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In this work, we extend an influential statistical model based on the spatial classical

receptive field (CRF) and non-classical receptive field (nCRF) interactions (Coen-Cagli

et al., 2012) to explain the typical orientation adaptation effects observed in V1.

If we assume that the temporal adaptation modifies the “state” of the model, the

spatial statistical model can explain all of the orientation adaptation effects in the

context of neuronal output using small and large grating observed in neurophysiological

experiments in V1. The “state” of the model represents the internal parameters such

as the prior and the covariance trained on a mixed dataset that totally determine the

response of the model. These two parameters, respectively, reflect the probability of the

orientation component and the connectivity among neurons between CRF and nCRF.

Specifically, we have two key findings: First, neural adapted results using a small grating

that just covers the CRF can be predicted by the change of the prior of our model.

Second, the change of the prior can also predict most of the observed results using

a large grating that covers both CRF and nCRF of a neuron. However, the prediction

of the novel attractive adaptation using large grating covering both CRF and nCRF

also necessitates the involvement of a connectivity change of the center-surround RFs.

In addition, our paper contributes a new prior-based winner-take-all (WTA) working

mechanism derived from the statistical-based model to explain why and how all of these

orientation adaptation effects can be predicted by relying on this spatial model without

modifying its structure, a novel application of the spatial model. The research results

show that adaptation may link time and space by changing the “state” of the neural

system according to a specific adaptor. Furthermore, different forms of stimulus used for

adaptation can cause various adaptation effects, such as an a priori shift or a connectivity

change, depending on the specific stimulus size.

Keywords: neural adaptation, orientation tuning curve, receptive field, image statistics, V1

1. INTRODUCTION

Adaptation is the process by which neurons in the brain’s sensory pathways adapt
signals to the changing world (Carandini, 2000; Carandini et al., 2005; Manookin
and Demb, 2006; Clifford et al., 2007; Kohn, 2007; Teich and Qian, 2010; Webster,
2011; Solomon and Kohn, 2014; Snow et al., 2016; Quiroga et al., 2019). Experiments
show adaptation effects in most sensory systems at multiple levels, from neuronal
processing to perception (Kohn, 2007; Maravall et al., 2007; Solomon and Kohn, 2014).
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Adaptation is essential because it allows sensory neurons
encoding the world more efficiently and enables us to perceive
the surrounding environment across a more extensive range
(Solomon and Kohn, 2014; Snow et al., 2017; Weber and Fairhall,
2019; Weber et al., 2019). In this work, we focus only on neural
orientation adaptation effects occurring in the primary visual
cortex.

Adaptation to various stimuli normally results in very
complicated neural responses in the visual cortex (Kohn, 2007;
Wissig and Kohn, 2012; Patterson et al., 2013; Solomon and
Kohn, 2014; Aschner et al., 2018; Coen-Cagli and Solomon,
2019; Yiltiz et al., 2020). The typical adaptation effects
constrained to the CRF provoke suppression in individual
neurons during stimulation, such as reducing neurons’ sensitivity
to all subsequent stimuli and ultimately leading to fatigue
(Hammond et al., 1988; Giaschi et al., 1993; Carandini and
Ferster, 1997; Dragoi et al., 2000).

In addition to suppression, adapting stimuli covering CRF can
push away the optimal orientation of a neuron (Dragoi et al.,
2002; Felsen et al., 2002; Wissig and Kohn, 2012; Patterson et al.,
2013). Concretely, when a V1 neuron is adapted to the grating
covering CRF with orientation 30–45 degrees away from its
optimal orientation, adaptation would cause the adjustment of
the neuron to deviate from the adapter (Dragoi et al., 2002; Felsen
et al., 2002; Patterson et al., 2013). Similarly, when a V1 neuron is
adapted to a grating covering its CRF at its optimal orientation,
adaptation can reduce the overall orientation tuning curve (OTC)
response of the neuron, and the maximum response reduction
occurs at the neuron’s optimal orientation (Müller et al., 1999;
Dragoi et al., 2000; Felsen et al., 2002; Wissig and Kohn, 2012).
Furthermore, in the situation that the orientation of an adapter
covering CRF is orthogonal to the optimal orientation of the
neuron, adaptation results in a typical enhancement phenomena
(Wissig and Kohn, 2012; Solomon and Kohn, 2014).

However, the application of large-scale grating adapters
covering both CRF and nCRF changes the OTC of a neuron
in a manner that is quite different from the results of only
stimulating the CRF (Webb et al., 2005; Tailby et al., 2008;
Ghisovan et al., 2009; Wissig and Kohn, 2012; Patterson et al.,
2013). For example, flank adaptation of the OTC of a V1
cell in which an adapter is stimulating both CRF and nCRF
together will result in attractive shift in preference (Kohn, 2007;
Wissig and Kohn, 2012; Patterson et al., 2013; Solomon and
Kohn, 2014). A further difference between adaptation elicited by
only stimulating CRF and adaptation elicited by simultaneously
simulating both CRF and nCRF is that responses to the adapter
orientation matched to the optimal orientation are suppressed
when using the small grating stimulus, whereas responses are
maintained or unchanged when using the large grating stimuli.
However, adaptation in the orthogonal direction, whether only
covering CRF or covering both CRF and nCRF together, always
results in continuous or enhanced responses. Notably, these new
adaptation results observed in V1 incorporating both CRF and
nCRF have been previously observed in MT (Petersen et al.,
1985; Priebe et al., 2002; Van Wezel and Britten, 2002; Kohn
and Movshon, 2003, 2004; Krekelberg et al., 2006; Patterson
et al., 2014). One recent study by Aschner et al. (2018) further

showed that adaptation increases normalization signals when
adapting stimuli consisting of orthogonal gratings are presented
synchronously. Conversely, adaptation decreases normalization
signals when adapting stimuli are presented asynchronously.
Coen-Cagli and Solomon (2019) suggested a new functional
role of normalization signals induced by nCRF that have a
stabilizing effect on neuronal response variability (i.e., a type of
adaptation of neuronal response). Yiltiz et al. (2020) indicated
that adaptation can strengthen mutual suppression between
subpopulations in the nCRF excited by the 2nd-order statistics
of stimuli.

