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Abstract Humans can learn abstract concepts that describe invariances over relational patterns

in data. One such concept, known as magnitude, allows stimuli to be compactly represented on a

single dimension (i.e. on a mental line). Here, we measured representations of magnitude in

humans by recording neural signals whilst they viewed symbolic numbers. During a subsequent

reward-guided learning task, the neural patterns elicited by novel complex visual images reflected

their payout probability in a way that suggested they were encoded onto the same mental number

line, with ’bad’ bandits sharing neural representation with ’small’ numbers and ’good’ bandits with

’large’ numbers. Using neural network simulations, we provide a mechanistic model that explains

our findings and shows how structural alignment can promote transfer learning. Our findings

suggest that in humans, learning about reward probability is accompanied by structural alignment

of value representations with neural codes for the abstract concept of magnitude.

DOI: https://doi.org/10.7554/eLife.42816.001

Introduction
The ability to learn rapidly from limited data is a key ingredient of human intelligence. For example,

on moving to a new city, you will rapidly discover which restaurants offer good food and which

neighbors provide enjoyable company. Current models of learning propose that appetitive actions

toward novel stimuli are learned tabula rasa via reinforcement (Sutton and Barto, 2018), and these

models explain the amplitude of neural signals in diverse brain regions during reward-guided

choices in humans and other animals (Dolan and Dayan, 2013; O’Doherty et al., 2003;

Schultz et al., 1997). However, reinforcement learning models learn only gradually, and even when

coupled with powerful function approximation methods, exhibit limited generalization beyond their

training domain (Mnih et al., 2015). This has led to the suggestion they are ill-equipped to fully

describe human learning (Lake et al., 2017).

By contrast, cognitive scientists have ascribed human intelligence to the formation of abstract

knowledge representations (or ‘concepts’) that delimit the structural forms that new data is likely to

take (Gentner, 2010; Kemp and Tenenbaum, 2008; Tenenbaum et al., 2011). Indeed, real-world

data can often be described by simple relational structures, such as a tree, a grid or a ring

(Tenenbaum et al., 2011). Humans may infer relational structure through probabilistic computation

(Kemp et al., 2010) and a long-standing theory proposes that humans understand new domains by

their alignment with existing relational structures (Gentner, 1983). However, these models are often

criticized for failing to specify how concepts might be plausibly encoded or computed in neural cir-

cuits (McClelland et al., 2010). A pressing concern, thus, is to provide a mechanistic account of how

relational knowledge is encoded and generalized in the human brain (Tervo et al., 2016).

The current project was inspired by recent observations that the representational geometry of

human neural signals evoked by symbolic numbers respects their relative cardinality. In scalp M/EEG
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signals, neural patterns evoked by Arabic digits vary continuously with numerical distance, such that

multivariate signals for ‘3’ are more similar to those for ‘4’ than ‘5’. (Spitzer et al., 2017;

Teichmann et al., 2018). In scalp M/EEG signals, neural patterns evoked by Arabic digits vary con-

tinuously with numerical distance, such that multivariate signals for ‘3’ are more similar to those for

‘4’ than ‘5’. Number is a symbolic system that expresses magnitude in abstract form (Bueti and

Walsh, 2009; Fischer and Shaki, 2018; Walsh, 2003) and so we reasoned that continuously varying

neural signals evoked by numbers might be indexing a conceptual basis set that supports one-

dimensional encoding of novel stimuli. In the domain of reward-guided learning, a compact descrip-

tion of the stimulus space projects data into a single dimension that runs from ‘bad’ to ‘good’. Here,

thus, we asked humans to learn the reward probabilities associated with novel, high-dimensional

visual images, and measured whether the stimuli come to elicit neural patterns that map onto one-

dimensional neural codes for numerical magnitude.

Results
Whilst undergoing scalp EEG recordings, human participants (n = 46) completed two tasks: a numer-

ical decision task and a probabilistic reward-guided learning task (Figure 1A, see Materials and

methods). In the numerical task, participants viewed rapid streams of 10 Arabic digits (1 to 6) and

reported whether numbers in orange or blue font had the higher (Experiment 1a, n = 22) or lower

(Experiment 1b, n = 24) average. The reward-learning task was based on the multi-armed bandit

paradigm that has been used ubiquitously to study value-guided decision-making (Dolan and

Dayan, 2013). Participants learned the reward probabilities associated with six unique novel images

(colored donkeys), which paid out a fixed reward with a stationary probability (range 0.05–0.95).

These probability values were never signaled to the participant but instead acquired by trial and

error in an initial learning phase. In the test phase, we asked participants to decide between two suc-

cessive donkeys to obtain a reward, and estimated trial-wise subjective probability estimates for

each bandit by fitting a delta rule model to choices (Sutton and Barto, 2018). Throughout these

phases, the bandits were never associated with numbers in any way.

eLife digest Many things in the world have a certain structure to them, which we can use to

organize our thinking. To mentally represent your family, for example, you could group your family

members into men and women, or group them based on where they live. But a more intuitive

approach for most people is to organize family members by generation: child, sibling, parent,

grandparent. It is as though we instinctively place each family member along a mental line, from

young to old.

We use mental lines to organize other types of information too, most notably numbers. But can

we also use them to represent new information? Luyckx et al. trained healthy volunteers to associate

pictures of six different colored donkeys with six different reward probabilities. One donkey was

followed by reward 5% of the time, another was followed by reward 95% of the time, and so on.

Through trial and error, the volunteers learned to rank the donkeys in terms of how likely they were

to precede a reward. Luyckx et al. then compared the volunteers’ brain activity while viewing the

donkeys to their brain activity while viewing the numbers 1 to 6.

The donkeys evoked patterns of electrical brain activity corresponding to the number that

signaled their place on a mental line. Thus, donkey 1, with the lowest reward probability, produced

a pattern of brain activity similar to that of the number 1, and so on for the others. This suggests

that rather than learning in an unstructured way, we use past knowledge of relations among stimuli

to organize new information. This phenomenon is called structural alignment.

