal element on Earth [266] and
the 2nd most abundant transition element in seawater [267], V is found in 65 different
minerals [266]. Its oxidation states range from valences −1 to +5, with +3, +4, and +5 being
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the most common [268]. V naturally occurs as two isotopes, 50V (0.24%) and 51V (99.76%),
the former having a radioactive half-life of more than 3.9 × 1017 years. V is a major trace
element in fossil fuels, and the processing and combustion of these materials result in a
significant emission of V oxides (V2O4 and V2O5) into the atmosphere [266,269]. Other
industrial activities that add to the anthropogenic emission of V include the production
of ferrovanadium, leachates, and effluents from mining and milling, among others [266].
Atmospheric V occurs in the form of V oxides, about two-thirds of which originate from
anthropogenic sources, while the remaining one-third can be traced back to continental
dust, marine aerosols, and, to a lesser extent, volcanism [268]. Although exposure to
the trace amounts of V emissions in the atmosphere can occur through inhalation, its
bioaccumulation in the food chain becomes magnified through its deposition in the soil,
groundwater, and vegetation, including crops [270].

This metal is widely used in the manufacture of heat-resistant alloy and glass, pesti-
cides, plastics, semiconductors, photographic developers, coloring agents, sulfuric acid,
as well as in petroleum and coal refineries [271,272]. V-reinforced high-strength low-alloy
(HSLA) steel has been heavily used in industrial applications such as manufacturing air-
craft, tanks, warships, and munitions because of its high structural strength and corrosion
resistance despite V being one of the lightest metals [273]. Vanadium use has increased
in the manufacturing of high-capacity batteries for energy storage and Li-Fe batteries
in electric cars. In addition, V compounds have been investigated for their use in hu-
mans as therapeutics to treat diabetes mellitus [274] as well as in the treatment of syphilis,
malnutrition, anemia, tuberculosis [275,276], and cancer [277].

Like many essential elements, trace amounts (0.05 µM) of V can be therapeutic and
essential to health, yet toxic in excess (>10 µM). In general, V toxicity is low and studies on
animals show that the toxic effects of V compounds depend on distinct factors, including
V’s physicochemical state, dose, route of administration, and duration of exposure. V’s
toxicity rises as its valence increases, peaking in pentavalent compounds. Toxicity is lowest
following ingestion, as the GIT absorption of V compounds is poor, intermediate when
inhaled, and greatest when administered parenterally [268].

Dietary V is the primary source of exposure for humans with a mean dietary intake
of V estimated to be 20 mg/day [278]. Most foods contain <1 ng/g V [268], but this
can be quite variable since high amounts of V can be found in black pepper, tea leaves,
cocoa powder, and certain mushrooms (165). In addition to foods, drinking water alone
can contain from 0.2 to 100 mg/L. The human body contains roughly 100 µg of V [279]
with tissue levels accumulating to around 0.3 mg kg−1 in bones, liver, kidneys [266,278],
and testicles [280,281]. V level in blood plasma is around 200 nM [266], and V is mainly
transported via a transferrin-dependent pathway [282].

The extensive production of industrial V-containing dust and fumes during the pro-
cessing and refining of V ores and sludge, the manufacture of V-containing products, the
combustion of V-rich fuels, and the handling of chemical catalysts is the major route of
both acute and chronic occupational exposure. Therefore, occupational exposure during
V-allied industrial processes and fossil fuel combustion represents major sources of toxicity
and likely predisposing factors in the etiopathogenesis of neurodegenerative disease [283].

Neurotoxicological studies in rodent models show that inhalation of V2O5 damages
nigrostriatal DAergic systems [115], the hippocampus [116], and the ependymal epithe-
lium, which opens the CNS to chemical insults normally prevented by the BBB [117]. We
have also demonstrated in a rodent model that intranasal V2O5 exposure reduces tissue
volume and DAergic neurotransmission in the OB [118]. Intraperitoneal (i.p.) NaVO3
exposure induced neurotoxicity in the rat CNS affecting mainly the hippocampus and
cerebellum [284]. Another study [119] has shown that exposing mice to NaVO3 via i.p.
induces the progressive accumulation of V, primarily in the OB, brainstem, and cerebellum,
together with evidence that V crosses the BBB, morphologically alters the prefrontal cortex,
and induces the degeneration of hippocampal CA1 pyramidal and cerebellar Purkinje cells,
including astrogliosis and microgliosis. In addition, changes in catecholaminergic levels
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have been reported in different mouse brain structures after the ingestion of vanadate in
drinking water [285].

Neurotoxicological studies have also investigated the behavioral effects of V exposure.
Our rodent model research demonstrates that month-long intranasal V exposure induces
olfactory and locomotor deficits [118]. Another study shows that eight consecutive weeks
of oral exposure to V in rats induces motor and learning deficits [286]. Chronic i.p. admin-
istration of V in mice leads to memory deficits after 3 months of exposure and the effect
persists until at least age 12 months [287]. V exposure through lactation reportedly induces
neurotoxicity in the rat’s developing CNS that manifests as reduced muscular strength
and locomotion in pups of both sexes [288]. Another study investigating V exposure via
lactation for 15 and 22 days in neonatal mouse pups reported reduced locomotor activity
and negative geotaxis [289]. In PINK-1 flies, chronic V exposure exacerbates motor deficits
and reduces survival [290]. V exposure in humans may also cause CNS depression, tremors,
neurasthenia, and other severe motor deficits, including vegetative symptoms. Other
studies provide evidence that occupational V exposure alters neurobehavioral performance,
including emotion, attention, cognition, short-term memory, reaction speed, accuracy, and
coordination [291,292]. A case study reported that an individual exposed to V poisoning
presented focal neurobiological deficits [293]. These findings suggest that occupational and
environmental exposure to metals may play an important role in the etiopathogenesis of
PD.