In summary, neurons in V1 adapt to recent stimulation
experience according to different stimulus forms. These effects
involve repulsing OTC away from the adapter, attracting
OTC to the adapter, enhancing response, suppressing
response, and retaining response (Wissig and Kohn, 2012;
Patterson et al., 2013). These disparate observations pose
major obstacles for mechanistic theories of how these results
occur (Solomon and Kohn, 2014), and there is a present lack
of a general framework for interpreting them (Kohn, 2007).
Interpreting how neurons adapt may help us understand
how our visual system processes temporal experience and
how it interacts with spatial processing. This, in turn, may
inspire novel computational algorithms (Medathati et al., 2016)
that can process the dynamic information in a real-world.
Furthermore, interpreting how neurons adapt also may help
us infer the underlying cortical sensitivity of fMRI signals
observed in both healthy people and patients (Lee et al.,
2019).

In this work, we investigate all of the OTC adaptation results
mentioned above by using a novel model that learns to predict
the center-surround receptive field reactions through studying
the natural image statistics (Cagli et al., 2009; Coen-Cagli et al.,
2012; Snow, 2016; Snow et al., 2016, 2017). Our goal is to discover
if this mathematical model may easily describe the diversity
and stimulus specificity (for example, in the case of stimuli
covering only CRF or covering both CRF and nCRF) of the OTC
adaptation effects, and to understand how temporal adaptation
alters the interactions between CRF and nCRF to produce these
diverse results. To our best knowledge, the mathematical model
was able to replicate all the OTC adaptation results found in
neurophysiological studies (Wissig and Kohn, 2012; Patterson
et al., 2013; Solomon and Kohn, 2014), especially the important
adaptation effects using large grating stimuli covering both CRF
and nCRF in V1.

In line with previous findings (Snow, 2016; Snow et al., 2016),
our work further clarifies how themodel presents diverse adapted
responses under various visual stimulus sizes. In addition, we
are contributing a new prior-based WTA working mechanism
to explain why and how all of these OTC adaptation effects
can be predicted by relying on this model. Furthermore, the
existing information gained from raw images may be changed
by presenting the model to a novel visual stimulation constituted
of realistic pictures and physiologically used grating images. Our
main finding is that the prior update in the model can clarify
most of the recent findings on OTC in V1 after adaptation.
However, we have further discovered that the observed attractive
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FIGURE 1 | The CRF and nCRF outputs for a natural scene usually constitute

nonlinear spatial dependency and independency. For a homogeneously

textured region, the CRF and nCRF of a modeled V1 neuron, which are

illustrated by red and green circles, respectively, receive similar features. Thus,

two RF outputs produce the strong nonlinear dependency seen in (A). In

contrast, for a heterogeneous region, the CRF and nCRF of a modeled V1

neuron receive quite different features (i.e., the zebra stripes in the foreground

and the grassland in the background), and thus the dependency between two

RF outputs is quite weak, or the two outputs are statistically independent as in

(B). Adapted from Coen-Cagli et al. (2012).

effects of adaptation using stimuli of large scale in V1 are
implemented by the modification of the connection of CRF
and nCRF. Specifically, the enhanced responses within the CRF
resulted in non-specific suppression and the weakened surround
suppression from the adapted orientation within nCRF getting
together is themain factor necessary to understand the very novel
attractive adaptation effect (Wissig and Kohn, 2012; Patterson
et al., 2013; Solomon and Kohn, 2014).

2. MATERIALS AND METHODS

The general idea of Mixture of Gaussian Scale Mixture (MGSM)
model is shown in Figure 1 (Cagli et al., 2009; Coen-Cagli et al.,
2012; Snow et al., 2016). For a homogeneous patch, there is
a clear nonlinear spatial dependence on the outputs of two
RFs (we refer to these simply as CRF and nCRF) shown in
Figure 1A. The steerable pyramid filters are adopted as the
V1-like RFs. For example, the CRF consists of a V1-like filter

outputs with four orientations and two phases C = c
phase
θ

and the nCRF consists of eight V1-like filter outputs with four

orientations and two phases N = (n
phase
1,θ , n

phase
2,θ , . . . , n

phase
8,θ ), θ ∈

(0o, 45o, 90o, 135o) and phase ∈ (even, odd) (Cagli et al.,
2009; Coen-Cagli et al., 2012). Figure 1A implying statistically
higher-order dependence can be well captured by a Gaussian
Scale Mixture (GSM) model (Schwartz and Simoncelli, 2001;
Wainwright et al., 2002; Guerrero-Colón et al., 2008; Coen-Cagli
et al., 2012).

However, natural image patches are also spatially
heterogeneous such as extreme instances shown in Figure 1B

covering two different regions, where the dependency is quite
small or even non-existent (Parra et al., 2000; Coen-Cagli et al.,

2012). GSM can still describe these situations in Figure 1B

by assuming independence between the outputs of CRF and
nCRF. The response of MGSM can be summarized as follows
(Coen-Cagli et al., 2012).

R = R∗ρ(ξ∗ |C,N)+
∑

θ

Rθρ(ξθ |C,N), (1)

where R indicates the estimated firing of V1 neuron, which is
the summation of estimated mean response of the non-shared
component R∗ and four co-shared components Rθ weighted
by their corresponding posterior probabilities ρ(ξ∗ |C,N) and
ρ(ξθ |C,N), respectively.

According to the Bayes rule, the posterior probability can be
obtained by ρ(ξ∗ |C,N) = ρ(ξ∗)ρ(C,N | ξ∗) and ρ(ξθ |C,N) =

ρ(ξθ )ρ(C,N | ξθ ), where ρ(ξ∗) and ρ(ξθ ), respectively, indicate
the prior of the non-shared component and four co-shared
components, which needs to be learned from a dataset. ρ(C,N |

ξ∗) and ρ(C,N | ξθ ) represents the likelihood of the non-shared
component and four co-shared components, respectively. The
specific analytic form of the likelihood is available in Coen-Cagli
et al. (2012) for details.