The results of Luyckx et al. provide the first evidence from brain activity to support structural

alignment. They suggest that we use a general understanding of how the world is structured to learn

new things. This could be relevant to both education and artificial intelligence. People, and

computers, may learn more effectively if taught about the relations between items, rather than just

the items in isolation.

DOI: https://doi.org/10.7554/eLife.42816.002
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Figure 1. Task design and RSA results. (A) Humans performed two tasks during a single EEG recording session. In

the numerical decision task, participants viewed a stream of ten digits between 1 and 6, deciding whether the blue

or orange numbers had the highest/lowest average. In the bandit task, participants learned about the reward

probabilities of six images (bandits) and were asked to choose between two successive bandits to obtain a fixed

reward. Numbers below each frame show time duration of the frame in ms. (B) RSA revealed a numerical and

value distance effect from ~100 ms after stimulus onset (bottom colored lines, Pcluster <0.005). Inset shows

magnitude model RDM. Shaded area represents SEM. Repeating the same analyses with correlation distance

(Figure 1—figure supplement 1) or splitting the data per task framing group (Figure 1—figure supplement 2)

provided highly similar results. Figure 1—figure supplement 3 shows the patterns do not differ between bandits

presented first or second. (C) Averaged neural RDMs between 200–700 ms for the numerical (top) and bandit

(bottom) task show a clear correspondence with the magnitude model.

DOI: https://doi.org/10.7554/eLife.42816.003

The following figure supplements are available for figure 1:

Figure supplement 1. RSA results with Pearson correlation distance.

DOI: https://doi.org/10.7554/eLife.42816.004

Figure supplement 2. RSA results split per task framing.

DOI: https://doi.org/10.7554/eLife.42816.005

Figure supplement 3. RSA results split for first and second bandit.

DOI: https://doi.org/10.7554/eLife.42816.006
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Shared magnitude representation for numbers and probabilistic
rewards
Using representational similarity analysis (RSA) (Kriegeskorte and Kievit, 2013), we replicated the

previous finding (Spitzer et al., 2017; Teichmann et al., 2018) that patterns of neural activity across

the scalp from ~100 ms onwards were increasingly dissimilar for numbers with more divergent mag-

nitude, that is codes for ‘3’ and ‘5’ were more dissimilar than those for ‘3’ and ‘4’ (Figure 1B, green

line). This occurred irrespective of task framing (report higher vs. lower average) and category

(orange vs. blue numbers), suggesting that neural signals encoded an abstract representation of

magnitude and not solely a decision-related quantity such as choice certainty (Spitzer et al., 2017).

Next, we used RSA to examine the neural patterns evoked by bandits. We found that multivariate

EEG signals varied with subjective bandit ranks, with bandits that paid out with nearby probabilities

eliciting more similar neural patterns (from ~100 ms onwards; Figure 1B, blue line).

Our key question was whether there was a shared neural code for numerical magnitude and

reward probability. We found that EEG signals elicited by digit ‘6’ were more similar to those

evoked by the most valuable bandit, and digit one predicted the bandit least likely to pay out, with

a similar convergence for intermediate numbers and bandits (Figure 2A). Cross-validation of neural

signals elicited by all numbers (1 to 6) and bandits (inverse ranks 1–6) was stable and reliable from

300 to 650 ms post-stimulus, as demonstrated by cross-temporal RSA (Figure 2B). We conducted

several control analyses to further explore the nature of this effect. The cross-validation effect was

not driven by patterns within a single number/bandit pair, as it remained robust to the removal of

any one of the six number/bandit pairs (Figure 2C). In particular, although the largest number/most

valuable bandit cross-validation appeared more dissimilar to other numbers/bandits, the effect per-

sisted when only numbers/bandits 1–5 were included in the analysis (Figure 2—figure supplement

Figure 2. Cross-temporal cross-validation RSA. (A) Averaged neural RDM from 350 to 600 ms across the numerical (1-6) and bandit (b1–b6) task. Upper

left and lower right quadrants show representational dissimilarity for numbers (‘N’) and bandits (‘B’), respectively, that is within-task RDM; lower left/

upper right quadrants show cross-validated dissimilarity between numbers and bandits (‘N-B’), that is between-task RDM. (B) Cross-temporal cross-

validated RSA revealed a stable magnitude representation that was shared between the two tasks (Pcluster <0.005) around 350–600 ms. (C) To ensure

that our cross-validation was not driven by a single number/bandit pair, we systematically removed each number/bandit pair and repeated the cross-

temporal cross-validated RSA on the subset data. Each pixel can range from 0 (no significant cross-validation for any number/bandit pair) to 6 (cross-

validation always reached significance). Between 400 and 600 ms our cross-validation was robust to the removal of any number/bandit pair (Figure 2—

figure supplement 1 shows the results isolated when excluding number/bandit pair 6).

DOI: https://doi.org/10.7554/eLife.42816.007

The following figure supplements are available for figure 2:

Figure supplement 1. Cross-validation after removal of number 6/subjectively highest valued bandit (subset of Figure 2C).

DOI: https://doi.org/10.7554/eLife.42816.008

Figure supplement 2. We compared the strength of within-subject cross-validation to the between-participants cross-validation, asking whether

variations in multivariate neural signals existed that were idiosyncratic within participants.

DOI: https://doi.org/10.7554/eLife.42816.009
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1). We then asked whether each number was more similar to its equivalent bandit than to other ban-

dits (e.g. number 3 and bandit 3, the ‘on-diagonal’ information in Figure 3A), by computing an

‘Exemplar Discriminability Index’ (EDI) (Nili et al., 2016). Additionally, we asked whether numbers

showed a gradually increasing dissimilarity to non-identical bandits (e.g. whether number three was

more similar to bandit 2/4 than bandit 1/5, the ‘off-diagonal’ information in Figure 3B). Both of

these effects were independently reliable, suggesting not only that each number shares a represen-

tation with its corresponding bandit, but that the transitive patterns of encoding numbers and ban-

dits are in a common register in neural signals.

Relating numerical magnitude representation to choice behavior
Past work has identified overlapping choice biases in numerical cognition and economic decisions

(Kanayet et al., 2014; Schley and Peters, 2014). Next thus, we asked how patterns of behavior in

the numerical and bandit tasks were related to one another by creating choice matrices encoding

the difference in relative weight given to each number or bandit in the choices made by participants.