Additional studies show that chronic V exposure can also cause adverse respiratory
system effects [294–296], hematotoxicity [297,298], thrombocytosis [299], renal toxicity [300],
reproductive [301,302] and developmental toxicity [301], immunotoxicity, and mutagenicity.
Cases involving mortality due to exposure to V compounds have also been reported [303].

Oxidative stress plays a prominent role in V toxicity, which has been associated with
neurodegenerative diseases such as PD. V compounds induce ROS generation in the brain,
which may contribute to the degeneration of DAergic neuronal cells of the SN, a hallmark
of PD [120,121]. The ability of V to generate ROS in a Fenton-like reaction has been re-
ported [304] and V can also generate ROS indirectly by releasing iron from intracellular
stores [305]. Intracellular V compounds fluctuate between the anionic vanadate (V (+5);
H2VO4

−) and the cationic vanadyl (V (+4); hydrated VO2+) constantly occurring in the
presence of ROS [305]. Intracellular antioxidants reduce vanadate to vanadyl, producing
ROS in the process [306,307]. H2O2 oxidizes vanadyl in a Fenton-like reaction producing
vanadate and hydroxyl radicals [308,309]. The oxidative stress resulting from high levels
of vanadate can damage lipids, proteins, and nucleic acids. By binding to a protein’s
cysteine residues, vanadate can disrupt the catalytic site of many enzymes such as pro-
tein tyrophosphatase (PTP) [310]. This inactivation mechanism can act as an irreversible
inhibitor in the presence of H2O2, which transforms the cysteine-bound vanadate into
pervanadate [265,310–312]. The prolonged inhibition of PTP activates protein tyrosine
kinases (PTKs) that then activate the mitogen-activated protein kinase (MAPK) cascade,
thereby initiating signal transduction [313–315] producing inflammatory cytokines [316].

V compounds induce mitochondrial oxidative stress that opens mitochondrial perme-
ability transition pores, which leads to the collapse of mitochondrial membrane potential
followed by the release of cytochrome c that culminates in mitochondrial-mediated cell
apoptosis [122,123]. We too have demonstrated that the V-induced generation of ROS
causes mitochondria to release cytochrome c, which signals the activation of caspases-9
and -3 [121]. Once activated, caspase-3 proteolytically activates PKCδ. Furthermore, we
have found that inhibiting ROS, caspase activity, and PKCδ can attenuate V-induced DNA
damage and apoptosis in DAergic neurons. This finding implies that V toxicity plays an
important role in PKCδ-mediated DAergic neurotoxicity.

The dose-dependent effects of V on cellular processes may also depend on the presence
of other metals. Thus, when V co-occurs as a mixture with one or more other metals like Mn,
iron, selenium, magnesium, or lead, then characterizing their possible additive, synergistic,
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or antagonistic interactions would help to further elucidate the mechanisms underlying
V’s neurotoxic effects.

9. Conclusions and Future Directions

PD is the most common movement disorder, impacting approximately 1% of people 65
years old or older. This review delineates the characteristics, neurotoxicity, neuropathology,
and mechanisms of several key neurotoxic pesticides and metals, including MPTP, rotenone,
PQ, DDT, dieldrin, Mn, and vanadium, that make DAergic neurons susceptible to PD. We
also summarize current discoveries from epidemiological studies to decipher the correlation
between environmental exposure in humans and neurological impairment. The pesticides
reviewed here tend to share certain actions, i.e., inhibition of the mitochondrial respiratory
chain and production of oxidative stress [317,318]. Antioxidants can be applied to attenuate
their toxicity [319,320]. In addition to mitochondrial dysfunction, recent studies link
microRNAs and pesticide neurotoxicity, revealing that microRNA dysregulation could
be the novel mechanism underlying neurotoxic pesticide-induced neurotoxicity based on
two conditions: (1) microRNAs sharing similar dysregulation functions with other types
of epigenetic modification, and (2) the differential expression of microRNA occurring in
PD patients [321–324]. Furthermore, exosomes are importantly involved in trafficking
and cell-to-cell communication. This may have broad implications in the environmental
stress response as exosomes can cross the BBB and communicate across various organs.
The significance of toxicants entering the brain via the olfactory nerve, which bypasses
the BBB, remains an exciting topic to explore for intervention strategies. The cellular
responses to chemical exposure following the inhalation of environmental pollutants will
depend on their different oxidation states and solubility, yet such parameters have not been
adequately accounted for in existing human dose-response studies. Therefore, we need
better epidemiology studies incorporating good tracing and management combined with
complete occupational exposure histories with both behavioral and biochemical endpoints
of neurotoxicity tailored to specific subgroups of PD patients. Considering the high societal
cost of PD, advancing the environmental exposure assessment science and its integration
with other approaches, including the epigenomic disease model toolbox, would help fill an
unmet need.
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