Essentially, MGSM in Equation (1) explains the spatial
dependency and independency as seen in Figure 1 between the
CRF (or center) and the nCRF (or surround), utilizing a mixture
of 1) the normal GSM for cases upon which the CRF and nCRF
are dependent (e.g., Figure 1A) and 2) an individual GSMmodel,
in which the CRF and nCRF are independent (e.g., Figure 1B).
For 1), C and N co-share a random variable. For example, C
and N are generated through multiplying a Gaussian variable
with a random variable, which is also called the mixer. As in
Cagli et al. (2009), Coen-Cagli et al. (2012), we directly use
four center-surround RF co-shared components Rθ , with θ ∈

(0o, 45o, 90o, 135o). For 2), C andN do not share a mixer (e.g., the
non-shared component R∗). The estimated mean response of the
non-shared component R∗ and the co-shared components Rθ are
generally given as Coen-Cagli et al. (2012) and Snow et al. (2016):

R∗ ≈
cθ

√

(cθ )T(6C)−1(cθ )
, (2)

Rθ≈
cθ

√

(cθ , n1,θ , n2,θ , . . . , n8,θ )T(6
θ
CN)

−1(cθ , n1,θ , n2,θ , . . . , n8,θ )
,

(3)
The parameters controlling the interactions of CRF and
nCRF in the MGSM model includes the covariance
matrices 6C,6

0
CN ,6

45
CN ,6

90
CN ,6

135
CN and the prior

probability ρ(ξ∗) and ρ(ξθ ), θ ∈ (0o, 45o, 90o, 135o) for
each component.

The parameters (covariance and priors) visualized in Figure 2

are obtained by training the model on 25,000 randomly sampled
patches from five natural images (e.g., the second row in
Figure 3). We can observe that the prior probability (Figure 2A)
and covariance (Figure 2B) learned from the natural image
are almost equal for each co-shared component. The prior
probability of non-shared component shown in blue line is also
lower than that of co-shared components shown in other color
lines (Figure 2A). A possible explanation for this is that the
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FIGURE 2 | Visualization of the prior probability and covariance matrices learned from natural scenes (Coen-Cagli et al., 2016). (A) The prior probability of each

component during the training iteration process using expectation maximization algorithm. (B) The covariance matrices between the CRF and nCRF outputs for four

co-shared components. Black bar indicates the position of the V1-like filters in CRF and nCRF (Coen-Cagli et al., 2012). The red lines show the connecting strength

between the CRF and nCRF. The blue lines show the connecting strength among nCRFs. Adapted from Coen-Cagli et al. (2012).

FIGURE 3 | The mixed dataset containing both natural images (Coen-Cagli et al., 2016) and sinusoidal gratings under various orientations, contrasts, and phases is

used to update the model using the EM algorithm, which conceptually imitates the process of the real neurophysiological experiment in which adaptation adjusts the

state of the model. In the mixed dataset, the sinusoidal grating around the specific orientation (gratings with the orientation of 90o are labeled with a red box in this

example) has a higher proportion than other orientations (e.g., 0o, 45o, and 135o).

orientation features (e.g., 0o, 45o, 90o, 135o) in a natural scene
are distributed with similar probability.

3. MODEL EXTENSIONS FOR
ORIENTATION ADAPTATION IN V1

The equations of extended model is firstly described.
Then, we introduce how we update the parameters of the
extended model using a mixed dataset. Finally, we show
two strategies to fully capture the OTC adaptation effects
in V1.

3.1. Equations for Extended Model
The extended model is summarized as

R = [WTA(ρ(ξ∗ |C,N), ρ(ξθ |C,N))][R∗,Rθ ]
T ,

θ∈{0o, 45o, 90o, 135o}
(4)

where [WTA(ρ(ξ∗ |C,N), ρ(ξθ |C,N))] indicates a vector with
size of 1×5, in which only one element equals to 1 and the
rest is 0 according to WTA mechanism. [R∗,Rθ ]

T indicates a
matrix with size of 5×M, where M represents the dimension of
abscissa of OTC. Equation (4) indicates that only the component
(e.g., [R∗,Rθ ]

T) from the winning posterior probability (e.g.,
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[WTA(ρ(ξ∗ |C,N), ρ(ξθ |C,N))]) is accepted. In the following,
we describe the approaches used to update the parameters in
Equation (4) for orientation adaptation.

In specific neurophysiological tests, visual stimuli (for
example, utilizing sinusoidal grating stimulation of various
orientations) are used to first evaluate the OTC of a recorded V1
neuron, and the calculated OTC is viewed as a neural response
before visual adaptation (i.e., before-adaptation) or without the
effects of visual adaptation (Wissig and Kohn, 2012; Patterson
et al., 2013; Solomon and Kohn, 2014). It is noteworthy that
the neural response under this condition is equal to the normal
neural response under the natural scenes, since we assume that
the evolution of visual system is optimized to the natural image
statistics. In order to test the visual adaptation effects on neural
response, a visual stimulus with a certain orientation (e.g., a
sinusoidal grating stimulation with 45o) is used to repeatedly
provoke the same recorded V1 neuron within a certain time
frame (so-called adaptation because the same stimulus appears
to continuously stimulate the visual system). Then, the OTC of
the same recorded V1 neuron after adaptation is also recorded,
and we call the measured OTC after the repeatedly presented
visual stimuli the neural response after adaptation (i.e., after-
adaptation) (Kohn, 2007; Solomon and Kohn, 2014).

3.2. Updating the State Using a Mixed
Dataset
In order to extend the original spatial model to further explain the
temporal OTC effects, we need to modify the model in the same
way as the real neurophysiological experiments. Specifically,
the parameters (see Figure 2) learned from the natural images
constitute a “state” of the model, and we assume this state to
be the “normal state” of the model. Correspondingly, we use
the same visual stimuli as used in the real neurophysiological
experiments to test the OTC of the model. Then, the OTC of the
model corresponds to the normal neural responses before visual
adaptation (Equation 1).

We repeatedly present a sinusoidal grating with a specific
orientation (e.g., 90o), as in the real neurophysiological
experiments, to the model. We assume that adaptation adjusts
the internal state (i.e., parameters ρ(ξ ) and 6CN) of the model
indicated by Equation (4). First, we set out to determine whether
adaptation may modify the “state” of the model. Second, we
determine whether the modification of the “state” of the model
may explain all of the OTC adaptation effects as observed in the
real neurophysiological experiments. Third, we determine how
exactly the modifications of the “state” of the model may predict
the mechanisms behind the OTC adaptation effects.

One issue to be addressed is that we do not know which
learning algorithm is used by the visual system to adjust the
“state” of the neural network during adaptation with a timescale
ranging from a few seconds to tens of seconds (Patterson et al.,
2013). In order to address this shortcoming, we build a mixed
dataset (Wainwright et al., 2002) that contains both the natural
images and the gratings with various orientations as used in the
neurophysiological experiments. We hypothesize that training
the model on the mixed dataset using the EM algorithm can

imitate the process through which adaptationmodifies the “state”
of the model. Specifically, we randomly generate sinusoidal
grating images with various orientations, contrasts, and phases
according to a two-dimensional joint distribution probability,
in which the orientation meets a two-dimensional Gaussian
probability distribution with (for example) a mean and variance
of 90o and 5o, respectively.