For the numerical task, we computed decision weights for each number in the choice using an aver-

aging approach (see Materials and methods) and plotted the relative difference in these weights for

each combination of numbers (Figure 4A). For the bandit task, this was simply the probability of

choosing the subjectively highest valued bandit for each combination of bandits (Figure 4B).

Although choice matrices for numbers and bandits were on average correlated across participants

(rt= 0.32, Z = 5.65, p < 0.0001, Wilcoxon signed rank test), this correlation disappeared when sub-

tracting the group average choice matrices and correlating the residual matrices (rt= -0.02, Z = -

0.49, p = 0.63). In other words, we were not able to identify shared variation in individual weighting

of numbers 1-6 and bandits 1-6 in behavior alone, perhaps because of the different nature of the

decision required in each task.

Figure 3. Detailed examination of the magnitude pattern in cross-validation. (A) The presence of a one-to-one mapping along the number line (i.

e. number one to least valued bandit) was tested using the ‘Exemplar Discriminability Index’ (EDI), a measure that indicates how much better items on

average map onto iterations of the same item compared to different items. The EDI is calculated by subtracting the mean on-diagonal distances from

the mean off-diagonal distances (top illustration). Significant exemplar discriminability, where numbers most closely resembled their equivalent bandit,

arose at the same time as our main findings. (B) Removing the diagonal from the lower rectangle in the cross-validation RDM (i.e. the dissimilarity

between distributed responses to corresponding stimuli in the two tasks) reproduced the results from our main analysis, suggesting the effect was not

mainly driven by matching stimulus pairs (e.g. number six and most valuable bandit), but by a gradual distance effect (Pcluster <0.005).

DOI: https://doi.org/10.7554/eLife.42816.010
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Figure 4. Behavioral analyses. (A) Group-averaged difference RDM of decision weights in the numerical task. We calculated the weight of each number

on participant’s choice, independent of color, and created a choice RDM through pairwise differences of weights. (B) Group-averaged choice RDM in

the bandit task. Each cell contains the probability of choosing the highest valued bandit on trials where bandit x and bandit y were presented together.

Participants never encountered trials where the same bandit was presented twice. (C) Both choice matrices were inserted in a multiple regression

explaining EEG patterns to establish a potential link between behavior and neural patterns in either task. Only the numerical choice RDM explained

neural patterns of the numerical task. (D) In contrast, both choice RDMs significantly explained neural patterns in the bandit task, possibly indicating

that participants relied on a more general understanding of numbers in both tasks (bottom colored lines, Pcluster < 0.005). Shaded area represents SEM.

(E) Distributions of log kð Þ after fitting a power-law model of the form xk to the decision weights in the numerical task (yellow) and the average neural

patterns in the numerical (green) and bandit task (blue) between 350 and 600 ms (see Materials and methods). In all cases, the best fitting parameter

log kð Þ was significantly greater than 0 (linear), indicating an overweighting/increasing dissimilarity for larger quantities (numbers 5-6 or highest valued

bandits). (F) Decision weights under the median estimated k for psychometric (yellow) and neurometric (green/blue) fits, compared to the median true

human decision weights in the numerical task.

DOI: https://doi.org/10.7554/eLife.42816.011
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Subsequently, we asked how these choice matrices explained variance in patterns of neural simi-

larity, that is whether the behavior explained shared variation in the neural structure alignment for

numbers and bandits. To this end, we substituted the linear representational distance matrix used

for earlier analyses (i.e. one that assumes equal spacing among adjacent numbers and bandits) with

the subject-specific choice matrices computed from behavior and repeated the analyses above. This

allowed us to ask how patterns of neural similarity among both numbers and bandits were explained

by variance in subject-specific choice matrices. For each neural pattern, we used a regression-based

approach in which choice matrices from numbers and bandits were entered as competing regres-

sors. Interestingly, we found that choice patterns from the numerical task explained variance in the

neural patterns for both numbers and bandits, but choice patterns from the bandit task only

explained variance in the neural patterns of the bandit task (Figure 4C–D) (Pcluster <0.005). One

interpretation of this finding is that humans used their intrinsic sense of magnitude when forming

neural representations of the bandits, but not vice versa. We note in passing that this asymmetry is

not secondary to the ordering of the two tasks, which was fully counterbalanced across participants.

In previous work, we observed that participants tended to give relatively greater weight to larger

magnitudes during the numerical decision task, for example numbers ’5’ and ’6’ had disproportion-

ate impact on averaging judgments (Spitzer et al., 2017). This finding was replicated in the current

data (Figure 4E-F). Human choices were best fit by a power-law model in which participants aver-

aged and compared distorted numerical values xk with k= 2.04 ± 1.11 (k> 1: t(45) = 12.47, p <

0.001). This prompted us to ask whether any shared variance between behavioral choice matrices

and neural signals for the two tasks could be explained by subject-specific differences in the pattern

of compression or anti-compression in the mental number line, as characterized by this model. Turn-

ing to the neural data, we thus generated candidate representational dissimilarity matrices (RDMs)

under the assumption that distance in neural space can likewise be non-linear and best described by

a distortion given by the same power-law model, that is of the form xk. We found that in both

numerical and bandit tasks the best fitting RDM was parameterized by k> 1 [numerical: k= 1.73 ±

0.82, t(45) = 14.34, p < 0.001; bandit: k= 1.72 ± 0.85, t(45) = 13.65, p < 0.001]. In other words, we

observed that the anti-compressed number line estimated from behavior was reflected, on average,

in both the neural representation of numbers and bandits. However, when we correlated the sub-

ject-specific model parameter k from behavior with estimates obtained from the neural data from

either task, we found that although the degree of behavioral anti-compression strongly predicted

the neural anti-compression for the numerical task (�= 0.57, p = 0.0004), it did not for the bandit

task (�= -0.13, p = 0.39). One interpretation of this result is that the variance linking the mental num-

ber line to the representation of bandits (i.e. from Figure 4D) is not simply due to individual differen-

ces in compression or anti-compression of the mental representations of numbers and bandits but

must lie in a subspace not captured by this simple unidimensional model.

