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SUMMARY

Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in
dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa
(RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific
ablation of Dhdds would cause retinal degeneration due to diminished dolichol-
dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-spe-
cific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific
Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophys-
iological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction
at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid
photoreceptor degeneration ensued, resulting in almost complete loss of rods
and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by
PN 4weeks inDhddsflx/flx iCre+mice, relative to controls; despite this,N-glycosyl-
ation of retinal proteins, including opsin (the dominant rod-specific glycoprotein),
persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional
mechanistic view of RP59 as a congenital disorder of glycosylation.

INTRODUCTION

Retinitis pigmentosa (RP) represents a large class of inherited retinal dystrophies caused by mutations in

several families of genes, leading to pigmentary retinopathy and progressive, irreversible blindness. Typi-

cally, RP is characterized by the initial loss of rod photoreceptors (PRs), deposition of pigment granules, and

peripheral vision loss (Ferrari et al., 2011; Hamel, 2006). Defective asparagine-linked glycosylation (N-

glycosylation) of proteins in rod cells, particularly the visual pigment rhodopsin (RHO), results in progres-

sive, irreversible rod cell degeneration and death, with concomitant loss of vision (Murray et al., 2009, 2015;

Kaushal et al., 1994; Fliesler et al., 1984a). Successful glycosylation of RHO is necessary for its vectorial traf-

ficking through the inner segment (cell body) of the rod cell to the site of rod outer segment (ROS) mem-

brane assembly at the base of the ROS. Retinal degeneration has been observed in patients harboring RHO

mutations involving the N-glycosylation consensus sites, and in animal models involving comparable RHO

mutations (Van Den Born et al., 1994, Zhu et al., 2004; Sullivan et al., 1993; Murray et al., 2015; Iwabe et al.,

2016), as well as by tunicamycin-induced and genetic inhibition of global/RHON-glycosylation (Fliesler and

Basinger, 1985; Fliesler et al., 1985; Sabry et al., 2016; Thompson et al., 2013; Murray et al., 2015). ProteinN-

glycosylation involves the following steps (schematic representation, Figure 1): generation of dolichol (Dol,

an important isoprenoid arising from the mevalonate pathway) and dolichyl phosphate (Dol-P, the obligate

glycan carrier necessary for N-linked glycosylation, O-mannosylation, and C-mannosylation) (Burda and

Aebi, 1999; Endo et al., 2003; Park et al., 2014; Cantagrel et al., 2010; Burton et al., 1979; Maeda et al.,

2000; Doucey et al., 1998), generation of complex Dol-P-linked oligosaccharides (DLO) (Krasnova and

Wong, 2016; Gandini et al., 2017; Behrens and Leloir, 1970), and transfer of those oligosaccharides from

DLO to the N-glycosylation consensus site on the target polypeptide (Welply et al., 1983). Genetic defects

affecting the glycosylationmechanism constitute a large family of syndromes termed ‘‘congenital disorders

of glycosylation’’ (CDGs), with more than 150 causative genes (Ng and Freeze, 2018; Sparks and Krasne-

wich, 1993). A family of genetic diseases pertaining to Dol synthesis is classified as CDG-I (the class of

CDG involving defective glycan assembly and/or their transfer in the endoplasmic reticulum [ER]) due to
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the requirement of DLO for N-glycosylation. Common clinical features of CDGs include failure to thrive,

retarded development, protein-losing enteropathy, early-onset encephalopathy, as well as retinopathies

such as RP (Sparks and Krasnewich, 1993; Thompson et al., 2013; Hamdan et al., 2017; Morava et al., 2009).

Two key intermediate metabolites in themevalonate pathway, farnesyl pyrophosphate (FPP; also called far-

nesyl diphosphate) and isopentenyl pyrophosphate (IPP; also called isopentyl diphosphate), serve as pre-

cursors for squalene, cholesterol, and Dol synthesis (see Figure 1) (Grabowska et al., 1998). The committed

enzymatic step in the pathway toward Dol synthesis is the catalytic condensation of FPP with multiple IPP

molecules to form polyprenyl diphosphate; this reaction is catalyzed by a cis-prenyltransferase (CPT) com-

plex composed of dehydrodolichyl diphosphate synthase (DHDDS) and Nogo-B receptor (NgBR; gene

symbol NUS1) (Park et al., 2014). Polyprenyl diphosphate sequentially undergoes dephosphorylation (ac-

tion of dolichyl diphosphate phosphatase 1 [DOLPP1]) (Rush et al., 2002), reduction (action of steroid D5

alpha-reductase 3 [SRD5A3]) (Cantagrel et al., 2010), and phosphorylation (action of dolichol kinase