Then, the sinusoidal grating images generated according to
the two-dimensional joint distribution probability are added
into the natural images so as to constitute the mixed dataset,
containing an ensemble of natural images and an ensemble of
grating images. During the adaptation of themodel, we randomly
sample the image patches (26,000 image patches were used in
this work) from this mixed dataset and use the sampled image
patches to retrain the model from scratch. Notably, among the
generated sinusoidal grating images, the grating with orientation
of 90o has higher proportion than other orientations as shown
in Figure 3. We assume that this operation can mimic the visual
adaptation process in the real neurophysiological experiments,
where the high proportional sinusoidal gratings with certain
orientation are presented to neuron during a certain timescale
with higher probability than others (Benucci et al., 2013).

3.3. Strategies to Imitate the Process of
Modeling the OTC Adaptation Effects
Figure 4 shows the modification of the “state” of the model (i.e.,
parameters ρ(ξ )) after being trained on the mixed dataset. We
observed that the prior probability of a co-shared component
with 90o indicated with green line (e.g., the learned prior ρ(ξ90)
shown in the right figure of Figure 4) has been significantly
increased after training themodel on themixed dataset compared
to the one that has been trained on the original natural
scenes, where each co-shared component has a similar prior
probability (see the left figure in Figure 4). This result reflects
that training the model on a mixed dataset can effectively modify
the parameters of the model and thus may imitate the visual
adaptation effects of neural responses.

Moreover, from Figure 4 we can infer that one of the
functional effects of adaptation is to modify the prior or
expectation of neural system so that the neural system
can promptly follow the statistical change of the outside
environment. In short, in this way, we may imitate the visual
adaptation effects at various orientations on neural responses.
For example, we can generate another mixed dataset that
contains the grating images with higher probability at 0o, 45o,
or 135o orientations, and then train the model on these different
mixed datasets to update the prior of each component.

In addition to imitating the visual adaptation effects on neural
responses through updating the prior in our framework, we can
also update the covariance in the model as shown in Figure 2B.
We will show in the following that flank adaptation of the OTC
using the large grating stimuli covering both CRF and nCRF.
That is, the novel attraction effects (Wissig and Kohn, 2012;
Patterson et al., 2013) can not be captured by modifying the prior
but can only be predicted by updating the covariance matrix in
our framework. In summary, Figure 5 illustrates two strategies
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FIGURE 4 | Visualization of the prior probability learned from the natural scenes (left) and learned from the mixed dataset (right) with the higher proportion of grating

with the orientation of 90o as shown in Figure 3.

FIGURE 5 | Two proposed strategies to imitate the process of modeling the visual adaptation effects on V1’s orientation responses. (A) Adaptation modifies prior in

the model. (B) Adaptation modifies covariance in the model, which directly results in the updated components. Two strategies of imitating the adaptation may be

achieved by training the model on a mixed dataset containing both the natural images and the gratings with various orientations.

in our framework to imitate the process of modeling the visual
adaptation effects on V1’s orientation responses.

4. EXPERIMENTS AND DATA

Below, we provide further information related to three key
features of the working mechanisms of the extended model.
Then, we compare the model simulations to experimental data
on V1’s OTC adaptation effects.

4.1. The Working Mechanisms for
Orientation Adaptation
Figure 6 shows the working mechanisms of the extended model,
where the modification of a prior (i.e., parameters ρ(ξ )) of
the model (Figure 5A) can be used to explain the orientation
adaptation results observed in V1 using the small grating
stimulus that just covers the CRF of a V1 neuron. The working
mechanisms explain the orientation adaptation results observed
in V1 using the large grating stimulus covering both CRF and
nCRF, similar to Figure 6. The only difference for using the
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FIGURE 6 | The working mechanisms of the extended model based on a prior-based WTA mechanism. In this paper, the model’s and neuron’s optimal orientation

(i.e., 90o) is always aligned to zero for OTC visualization (e.g., the horizontal axis in each sub-panel) if there is no special statement. (A,B) The prior of each component

before and after-adaptation. (C) The log likelihood of each component. (D,E) The posterior of each component before and after adaptation. (F) The normalized

response of each component (e.g., “state”). (G) The estimated firing of V1 neuron before and after adaptation. Please see Equations (1) and (4) for mathematical

computation and the main text for explanation.

large grating stimulus is to further modify the covariance (i.e.,
parameters6CN) so as to further update the normalized response
of each component (i.e., Rθ ), as shown in Figure 5B.

In short, the working mechanisms of the model are dependent
on both the prior ρ(ξ ) and the likelihood ρ(C,N |ξ ) of themodel,
which are combined together to produce the posterior probability
ρ(ξ |C,N) = ρ(ξ )ρ(C,N | ξ ). The posterior probability further
multiplies each component (e.g., R∗ or Rθ ) in the model, which
finally produces the response of the model. For example, the

estimate of firing rates R in V1 as shown in Equation (4). In
Figure 6, the adaptation on the co-shared component of −45o

using a small grating is taken as an example.

4.1.1. The Computational Flow Before Adaptation
For the before-adaptation information processing flow (i.e., the
dashed line), the prior probabilities learned from the natural
images (Figure 6A) are first combined with the likelihood
(Figure 6C) to get the posterior probabilities for the co-shared
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component and the non-shared component (Figure 6D). It is
noteworthy that the prior probability learned from the natural
images (i.e., Figure 6A) for each component is quite similar. In
other words, there is no one component that possesses the prior
probability more than others. Thus, the posterior probability
based on the combination of prior probability and likelihood
for each component is also quite similar. For example, there
is no one component that possesses the dominant posterior
probability more than others as shown in Figure 6D. Then, the
posterior probabilities are further multiplied with the normalized
responses of each component (Figure 6F), and the final before-
adaptation response of the model is obtained (the black line in
Figure 6G).