Dimensionality of magnitude representation
Recent work has suggested that during categorization, posterior parietal neurons in the monkeys

are strikingly low-dimensional, as if the parietal cortex were engaging in a gain control process that

projected stimulus features or timings on a single axis (Fitzgerald et al., 2013; Ganguli et al., 2008;

Platt and Glimcher, 1999; Wang et al., 2018). Indeed, we observed a centro-parietal positivity

(CPP) that varied with the magnitude of both numbers and reward probabilities (Figure 5A–B). This

signal resembles a previously described EEG signal, that has been found to scale with the choice cer-

tainty in perceptual (O’Connell et al., 2012) and economic tasks (Pisauro et al., 2017). However, in

our numerical task the CPP followed an approximately ascending pattern from lower to higher num-

bers regardless of task framing (Figure 5—figure supplement 1) or color category. The cross-valida-

tion effect persisted even after the CPP had been regressed out of the data (Figure 5—figure

supplement 2). This suggests that (a) the CPP in our task may represent a notion of magnitude, not

a certainty signal alone; and (b) that this signal is not the sole driver of our multivariate findings.

Nevertheless, to understand the dimensionality of the number and bandit representations (and

the subspace in which they aligned), we used two dimensionality reduction techniques, singular

value decomposition (SVD) and multidimensional scaling (MDS). First, using SVD, we systematically

removed dimensions from the EEG data and recomputed our number-bandit cross-validation scores

(Figure 5C). We found that probabilistic reward learning was supported by a low-dimensional neural
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Figure 5. Dimensionality of magnitude representation. (A) Average normalized amplitudes associated with numbers 1–6, independent of task framing

(report highest/lowest) or category (blue/orange) at highlighted centro-parietal electrodes. Grey shaded area shows time of greatest disparity between

signals (Kruskal-Wallis, PFDR <0.01). Scalp map inset shows response amplitude for number six during identified time window. Colored shading

represents SEM. The ascending direction of the univariate responses was independent of task framing (Figure 5—figure supplement 1) (B) Equivalent

analysis for bandits b1 (lowest value) to b6 (highest value) in the bandit task. Scalp map shows response amplitude for highest subjectively valued

bandit b6. (C) Dimensionality of the data was iteratively reduced using SVD and the strength of cross-validation under each new dimensionality was

assessed by comparing the mean cross-validation in the 350–600 ms time window (bottom plot). Each cell in the grid contains the t- and p-value of a

pairwise comparison of mean CV under different dimensionalities of the data. Reduction to one (and to a lesser degree two) dimension(s) significantly

reduced the size of the effect. (D) Multidimensional scaling (MDS) revealed two principal axes that describe the data: a magnitude axis approximately

following the number/bandit order and a certainty axis distinguishing inlying (e.g. 3,4) from outlying (e.g. 1,6) numbers or bandits.

DOI: https://doi.org/10.7554/eLife.42816.012

The following figure supplements are available for figure 5:

Figure supplement 1. Univariate centro-parietal signals separated by task and task framing.

DOI: https://doi.org/10.7554/eLife.42816.013

Figure supplement 2. We tested whether the univariate CPP amplitude modulations could explain our multivariate findings.

DOI: https://doi.org/10.7554/eLife.42816.014

Figure supplement 3. Cross-validation after excluding the first principal dimension.

DOI: https://doi.org/10.7554/eLife.42816.015
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magnitude code, with reliable effects persisting when all but two eigenvectors were removed from

the data but significantly attenuated when only a single dimension was retained in the EEG data.

Indeed, 3D and full (high-dimensional) solutions led to statistically equivalent cross-validation, with

some attenuation of the effect when two dimensions were retained and a more dramatic decrease

with only a single dimension. To further establish that the cross-validation effect was not solely

driven by the observed univariate activity, we again used SVD to remove the first dimension and re-

computed the cross-validation statistics (Figure 5—figure supplement 3). A significant cluster of

cross-validation emerged at the same time as the originally observed effect together with a previ-

ously unobserved cluster later in time (Pcluster <0.05). In summary, aside from a major univariate com-

ponent to our cross-validation effect, there remains a shared pattern that lies in higher dimensions

of the data.

Secondly, we used MDS to visualize the first dimensions of the concatenated number/bandit

data. This disclosed an axis pertaining to magnitude and another approximately corresponding to

certainty along which, especially for the bandits, the large (or best) and small (or worst) items

diverged from the others (Figure 5D and Video 1). In other words, the numbers and bandits align

principally along a single magnitude axis but with an additional contribution from a second factor

potentially encoding choice certainty.

Neural network simulations
What are the potential benefits of the shared coding scheme we observed in neural signals? One

possibility is that shared structure can promote generalization, such that new relational structures

(i.e. the transitive relations among bandits as a function of their reward probability) are learned faster

and more effectively when an existing scaffold (such as a transitive representation of number) has

been previously learned. We are unable to test for this benefit directly in our human data, because

all participants were numerate adult humans, denying us an appropriate control condition. However,

to demonstrate the theoretical benefit of shared coding at the mechanistic level, we turned to a sim-

ple computational tool, a feedforward neural network (Figure 6A). Neural networks are not con-

strained to make inferences over structure, but structured representations may emerge naturally in

the weights during training (McClelland et al., 2010). Here, we confronted the network with two dif-

feent stimulus sets in turn that (like our numbers and bandits) shared the same similarity structure.

We then asked if the shared structure facilitates retraining on the second set after learning the first.

The network was first trained on inputs xa arriving at input units XA, and after convergence, retrained

on inputs xb fed into units XB (where XA and XB are separate input modules that project to a common

hidden layer H). Inputs xb were 6 random vectors constructed to have the same continuously varying

similarity structure as the bandits, whereas inputs xa consisted of either a different set of six random

vectors with the same second-order structure, or

a shuffled control lacking the second-order struc-

ture. Relearning on xb proceeded faster when

inputs shared a common structure with xa

(Figure 6B-D). In a second control, we shuffled

the weights W2 connecting the hidden layer to

the output layer after convergence on inputs xa,

destroying the mapping of activity patterns in

the hidden layer to the output layer. RSA con-

ducted after retraining revealed reliable cross-

validated patterns of activity in the hidden units

only for the condition where xa and xb shared an

underlying structure and weights W2 were kept

intact (Figure 6E), mirroring the result from the

human neural data.