[DOLK]) (Shridas and Waechter, 2006) to generate Dol-P (Schenk et al., 2001). Cellular de novo synthesis

Figure 1. Schematic Representation of the Mevalonate Pathway, Dolichol Synthesis, and the Requirement of Dolichyl Phosphate (Dol-P) for N-

Linked Oligosaccharide Generation

Farnesyl diphosphate (FPP), an important pre-squalene intermediate of the mevalonate pathway, undergoes DHDDS/NUS1-catalyzed condensation with

multiple isopentenyl pyrophosphate (IPP) units to generate polyprenyl pyrophosphate (diphosphate), and ultimately the obligate glycan carrier, Dol-PP.

Gene products involved in synthesis of dolichol and Dol-P-saccharide/oligosaccharide intermediates, and hence implicated in CDG-1 (Congenital Disorders

of Glycosylation), have been represented. The enzymatic activity provided by DHDDS and NUS1 catalyzes the commitment step of dolichol synthesis; hence

mutations in either DHDDS or NUS1 are hypothesized to block protein N-glycosylation, and are classified as CDG-I. Dolichol (structure in inset), is an acyclic

isoprenoid consisting of 18–21 isoprene units.
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and availability of Dol-P in the ER (Heesen et al., 1994; Wu et al., 2003; Ashida et al., 2006) are necessary for

DLO-dependent protein glycosylation (Jakobsson et al., 1989). Genetic defects affecting Dol-P de novo

synthesis at the level of DHDDS, NgBR, SRD5A3, or DOLK are classified within the CDG-1 subgroup of

CDGs (Sparks and Krasnewich, 1993; Park et al., 2014).

Heretofore, animal model or in vitro studies have employed approaches such as inhibition of the Dol-P-

dependent oligosaccharyltransferase (OST, e.g., using tunicamycin) (Fliesler et al., 1984a, 1984b, 1985;

Fliesler and Basinger, 1985) or mutation of the glycosylation consensus sites on specific target proteins

(e.g., rhodopsin; Murray et al., 2015) to evaluate the requirement of protein N-glycosylation in the retina.

Herein, we addressed this requirement by genetic blockade of the rate-limiting step in dolichol synthesis,

i.e., the cis-prenyltransferase (CPT) activity of DHDDS.

Recent studies involving genetic screening of families with a rare autosomal recessive form of retinitis pig-

mentosa (RP59) demonstrated a founder missense mutation (K42E) in the DHDDS gene (Zelinger et al.,

2011; Zuchner et al., 2011). Two other rare, pathogenic DHDDS mutations (T206A, R98W), both found het-

erozygously with the K42E mutation, also have been reported (Wen et al., 2013; Biswas et al., 2017; Kimchi

et al., 2018). In patients homozygous for the K42E mutation, the peripheral retina underwent thinning, but

the cone-rich fovea is well-preserved. Functionally, in one patient examined, dark-adapted (‘‘scotopic,’’

rod-driven) electroretinogrphic (ERG) responses were extinguished by 21–24 years of age, leading to a

visual field limited to a small central island, consistent with rod-cone dystrophy or early-onset retinal

degeneration. In an infant presenting as a compound heterozygote (W64X and p.Cys148GlufsX11), ERG

responses were undetectable at 2 months of age, but the patient died at 7 months of age from multiple

systemic complications due to insufficient DHHDS activity (Sabry et al., 2016), and thus is distinctly different

from the K42E phenotype. The mutations in the ‘‘severe’’ phenotype infant led to loss of FPP/IPP-binding

sites, much similar to the excision of Dhdds Exon 3 used in the current study (see Figures S1 and S2; Sabry

et al., 2016). Retinal degeneration also has been observed in patients of Romani origin harboring mutations

in the gene coding for the DHDDS-heterodimeric partner NgBR (Park et al., 2014). The pathological mech-

anisms and defective cell processes attributed to RP59, although currently hypothesized to be hypoglyco-

sylation driven, remain to be directly tested. This is largely due to the lack of a validated vertebrate animal

model of RP59 to evaluate the link between mammalian cis-prenyltransferase DHDDS activity, its require-

ment for protein N-glycosylation, and the establishment and preservation of normal retinal structure and

function. Up until recently, only a zebrafish Dhdds knockdown model has been reported (Wen et al., 2014;

Zuchner et al., 2011). However, more recently, a report of a K42E knock-in mouse model was published

(Ramachandra Rao et al., 2020), but dolichol levels and cis-prenyltransferase activity were not examined.