4.1.2. The Computational Flow After Adaptation
However, for the after-adaptation information processing flow
(i.e., the solid line in Figure 6), the only difference is that the
prior probability learned from the mixed dataset for the co-
shared component of −45o is significantly stronger than others
(i.e., the red line in Figure 6B). This occurs since the prior
for the co-shared component of −45o is updated by modifying
the model on the mixed dataset, in which the grating with
orientation of −45o occurs in a higher proportion than other
orientations. Thus, the posterior probability (i.e., Figure 6E)
based on the combination of prior probability (i.e., Figure 6B)
and likelihood (i.e., Figure 6C) for the co-shared component of
−45o (i.e., the red line in Figure 6E) will be dominant after the
updating of the prior. Then, the posterior probabilities are further
multiplied with the normalized responses of each component
(i.e., Figure 6F), and the final after-adaptation response of
the model is obtained (i.e., the red line in Figure 6G). The
main mechanism for this step is that the dominant posterior
probability (i.e., the red line in Figure 6E) will select out the
normalized response of co-shared component of −45o (i.e., the
red line in Figure 6F). The final results of before and after
adaptation (i.e., modifying the prior of model in Equation 4) are
thus obtained and are quite similar to the OTC adaptation effects
as observed in V1 (see Figure 7).

4.1.3. Working Mechanisms Comparison Between

Snow’s Model and Our Model
It should be noted that the working mechanisms of the
extended model in this paper are quite different from those
presented in Snow et al. (2016). First, Snow et al. updated the
prior parameters for long-term adaptation simulation iteratively
using the inferred posterior probability of new grating stimuli.
However, the extended model in this paper updates the prior
on a mixed dataset containing both natural images and grating
images. Second, the inferred posterior probability in their paper
is continuous (the value of inferred posterior probability is
between 0 and 1) and is essentially taken as a measure of
similarity between past and present stimuli, and the extent of
the suppression effect relies on the inferred posterior probability.
Third, their explanation for both suppression and repulsion
was essentially based on the suppression mechanism relying
on a flexible divisive normalization, wherein stronger similarity
induces the larger inferred posterior probability and hence the
stronger suppression.

In contrast, the working mechanism of our extended model
(i.e., Equation 4) is based on a WTA-based state switching
strategy. Before adaptation (i.e., the computational flow indicated
by the dashed line in Figure 6), the components of each
orientation compete with each other, and each component
contributes slightly to the final orientation response. However,
after adaptation (i.e., the computational flow indicated by
the solid line in Figure 6), due to the significant increase
of the prior of the specific orientation, a component of
specific orientation finally succeeds in the competition, thus
occupying a dominant position (and thus is similar to a WTA
mechanism). The key point is that the modification of prior
results in the variation of the posterior probability changing
from Figures 6D,E). Concretely, in our model, a modification
of prior for a component of specific orientation (i.e., the
variation of red line from Figures 6A,B) can lead to the
absolute dominance of the inferred posterior probability of
the corresponding orientation (i.e., the variation of red line
from Figures 6D,E). Hence, adaptation plays a functional role
in a WTA mechanism to select out the normalized neural
response component with the dominant posterior probability
regardless of the similarity between the adaptor and the test
stimulus (e.g., the OTC response labeled with the red line in
Figure 6G is obtained by G = E∗F according to Equation 4).
In short, the inferred posterior probability is no longer treated
as a measurement with continuous value between [0, 1] to
determine the size of suppression effect, but acts as a WTA
mechanism through taking a discrete value of either 0 or 1
(Equation 4). For example, the inferred posterior probability of
the corresponding orientation (i.e., the red line in Figure 6E)
is always equal to 1 across all orientations. In contrast, the
inferred posterior probability of other orientations (i.e., the
other color lines in Figure 6E) are always equal to 0 across
all orientations.

Furthermore, Snow’s model does not include nCRF and
hence cannot explain the facilitation and attractive shift effects
of OTC after adaptation. However, the extended model can
primarily capture the disinhibition effects due to inclusion
of nCRF (Coen-Cagli et al., 2012) and hence can explain
the facilitation and attractive shift effects. The result of
our model framework is that there are several states (e.g.,
the non-shared and co-shared components in Figure 6) in
the framework, and an a priori change leads to switching
among different states. This explanation seems to be more
reasonable than measuring the inhibition based on the similarity
of the past stimulus and the current stimulus. We found
that a small change of priors will suddenly lead to the
value of posterior probabilities to be either 0 or 1 (e.g.,
Figure 6E), and thus our framework is not able to produce
the posterior with continuous value as obtained by Snow et al.
(2016).

It should be noted that each component of the model (e.g.,
Figure 6F) is also sensitive to the modification of the covariance
matrix of the model learned from the mixed dataset (see
Figure 10 for more details). In the next section, we will show
that how the updating of prior and covariance of the model can
effectively capture all of the primary OTC adaptation results in
V1 (Wissig and Kohn, 2012; Patterson et al., 2013).
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FIGURE 7 | Simulated effects of adaptation on OTC in V1 using the small grating stimulus that only covers CRF. (A,D,G) Average OTC responses in V1 data for

before-adaptation (black line) and after-adaptation (red line) when the neuron adapts at 0o−15o away from its optimal orientation, 30o−45o away from its optimal

orientation, and 75o−90o away from its optimal orientation, respectively. (B) Model prediction for before-adaptation and after-adaptation when being adapted at its

optimal orientation. (C) The updated inferred posterior probability after model adaptation in (B), where the posterior probability of non-shared component is

significantly dominant. (E,F) Same as (B,C) but for model adapted at 45o away from its optimal orientation. The updated posterior probability of co-shared

component of −45o is significantly dominant. (H,I) Same as (B,C) but for model adapted at 90o away from its optimal orientation. The updated posterior probability of

co-shared component of −90o is significantly dominant. The blue arrowhead combining with the small sinusoidal grating roughly indicates the adapting stimulus

condition for each sub-panel. The figure of V1 data is adapted from Wissig and Kohn (2012). The location of blue arrowhead is drawn slightly different from Wissig and

Kohn (2012) because reported data deviates from the preferred orientation within a certain range (e.g., 0o−15o).

4.2. Adaptation Modifying State Explains
the OTC Adaption Effects on V1 Neuron
Our framework predicts that OTC adaptation leads to the state
switch of cortical network. The modification of state can be
achieved by exposing the model to a mixed dataset, where
a grating with specific orientation (for example, when the
orientation is similar to the adapter) has the higher proportion
than other orientations.

4.2.1. Prior-Based WTA Predicts OTC Adaptation

Covering CRF
In the physiological experiments (Wissig and Kohn, 2012;
Patterson et al., 2013), the adaptation using the small grating that
just covers CRF of a V1 neuron induces the typical suppressive,

repulsive, and orthogonal enhancement effects in the OTC of V1
neuron (Figures 7A,D,G). Here, we show that the spatial model
based on prior-basedWTA can qualitatively capture these results.