Discussion
We report that during a probabilistic reward-

guided learning task involving arbitrary images

(‘bandits’), stimuli with high payout probability

Video 1. The neural geometry of the first two

dimensions of both tasks in shared space over time,

identified through multidimensional scaling (MSD).

DOI: https://doi.org/10.7554/eLife.42816.016
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shared a neural code with larger numbers, and those with lower value shared a neural code with

lower numbers. We interpret these data as indicating that an abstract neural code for magnitude

forms a conceptual basis set or ‘scaffold’ for learning new information, such as the reward probabili-

ties associated with novel stimuli. Rather than encoding stimulus value in an unstructured value func-

tion or lookup table (as is common in RL models), our data suggest that humans project available

stimuli onto a low-dimensional axis that runs from ‘bad’ to ‘good’. This neural axis is aligned with the

mental number line, suggesting that humans recycle an abstract concept of magnitude to encode

reward probabilities.

Learning a structured representation of value will have the benefit of allowing new inductive infer-

ences, such as inferring transitive preferences among economic goods without exhaustive pairwise

comparison (Alfred et al., 2018), and facilitate read-out in downstream brain areas, related perhaps

to the notion of a ‘common currency’ for reward (Levy and Glimcher, 2012).

Our neural network simulations provide a demonstration of how shared structure can promote

generalization and thus faster learning, even for stimuli with different physical input features. How-

ever, our design was not suited to directly test a benefit of learning between tasks, since our

Figure 6. Neural network simulations. (A) Schematic depiction of network structure and training. The network was first trained to classify inputs xa fed

into units XA (lower green circles). Inputs xa consisted of six stimuli that either exhibited gradual increasing dissimilarity or were shuffled as a control

(stimulus RDMs shown next to examples of xa and xb). After convergence, the model was trained on new input xb that were fed into a separate input

stream XB (lower blue circles). Inputs xb were different to xa but exhibited the same similarity structure. (B) Loss plotted over the course of training (left

panel) and retraining (right panel) for the test (red) and shuffled control (blue) conditions. Learning was faster during training for control stimuli, but

retraining was faster when xa and xb exhibited shared similarity structure. (C) Loss for control simulations where hidden-to-output weights W2 were

shuffled between training and retraining, suggesting successful transfer depends on structure encoded in W2. (D) Mean loss for first 1000 cycles after

retraining. (E) Cross-validation RSA on hidden unit activation for all stimuli in xa and xb after retraining. Hidden unit activations exhibit shared similarity

structure only when W2 remains unshuffled and xa and xb share structure. Inset shows cross-validation RDM from hidden units for the test condition.

Error bars show SEM over 100 network simulations with different initialization.

DOI: https://doi.org/10.7554/eLife.42816.017
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participants were numerate adults when they entered the experiment. In further work, it would be of

particular interest to teach participants two new transitive structures, each associated with a different

stimulus set, and test whether the extent to which the neural codes align predicts learning rates for

the second stimulus set – a direct prediction that emerges from our computational simulations.

We did, however, find a link between the transitive neural codes and participants’ behavior.

Choice patterns in the two tasks were positively correlated, and how participants treated numbers in

the numerical task was reflected in the neural patterns of both tasks. Furthermore, we found that

participants tended to overweight larger numbers and this non-linear weighting correlated highly

with non-linear representations at the neural level, at least in the numerical task. Why we did not

find a correlation with non-linearities in the neural patterns of the bandit task is unclear. One specu-

lation is that the non-linearity arises at a later stage in the processing of stimuli and is specific to the

task at hand.

One major limitation of our approach is the limited spatial resolution of EEG. This leaves open

the question of the true dimensionality of the shared neural code. Our investigations using

dimensionality reduction techniques indicate that the code in EEG signals is low-dimensional but not

simply univariate. Thus, whilst our work is consistent with previous studies showing that the ampli-

tude of centro-parietal EEG signals scales with number (Spitzer et al., 2017) and the value of eco-

nomic prospects, such as food items (Pisauro et al., 2017), it also suggests a more complex pattern

encoding the shared structure among stimuli defined by transitive relations. However, it would be

instructive to measure the effect using techniques that potentially afford higher spatial resolution,

such as MEG or fMRI. More generally, however, our work is consistent with theories that have sug-

gested that neural signals for magnitude in the parietal cortex may provide a conceptual bridge

between different metrics such as space, time and number (Bueti and Walsh, 2009; Chafee, 2013;

Fitzgerald et al., 2013; Parkinson et al., 2014; Walsh, 2003).

Materials and methods

Participants
Forty-nine healthy participants (Experiment 1a = 24, Experiment 1b = 25) participated in behavioral

and EEG testing at the University of Oxford. Sample size for Experiment 1a was determined based

on common sample sizes in the field and a similar size was used in Experiment 1b for the replication.

Two participants from Experiment 1a were excluded from all analyses due to failure to learn in the

bandit task (chance level performance) and one participant from Experiment 1b due to excessive

movement artefacts in the recorded EEG data. All analyses were performed on the remaining 46

participants (n female = 24, n right-handed = 43, age = 24.7 ± 4.5). All participants had normal or

corrected-to-normal vision, with no history of neurological or psychiatric illness. Participants were

compensated for their time at a rate of £10/hr plus additional bonuses based on their performance

(max. £2.50 in the numerical task and £5 in the bandit task). Informed consent was given before the

start of the experiment. The study was approved by the Medical Science Inter-Divisional Research

Ethics Committee (R49578/RE001).

Experimental procedure
Both tasks (numerical and bandit) were run within a single recording session, with the order of tasks

counterbalanced between participants. Stimuli were created and presented using the Psychophysics

Toolbox-3 (Brainard, 1997; Kleiner et al., 2007) for Matlab (MathWorks) and additional custom

scripts. The tasks were presented on a 20’’ screen with a resolution of 1600 � 900, at a refresh rate

of 60 Hz and on a grey background. Viewing distance was fixed at approximately 62 cm. The F and

J key on a standard QWERTY keyboard served as response keys for left- and right-hand responses,

respectively.

Numerical task
A trial started with a central dark grey fixation dot lasting 500 ms, followed by 10 Arabic digits at a

rate of ~3 Hz (each digit was shown for 283 ms per stimulus with an inter-stimulus interval (ISI) of 67

ms). Numbers were drawn uniformly random from 1 to 6, with half of the stimuli randomly colored in

orange and the other half in blue. Sequence generation was unconstrained, except that the blue/
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orange means could not be identical. After sequence offset, participants could respond by choosing

one of two response boxes on screen containing the options ‘O’ (orange) and ‘B’ (blue). Location of

response options (left or right box) was fixed within the task but counterbalanced between partici-

pants. Left- and right-hand responses were used to select the left and right boxes respectively.

When a response was given, the corresponding box would change to the chosen color 100 ms

before feedback. In the case of a correct answer, both letters within the boxes were replaced by a

dollar sign (‘$’) accompanied by a high-pitch tone for 350 ms. Conversely, if the response was incor-

rect or no response was given within 2 s, the boxes would show a dash (‘/’) and a low-pitch tone was

played. The chosen response box remained colored during feedback. The next trial started after an

inter-trial interval (ITI) sampled uniformly between 500 and 1500 ms.

Task framing was inverted after testing the first group of participants. In Experiment 1a, partici-

pants chose the color associated with the highest average, while in Experiment 1b they chose the

color with the lowest average. After 10 (Experiment 1a) or 20 (Experiment 1b) practice trials

(excluded from analysis) each participant performed 300 trials in 6 blocks of 50 trials. Participants

could take a self-timed break in between blocks.

Bandit task
Bandits were represented by six unique colored drawings of donkeys, freely available on the inter-

net, and each donkey was colored differently (green, purple, orange, yellow, red and blue) using

GIMP (https://www.gimp.org) and superimposed on a light grey background. Each image was asso-

ciated with one of six stationary reward probabilities, linearly spaced between 0.05 and 0.95 [0.05,

0.23, 0.41, 0.59, 0.77, 0.95], and these were assigned randomly to donkeys for each participant.

The experiment consisted of two learning phases and one test phase. In the first learning phase

(L1), all six bandits were presented on screen simultaneously, in a 2 � 3 configuration. Participants

could click on each bandit 36 times, in any order they preferred. Every time a bandit was selected,

the image was replaced by a feedback sign and the surrounding frame adopted the color of the cho-

sen bandit. Feedback in a successful trial consisted of a centrally presented dollar sign and a high-

pitch tone, otherwise a dash appeared paired with a low-pitch tone. Feedback was not drawn proba-

bilistically in this phase: the number of successful trials was determined based on the maximum num-

ber of clicks per bandit and its associated reward probability. After a bandit was chosen 36 times, it

was masked and remained unavailable until the end of the phase.

In the second learning phase (L2), participants were presented with two random bandits sequen-

tially, identical to the test phase (see below). Phase L2 only differed from the test phase in that it

included 50% pseudo-choice trials, where the computer determined which bandit had to be chosen,

in order to encourage exploration of all bandits. During these trials, the computer-chosen bandit

and corresponding response key were highlighted with a brown frame. All pseudo-choice bandits

were assigned equally often and balanced over presentation order. It was emphasized to partici-

pants that the pseudo-choice bandits were selected randomly and did not signal the optimal choice.

Phase L2 lasted for 2 blocks of 60 trials with a short break in between blocks.

Each trial in phase L2 and in the test phase started with the presentation of a white fixation dot

for 500 ms. The fixation dot would disappear 250 ms before presentation of the first bandit. Two

bandits were then presented sequentially, each for 500 ms with an ISI of 250 ms. Afterwards, partici-

pants had to choose which bandit they preferred. Two response boxes on screen indicated the

choice options: ‘A’ referring to the first bandit presented and ‘B’ to the second. The location of ‘A’

and ‘B’ (left or right box) alternated randomly from trial to trial. The chosen box would then change

to the color of the chosen bandit 200 ms before feedback was given. Reward was determined ran-

domly according to the reward probability of the chosen bandit. If the choice was successful, both

response boxes would contain a dollar sign and a high-pitch tone played for 500 ms. If the choice

entailed no reward or no response was given within 2 s, both boxes would show a dash and a low-

pitch tone was played. The fixation dot also turned red when no response was given. No feedback

was provided for the unchosen option. A new trial started after an ITI of 500 ms. The test phase con-

sisted of 10 blocks of 60 trials. By the probabilistic nature of the bandit outcomes, the subjective

ranking of the bandits could potentially vary over the course of the experiment. It was therefore

emphasized to participants before the test phase that the actual reward probabilities of the bandits

would never change.
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EEG acquisition
The EEG signal was recorded using 61 Ag/AgCl sintered surface electrodes (EasyCap, Herrsching,

German), a NeuroScan SynAmps RT amplifier, and Curry 7 software (Compumedics NeuroScan,

Charlotte, NC). Electrodes were placed according to the extended international 10–20 system, with

the right mastoid as recording reference and channel AFz as ground. Additional bipolar electroocu-

lography (EOG) was recorded, with two electrodes placed on either temple for recording horizontal

EOG and two electrodes above and below the right eye for vertical EOG. All data was recorded at 1

kHz and low-pass filtered online at 200 Hz. All impedances were kept below 10–15 kW during the

experiment.