(1) Suppressive Effect. In our framework, OTC of the
model without the modification of a prior is used as the
baseline (i.e., before-adaptation). To measure the effects of
adaptation on the model’s OTC, the tested OTC of the model
with the modification of a prior is used. Our framework
clearly reproduces this suppressive effect (Figure 7B), which
can be explained by the working mechanisms of prior-based
WTA in that the dominant inferred posterior probability of
the specific component is induced by the modification of the
prior (see the working mechanisms in Figure 6). The posterior
probability inferred by the model for the non-shared component
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(Figure 7C) is significantly increased with the modified prior of
the co-shared component with 0o (i.e., adapted to the model’s
optimal orientation; the model’s optimal orientation (90o) is
aligned to 0o for visualization), which results in the WTA-
based selection of the normalized response for the non-shared
component. Interestingly, the increase of the prior of the co-
shared component with 0o results in the final selection of the non-
shared component. Intuitively, we might expect that increasing
the prior of the co-shared component with 0o can lead to the
increase in the inferred posterior probability of dependence of
the co-shared component with 0o when using the small grating
(the black line in Figure 7C).

However, the truth is that increasing the prior of the
component co-shared with 0o cannot increase the inferred
posterior probability of the dependence, but would rather
inversely reduce the dependence between CRF and nCRF,
and would result in the dominance of the inferred posterior
probability of the non-shared component (the blue line in
Figure 7C). This means that the suppression effect after
adaptation is not from the component co-shared with 0o that
produces the suppression dependent on the surround nCRF
signals according to Equation (3), but from the pure CRF-based
response and suppression [i.e., the response of the non-shared
component does not contain any nCRF-dependent suppression
according to Equation (2)]. This result predicts that adaptation
and testing using a small grating can transform amodel with a co-
shared component state to amodel with a non-shared component
state, and hence constitute a disinhibition effect in which the
non-shared component does not contain any nCRF signals.

Our explanations for the typical suppression effect using the
small grating are different from Snow et al. (2016), wherein
the authors explained the suppression effect based on the
inferred posterior probability of dependence between the past
and the present stimuli, which in turn determined the strength
of suppression induced by the divisive normalization signals
recruited by the past stimuli to the response of present stimuli.
The suppression effect of Snow et al. (2016) is essentially a
consequence of the orientation-specific suppression mechanism
(i.e., strongest suppression when the orientation of adapting
stimulus is similar to the orientation of test stimulus). In contrast,
the suppression effect of our framework is from the switch
between twomodel states (e.g., from a co-shared component state
to a non-shared component state).

Furthermore, the inferred posterior probability before
adaptation in our framework (the black and red lines in
Figure 6D) is very similar to the inferred posterior probability
after adaptation of Snow et al. (2016) (e.g., Figures 4C,F). Their
results are based on the inferred posterior probability where the
suppression is the strongest at 90◦ or 45◦, and the suppression is
the weakest on the two sides of 90◦ or 45◦. However, based on
the CRF-nCRF model, our framework produces the suppression
result because the model selects a non-shared component
state, which seems to mean either that adaptation leads to the
collective silence of peripheral nCRF neurons or that there is no
CRF-nCRF correlation.

(2) Repulsion Effect. We further investigated the case when
the adapter is adapted at 45o away from the neuron’s preferred

orientation (Figure 7D; Wissig and Kohn, 2012). The repulsion
effect can also be captured qualitatively by our framework
(Figure 7E), because the dominant posterior probability was
determined by the high prior of the co-shared component of
−45o, which leads to the switch between two states (e.g., from
a co-shared component of 0o to a co-shared component of−45o)
and the final selection of the normalized response of −45o in
the model. Our explanations for the repulsion effect again are
different from the orientation-specific suppression mechanism
proposed in Snow et al. (2016). The slight difference between V1
data and model prediction at the adapted orientation (−30o in
Figure 7D vs. −45o in Figure 7E) occurs because the co-shared
components in the model only imitate four filters’ orientations
(0o, 45o, 90o, 135o), and hence the model cannot finely simulate
adaptation at other orientations (e.g., 30o) (Coen-Cagli et al.,
2012; Snow et al., 2016).

(3) Facilitation Effect. We next consider the third situation
of adaptation using a small grating whose orientation is
orthogonal to neuron’s preferred orientation. In this case, OTC is
enhanced after adaptation compared to the original OTC before
adaptation, which is the so-called orthogonal enhancement
(Figure 7G; Wissig and Kohn, 2012). The model developed
in Snow et al. (2016) cannot capture the interesting data
of orthogonal enhancement, as their model is essentially a
divisive normalization-based suppression model. However, the
orthogonal enhancement effect can be still captured qualitatively
by our framework (Figure 7H), because the dominant posterior
probability was determined by the high prior of the co-shared
component of −90o, which leads to a switch between two
states (e.g., from a co-shared component of 0o to a co-shared
component of −90o) and the final selection of the normalized
response of−90o in the model.

In our framework, we assume that the adapter will induce
a strong prior for the specific orientation, regardless of the
normalized response component (e.g., Figure 6F) and the
likelihood (e.g., Figure 6C) of each component (e.g., the non-
shared components and co-shared components for 0o, −45o,
−90o, and 45o) in Figure 6. The posterior probability after
adaptation is significantly dominant for the specific orientation
due to the combination of the strong prior and the unchanged
likelihood. Because the posterior probability is further used
to multiply each normalized neural response component (e.g.,
Figure 6F), adaptation is functionally implementing a WTA
mechanism to select out the normalized neural response
component with the dominant posterior probability as the
final neural response (e.g., Equation 4), regardless of the
similarity between adapting stimulus and test stimulus (e.g.,
0o in Figure 7B, −45o in Figure 7E and −90o in Figure 7H).
Our modeling framework thus provides a prior-induced WTA
mechanism for explaining the orientation-specific adaptation
using a small grating (Solomon and Kohn, 2014; Snow et al.,
2016).

4.2.2. Prior-Based WTA Partly Predicts OTC

Adaptation Covering CRF and nCRF
The prior-based WTA-induced model state switch also can
explainmost of theOTC adaptations under large grating stimulus
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FIGURE 8 | (A–F) Simulated effects of adaptation on OTC using the large grating stimulus that covers both CRF and nCRF. Blue arrowhead combining with the large

sinusoidal grating roughly indicates the adapting stimulus condition for each sub-panel. Refer to Figure 7 for explanations of V1 Data vs. Model data. The figure of V1

data is adapted from Wissig and Kohn (2012), Patterson et al. (2013).

covering both CRF and nCRF as shown in Figure 8. In short,
responses after adaptation when the adapter orientation is
matched to the preferred orientation aremaintained (Figure 8A).
Responses after adaptation when the adapter orientation is
away from the preferred orientation attract OTC toward
the adapter (Figure 8B). Finally, responses after adaptation
when the adapter orientation is orthogonal to the preferred
orientation are enhanced (Figure 8C). Our framework based
on the modification of prior qualitatively captured both the
maintained and enhanced effects (Figure 8A vs. Figure 8D and
Figure 8C vs. Figure 8F).

However, ourmodel based on themodification of prior cannot
capture the attraction effect using the large grating stimulus
as the adapter covering both CRF and nCRF (Figure 8B vs.
Figure 8E), where our model produces the combinational effects
containing both repulsion and enhancement. In order to capture
the attraction effect, this framework may further require the
changes in the connectivity of CRF and nCRF (Coen-Cagli et al.,
2012; Snow et al., 2016).

Hence, we further assume that adaptation using the large
grating stimulus covering both the CRF and nCRF is not only
modifying the prior during adaptation but also possibly reflecting
changes in the covariance (Figure 5B) based on updating the
connectivity between CRF and nCRF during adaptation. In the
following, we will show how manually modifying covariance in
the model can capture the novel attraction effects on V1 when
using the large grating stimulus covering both CRF and nCRF as
the adapter.

4.2.3. The Combined Influence of Altered Variance

and Covariance Predicts Attraction Effects
To understand how the framework produces the attraction effects
by manually modifying the covariance, the learned covariance
matrices (i.e., 645

CN) are visualized in Figure 9. For example, the
black bars in Figure 9 are the learned variances for the model
of the co-shared component of 45o, which reflect the strength
of normalization from nCRFs. The framework models nCRF
using eight V1-like RFs. The green lines are the learned variance,
reflecting the strength of normalization from CRFs (e.g., the CRF
contains four V1-like RFs with different preferred orientations
Coen-Cagli et al., 2012). The variance and covariance together
form the weights that adjust signals from CRF and nCRF when
the responses of center and surround RFs are excited, which can
induce the orientation-specific enhancement and suppression
during adaptation.

(1) Enhanced suppression within CRFs. In all of the
experiments, we use the same prior as the previous part.
Figure 10 shows the function of each part of the covariance
matrix during the reproduction of the attraction effects as
observed in V1 when using the large grating stimulus covering
both CRF and nCRF as the adapter. We observed that only
increasing the variance of CRFs (i.e., comparing the bar
thickness of green lines in Figures 9, 10A) for orientations
of 0o, 90o, and 135o can capture the attraction effects as
observed in V1 (Figure 10A). The reason is that increasing
the variance of CRFs for the orientations of 0o, 90o, and 135o

is functionally equal to enhancing the normalization signals
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FIGURE 9 | Visualization of the covariance matrix for the co-shared component of 45o learned from scenes. The only difference compared with Figure 2 is that we

further visualize the variance of the CRFs (e.g., the thickness of green lines is proportional to the variance of CRFs).

FIGURE 10 | Visualization of each part of covariance matrix reproducing the attraction effects. (A) Increasing the variance of central RFs for orientations of 0o, 90o,

and 135o reproduces the attraction effects as observed in V1 (Patterson et al., 2013). (B) Weakening the variance and covariance of surround RFs reproduces the

attraction effects as observed in V1 to some extent (Patterson et al., 2013). (C) The combined influence of altered variance and covariance as in (A,B) clearly

reproduces the attraction effects as observed in V1. (D) The effects of further double-scaling the variance of central RFs for orientations of 0o, 90o, and 135o in (C).

The blue arrowhead combining with the large sinusoidal grating indicates the adapting stimulus condition for each sub-panel.

within CRFs from the corresponding orientations (e.g., 0o,
90o, and 135o), which finally results in further suppression
within CRFs. Thus, we observed the clear suppression of
the right part of OTC in Figure 10A after adaptation (e.g.,
red line). This enhanced suppression from CRFs that leads
to the attraction effects observed in the model is essentially
different from the attraction effects experimentally observed
in V1 (Wissig and Kohn, 2012; Patterson et al., 2013), where
the attraction effects were generally explained by an adaptation

induced weakening of surround suppression (i.e., weakening
of nCRFs).

(2) Weakening suppression from nCRFs. In order to test
whether our framework can capture the attraction effects by
only weakening of surround suppression as observed in V1
(Wissig and Kohn, 2012; Patterson et al., 2013), we decreased
the variance and covariance of surround RFs in the model so as
to imitate the mechanism of weakening surround suppression as
suggested byWissig and Kohn (2012), Patterson et al. (2013). The
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weakening of the surround suppression works to decrease the
normalization signals from the corresponding orientation (e.g.,
45o). Figure 10B shows the results of weakening the surround
suppression. We observed that the weakening of the surround
suppression can only reproduce the attraction effects as observed
in V1 to some extent but cannot fully explain the observed
attraction effects in V1 as observed by Wissig and Kohn (2012)
and Patterson et al. (2013). For example, the left part of OTC
represented by the red line in Figure 10B is further enhanced
after adaptation following the decrease of the normalization
signals, which is similar to Figure 9B in Wissig and Kohn (2012).
However, only weakening (or disinhibition) of the surround
suppression cannot increase the normalization signals for other
corresponding orientations in the CRFs (e.g., 0o, 90o, and 135o),
and thus cannot enhance the suppression of the right part of
OTC after adaptation as reflected in Figure 10A. The weakening
of the surround suppression mechanism also partly leads to the
facilitation of the right part of OTC after adaptation to some
extent (see red line in Figure 10B), which was not observed in V1
adaptation experiments using the large grating stimulus (Wissig
and Kohn, 2012; Patterson et al., 2013).

(3) Combination of two mechanisms. Figure 10C shows
the results of the combined influence of altered variance
(specifically, increasing the variance of CRFs) and covariance
(decreasing the variance and covariance of nCRFs) as shown in
Figures 10A,B together, which clearly reproduce the attraction
effects as observed in V1 (Wissig and Kohn, 2012; Patterson
et al., 2013). Figure 10D shows the more obvious attraction
effects by doubly increasing the variance of CRFs (e.g., the
bar thickness of green lines) for orientations of 0o, 90o,
and 135o in Figure 10C. This effect further stresses the
importance of increasing the normalization signals within
CRFs and hence enhancing the suppression directly from
the CRFs when producing the attraction effects in V1
after adaptation.