EEG pre-processing
The data from both tasks were pre-processed following the same pipeline, using functions from the

EEGLAB toolbox (Delorme and Makeig, 2004) for Matlab and custom scripts. First the data were

down-sampled to 250 Hz, low-pass filtered at 40 Hz and then high-pass filtered at 1 Hz. The continu-

ous recording was visually screened for excessively noisy channels and these were interpolated by

the weighted average of the surrounding electrodes. The data was then offline re-referenced to

average reference. In the numerical task, epochs were extracted from 1 s before fixation dot onset

to 5.5 s after. In the bandit task, epochs were extracted from 0.5 s before fixation dot onset to 3 s

after. Epochs were baselined relative to the full pre-fixation time window. Epochs containing atypical

noise (such as muscle activity) were rejected after visual inspection. We then performed Independent

Component Analysis (ICA) and removed components related to eye blink activity and other artefacts

(manually selected for each participant). Lastly, the trial epochs were split into smaller stimulus

epochs for each digit/bandit and re-baselined based on the pre-stimulus onset time window. For the

numerical task, these epochs spanned �65 ms to 850 ms relative to stimulus onset. For the bandit

task, they spanned �250 ms to 750 ms. Final analyses focused on the overlapping time window of

�65 to 750 ms in both tasks.

Statistical procedure
Experiment 1b was pre-registered as a control experiment (DOI 10.17605/osf.io/ym3gu), directly

replicating the bandit task and inverting the task framing for the numerical task. We confirmed our

proposed hypothesis that task framing would not affect either the direction of the univariate parietal

effects (Figure 5—figure supplement 1) or the multivariate patterns (Figure 1—figure supplement

2). To increase the power of our analyses, we collapsed the two data sets. All analyses were con-

ducted on the subject level and statistics are reported for the group level.

Delta-rule model
We estimated subjective probabilities for each bandit using a delta-rule model. On every trial, the

model compares the (subjective) values of the two offered bandits and updates the value of the cho-

sen bandit based on the observed reward during the task:

VC tþ 1ð Þ ¼ VC tð Þþa R tð Þ�VC tð Þ½ �; (1)

where Vc tð Þ is the value of the bandit chosen by the participant on trial t, a the learning rate and

R the received reward (either 0 or 1). Value of the chosen bandit is updated for the next trial tþ 1,

by taking the difference between the observed reward R tð Þ and the expected reward VC tð Þ modu-

lated by the size of the learning rate. To obtain estimates of the model’s choices, the values of the

two bandits are passed through a sigmoidal response function:

p Að Þ ¼
lþ 1� 2lð Þ

1þ e�DV=s
(2)

where DV ¼ VA�VB, that is the difference in value between the first (A) and second (B) bandit. The

policy parameters s and l indicate the slope and termination point (lapse rate) of the logistic choice

function. The latter was fixed to 0.05, equivalent to the bounds of the reward probabilities in the

task, and the parameters a and s (learning rate and slope) were fit to the data. Best-fitting parameter

estimates were obtained by minimizing the negative log-likelihood function using optimization tools

in Matlab. Bandit probabilities in the test phase were initialized according to the estimates of
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subjective reward probability obtained from free-choice trials from phase L2. Search space was

restricted for both parameters between 0.0001 and 0.5. Best fitting parameters were then used to

estimate trial-by-trial subjective ranks for all bandits per participant by classifying the bandits accord-

ing to their subjective values.

Representational similarity analysis (RSA)
The pre-processed EEG data was first z-scored over all trials, per electrode and time point. To

obtain the condition-specific activations at each time point and electrode, we constructed a design

matrix using dummy coding for each condition within a task (numbers 1 to 6 and the six bandits) and

subsequently estimated beta coefficients using a linear regression model for each number or

(ranked) bandit. These beta coefficients then reflected the trial-average response per condition at

each time point and electrode. We then calculated the Euclidean (or correlation) distance between

the whole-scalp neural signals of each condition pair (e.g. bandit 1 and bandit 2), resulting in a 6 � 6

representational dissimilarity matrix (neural RDM) at each time point for both tasks separately

(Figure 1C). Neural RDMs were smoothed over time through convolution with a 60 ms uniform

kernel. To test for patterns of numerical distance in the neural RDMs, we created a 6 � 6 magnitude

model RDM in which the predicted dissimilarity linearly increased from 0 to 1 as a function of the

numerical difference between two numbers. The upper triangles of the model and neural RDM were

subsequently correlated using Kendall Tau-a rank correlation (Figure 1B) (Nili et al., 2014).

In the cross-validation analyses, we followed a similar pipeline as the within-task RSA described

above, except that beta estimates of condition activation from both tasks were concatenated before

calculating the Euclidean distance between all 12 conditions, resulting in a 12 � 12 RDM containing

both within-task (e.g number-number) and between-task (e.g. number-bandit) dissimilarities

(Figure 2A). To account for potential differences in the time at which a magnitude code was decod-

able, we conducted this analysis for all possible combinations of time points (cross-temporal RSA)

(King and Dehaene, 2014). Neural RDMs were smoothed over time through convolution with a 60 x

60 ms uniform kernel. In cross-validation, model RDMs were correlated with the lower rectangle of

the neural RDM, containing the between-task dissimilarities. The diagonal of the rectangle was

included, since on-diagonal information is non-redundant in cross-validation. Correlations were base-

line corrected by subtracting the average correlation in the pre-stimulus period to not bias our clus-

ter-identifying algorithm. Significant clusters were identified using cluster-corrected nonparametric

permutation tests (iterations = 1000, cluster-defining and cluster-level thresholds at p<0.005, unless

stated otherwise) (Maris and Oostenveld, 2007).

We tested to what extent the choice behavior of a task was reflected in the neural patterns

through multiple regression (Figure 4A–D). For the numerical task, a model RDM was calculated for

each participant based on the differences in choice probability for each number pair (see below).

The bandit model RDM was constructed by taking the average probability of choosing the most

valuable bandit (according to the delta-rule model estimates) for any bandit pair. Both models were

vectorized and z-scored and entered as two regressors in a model explaining variance in the neural

RDM of either the numerical task (Figure 4C) or the bandit task (Figure 4D). Similarly, for the CPP

control analyses (Figure 5—figure supplement 2D–E), a model RDM was constructed based on the

differences in average peak activity per condition (see below). The CPP model was then entered in a

multiple regression together with the magnitude model, to determine whether the variance in neural

patterns could be explained by a magnitude code over and above the univariate findings.

CPP analysis
Normalized EEG epochs were averaged for each digit (independent of color category) or for each

subjective bandit rank. Based on previous research (Spitzer et al., 2017; Twomey et al., 2015), we

selected seven centro-parietal electrodes (CP1, P1, POz, CPz, CP2 and P2) and averaged the event-

related potentials (ERP) over these electrodes for each stimulus. Next, we sought to identify for each

task the time window where the disparity in ERP signals was greatest between stimulus types, using

a non-parametric omnibus test (Kruskal-Wallis test) at every time point. To avoid circular inference,

the test was performed in a leave-one-out fashion, determining significance based on the remaining

45 participants. The largest cluster of adjacent significant time points (p<0.01) was then determined

using FDR correction for multiple comparisons (Benjamini and Hochberg, 2009). Activity within
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each individual’s time window was then averaged for each condition and differences in the ERP aver-

ages were taken to construct RDMs that were used as control models for RSA (Figure 5—figure

supplement 2).

Dimensionality reduction
We assessed the dimensionality of the neural data through Singular Value Decomposition (SVD), a

method that allows to efficiently obtain principal components in the data through linear transforma-

tion. After estimating beta coefficients for each condition, we used SVD at each time point to obtain

the diagonal matrix S that contained the six singular values. We then systematically reduced the

dimensionality of the data by removing the last column of S, reconstructed the data under the

reduced dimensionality and followed the rest of the cross-validation pipeline as described above.

Changes in the strength of the cross-validation were tested by comparing the model – EEG RDM

correlations averaged over the 350-600 ms time window, under the different dimensionalities of the

data (Figure 5C).

Psychometric model
To estimate numerical magnitude distortion in the numerical task, we fitted a psychometric model to

the choice data (Figure 3F). The model is adapted from that described in Spitzer et al. (2017). First,

input values (numbers 1 – 6 in the task) are normalized between 0 and 1 in six equidistant steps.

These normalized values nX are then transformed into a subjective decisional value X̂ by exponenti-

ating them with free parameter k.

X ¼ nXk (3)

When k = 1, X̂ is equal to nX. When k > 1, decision values are exponential, giving relatively higher

weights to larger numbers and being more indifferent to smaller numbers. Conversely, when k < 1,

decision values are compressed, giving lower weight to the larger numbers. Next, we model the

trial-level decision-value as the sum over all samples X̂.

DV ¼
X10

i¼1

X̂i � ci � l
10�i (4)

where ci is an indicator variable that codes for stimulus category (orange = -1, blue = 1) and li is a

leakage term that exponentially discounts earlier samples in the stream. Finally, the model uses a

logistic function for computing choice probabilities:

p blueð Þ ¼ f �
1

1þ e� BþDVð Þ=s
; (5)

where p blueð Þ is the probability of choosing the blue category. s is the inverse slope of the logistic

choice function and B captures a simple response bias toward one of the two categories. Finally, f is

an indicator variable that codes for the framing of the task, inverting the choice probability for the

low frame (f = 1) compared to the high frame (f= 0). Best fitting parameters for k[0.01 – 10], l[0 – 1],

m[unconstrained] and s [0.001 – 8] were obtained using standard optimization tools in Matlab.

Model-free decision weights were estimated for each participant using an averaging approach to

compare to the model predictions. Choice probabilities for each digit were calculated by averaging

over all responses to trials where that digit was present.

Neurometric mapping
In order to obtain an estimate of the distortion in neural representational geometry, we generated a

range of candidate model RDMs computed from features that were distorted by a parameter k, anal-

ogous to the psychometric model. Six equidistant values between 0 and 1 were raised to the power

of k (Equation 3) and model RDMs were constructed based on the Euclidean distances after distor-

tion. Parameters that fitted the neural data best were found through exhaustive search through val-

ues of k from 0.35 – 3 in steps of 0.01, iteratively computing the Kendall Tau-a correlation between

the upper triangle of the model RDM and the neural RDM averaged over a time window between

350 and 600 ms. The distortion k associated with the highest correlation was determined in each
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participant individually and subjected to group-level analysis. Representational geometries for the

two tasks were stable in this time window based on the analysis depicted in Figure 2B.

Neural network
We constructed a simple feedforward neural network with 21 input units (1 bias unit and two input

modules of 20 units, XA and XB), 10 hidden units H and 10 output units Y (Figure 6A). The network

was trained (learning rate = 0.001) to map inputs xa and xb, both consisting of 6 stimuli with 20 fea-

tures each, onto 6 random vectors. Both inputs were generated by drawing random values from a

standard normal distribution. In the crucial test condition, both xa and xb shared a second-order

structure of gradually increasing dissimilarity. This was achieved by successively flipping the sign of

two more features for each adjacent stimulus. The network learned to minimize the cost-function

(cross-entropy) with respect to the supervision signal and via backpropagation, first on inputs xa

arriving at input units XA, and after 106 iterations it was then retrained on inputs xb fed into units XB.

Two control conditions were included to assess the contribution of shared structure to retraining

performance. In one control, the model was initially trained on an input xa that was entirely random,

that is not constructed using the sign-flipping method. In the second control, hidden-to-output

weights W2 were shuffled before retraining on xb. Simulations were run 100 times for each of the

conditions (xa and xb shared structure vs. xa was random; W2 unshuffled vs. shuffled).

Next, RSA was performed on the hidden unit activations, after convergence had been achieved

on retraining, to test for shared representational structure in the hidden units. Each stimulus from xa

was fed into XA and xb into XB to obtain hidden unit activations for each stimulus. A cross-validation

RDM was then constructed based on the differences in activations between xa and xb for each stimu-

lus and correlated with a magnitude model RDM (Figure 6E).

Data and code availability
All code and materials to reproduce the analyses and experiments are available at https://github.

com/summerfieldlab/Luyckx_etal_2019. (Luyckx, 2019; copy archived at https://github.com/elifes-

ciences-publications/Luyckx_etal_2019). Data to reproduce the results available from the Dryad Digi-

tal Repository: https://doi.org/10.5061/dryad.7k7s800. Raw EEG data files are available upon

request.
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