The results obtained by our framework indicate that in
order to predict the attraction effects, only the explanation of
weakening (or disinhibition) of the surround suppression is
not enough (Wissig and Kohn, 2012; Patterson et al., 2013;
Solomon and Kohn, 2014). Adaptation using the large grating
stimulus not only leads to the adaptation-induced weakening
of surround suppression but may also result in the adaptation-
induced enhancement of center suppression. In summary, for
large grating stimuli based flank adaptation of the OTC in V1,
the effect indicates the comprehensive impact of the enhanced
center suppression from the non-adapted orientations within the
CRF and the weakened surround suppression from the adapted
orientation within the nCRF; the former yields the response
reduction for the non-adapted orientations (see Figure 10A), and
the latter results in the facilitation for the adapted orientation
(see Figure 10B) after adaptation. These two factors combine to
form the attractive shift effect. Furthermore, the decrease of peak
response and shift switching from repulsion to attraction of OTC
are mainly dependent on the strength of enhanced responses for
the non-adapted orientations within CRFs (i.e., enhancement of
the center suppression).

5. DISCUSSION AND CONCLUSION

We designed a framework to study the parameters of a scene
statistics-dependent spatial model to explain the orientation

adaptation phenomena observed in V1 (Coen-Cagli et al.,
2012). We extended this model by updating the parameters
based on a mixed dataset that included both scene statistics

and synthetic statistics, such as grating images widely adopted
in neurophysiological experiments (Wissig and Kohn, 2012;
Patterson et al., 2013; Solomon and Kohn, 2014). Results show
that the extended model has been able to capture all of the OTC

adaptation effects observed in neurophysiological experiments.
In order to capture the physiological data, three specific

predictions were necessary. First is the prediction that the OTC
adaptation is sensitive to the variation of a prior. Second is
the prediction that there is prior-induced WTA that selects

through successful competition one component from a pile of
normalized response components in the model. Third is the
prediction that adaptation using a large grating stimulus covering

both CRF and nCRF induces the comprehensive effects of
enhanced suppression within CRFs and weakening of surround
suppression from nCRFs.

The enhanced suppression within CRFs may be explained
by the non-specific suppression within the CRF (Morrone
et al., 1982; Bonds, 1989; DeAngelis et al., 1992; Heeger, 1992;
Carandini et al., 2005), where the RFs of multiple neurons
with various orientation selectivity overlap, and the responses
of a neuron can be inhibited by pooling the responses of
multiple neurons. The CRF in the MGSM model contains four
overlapping V1-like filters with four different orientations and
two different phases. Our results indicate that adaptation using
the large grating induced a similar effect of enhanced nonspecific
suppression, and the observed attractive effect after adaptation
in V1 mainly resulted from the adaptation-induced nonspecific
suppression mechanism. The possible physiological mechanisms
implementing the changes in connectivity of covariance during
adaptationmay raise from stimulus dependent variation of lateral
connectivity and strength among neurons (Nauhaus et al., 2009;
Coen-Cagli et al., 2015) or fast conductance changes of neurons
(Connor, 1978).

The working mechanism of our extended model maybe
quite different from the previous work of Coen-Cagli et al.
(2012) and Snow et al. (2016), in which the authors stressed
the importance of the strength of the stimulus-dependent
normalization based on measuring the feature similarity between
center and surround (Coen-Cagli et al., 2012) or between past
and present (Snow et al., 2016). In contrast, our extended
model is based on a prior-induced WTA mechanism that
drives a switch among model states. Consistent with traditional
findings that neurons in V1 receive intracortical modulation
(Carandini et al., 2005) and hence constitute a neural network
that can respond to different stimuli attributes (e.g., different
orientations), the concise MGSM model contains five different
components (a non-shared component and four co-shared
components with orientations of 0o, 45o, 90o, and 135o), and
each one responds to a specific model state (i.e., orientation).
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Therefore, a prior-induced WTA mechanism that drives a switch
among different model states may be more reasonable than a
mechanism based on measuring the feature similarity for the
following reasons.

1) The structure of the extended framework is physiologically
more consistent with the basic neural substrates (in other
words, neurons receiving a pool of intracortical signals produced
by neurons with various orientations and spatial frequencies
constitute a neural network) (Morrone et al., 1982; Bonds, 1989;
DeAngelis et al., 1992).

2) More and more studies have indicated a link between
adaptation and attention (Boynton, 2004; Solomon and Kohn,
2014); both are major mechanisms modulating the sensitivity of
the brain to visual stimuli in temporal and spatial dimensions.
Although WTA mechanisms are not clearly linked with
adaptation and attention, two prior examples in the literature
did find a potential role for WTA in adaptation and attention.
Lee et al. discovered that attention can induce WTA competition
among visual RFs (Lee et al., 1999). Jin et al. directly exploited
a WTA mechanism to obtain the perceived orientation from
a population coding of neurons (Jin et al., 2005), which was
further used to measure whether the orientation adaptation
responses of V1 may predict the tilt aftereffect measured by a
psychophysics experiment.

3) Adaptation during a few seconds or tens of seconds
may be predictive (Chopin and Mamassian, 2012)—that is, not
calibrating the neural system to the recent history as suggested by
Snow et al. (2016), wherein the author used the recent posterior
as the updated prior (e.g., the prior is updated only using a recent
set of grating stimulus)—but rather than estimating the prior
from the remote history, which is similar to our extendedMGSM
model. In the MGSM model, the prior is updated on a mixed
dataset containing both natural images and grating images (e.g., a
kind of remote history) and then is used as the reference to select
out the corresponding model state (e.g., through a prior induced
WTA mechanism). In summary, the major novel contribution
of this work is to establish the role of prior-induced WTA on
orientation adaptation effects in V1.

Finally, Shushruth et al. (2013) has shown that nCRF can
be further divided as separate entities of near vs. far surround.
They have been shown to have distinct surround suppression
magnitudes and mechanisms. Hence, how adaptation interacts
with two separate entities was not clear from previous work

(Wissig and Kohn, 2012; Patterson et al., 2013; Solomon and
Kohn, 2014). The CRF-nCRF model may be further extended
to explore these subtle key points for insightful exploration in
the future.
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