Given this information, we hypothesized that PR-specific deletion of Dhdds would elicit a primary PR

degeneration owing to the critical requirement of proteinN-glycosylation for maintenance of PR structure,

function, and viability. In the current study, we generated a novel murine, rod PR-specific Dhdds knockout

model on a C57BL/6J background and examined the functional, morphological, and biochemical conse-

quences to the retina. Contrary to expectation, although a profound retinal degeneration was observed,

we found no evidence for defective protein N-glycosylation in this mouse model, despite confirmed abla-

tion of Dhdds in essentially the entire population of retinal rod cells.

RESULTS

Verification of Rod Photoreceptor-Specific Dhdds Deletion

A graphical representation of the genotyping strategy utilized for the verification of Dhddsflx/flx iCre+ mice

is provided in Figures S4, 2A, and 2B. Exon 3, coding for critical FPP- and IPP-binding sites, was chosen for

targeted deletion (Figures S2 and S3). Initially, tail snip genotyping analysis was performed to detect floxed

Dhdds allele and Rho-iCre transgenes:Dhdds allele with loxPmodification and wild-type (WT)Dhdds allele

yielded 393-bp and 517-bp PCR products, respectively (Figures S4A and S4C). Similarly, Rho-iCre trans-

gene yielded a 650-bp PCR product, as shown previously (Figure S4B) (Li et al., 2005). To further validate

excision of the floxed Dhdds allele in rod PRs, genomic DNA extracted from Dhddsflx/flx iCre� (lanes 2,

4, 6 in Figure 2C) and Dhddsflx/flx iCre+ retinas (lanes 1, 3, 5 in Figure 2C) (n = 3/group) (already verified

by tail snip genotyping as demonstrated in Figure S4A and S4B) was subjected to PCR amplification using

intronic primers designed upstream and downstream of the targeted exon (see Figures 2B and S4C).

Genomic material from tail snip genotype-verified Dhddsflx/flx iCre+ retinas yielded a 650-bp PCR product

for Cre recombinase, as previously reported (Li et al., 2005) (top panel, Figure 2C), as well as a 584-bp
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product that corresponds to the remnant intronic region upon excision of exon 3 (middle panel, Figure 2C)

(see Methods for primer details, and Discussion for rationale). Dhdds WT allele (arising from other retinal

cell types) would yield a predicted, larger (1.4 kbp) product (consisting of exon 3 as well as the flanking in-

tronic regions) that is not amplified by a PCR protocol involving a short extension period of 45 s (See

Methods) (Figures 2C and S4C). A non-specific, unaltered gene region (Dhcr7, 375-bp product) was PCR

amplified as a positive control to verify genomic DNA quality (bottom panel, Figure 2C).

Rod PR-specific excision of Dhdds exon 3 is a function of spatiotemporal expression and activity of Cre re-

combinase (driven by the Rho promoter) (Li et al., 2005). Cre recombinase activity in Rho-iCre75 mice was

verified using a reporter mouse strategy. Briefly, the Rho-iCre75 mouse line was crossed with a ZsGreen Ai6

reporter mouse line (harboring CAG artificial promoter-driven ZsGreen [variant of GFP]) with an upstream

floxed transcriptional termination cassette (Figure 2D). Cell type/tissue-specific Cre activity, if present,

relieves the ZsGreen transcription blockade by excising the upstream, loxP-modified transcription termi-

nation cassette, allowing ZsGreen expression. Retinas harvested from the first filial (F1) generation of the

Rho-iCre-ZsGreen Ai6 reporter mouse crossing at PN 15 days (Figure S5) and PN 30 days (lower panel, Fig-

ure 2D) were tested for rod-specific ZsGreen expression using laser confocal fluorescence microscopy.

Representative fluorescence micrographs (Figure 2D) revealed ZsGreen expression in the vast majority

of rod PR nuclei by PN 15 and PN 30 days, in good agreement with the published literature (Li et al., 2005).

Retinal expression of Dhdds transcript was directly tested utilizing customized BaseScope in situ hybridi-

zation (ISH) probes (two ZZ probes) designed against a murine Dhdds transcript region corresponding to

coding exon 3 (bp 361–455 of NM_026144.4). A single mRNA transcript appears as single, red chromogenic

Figure 2. Verification of Rod Photoreceptor-Specific Deletion of Dhdds

(A–E) Rod-specific ablation of Dhdds was achieved by generating a mouse model harboring homozygous loxP sites

flanking Dhdds exon 3 (gene locus: murine chromosome 4, 66.47 cM] (A) and cross-breeding against a transgenic mouse

line consisting of opsin promoter-driven Cre recombinase (Rho-iCre75, (B)). The cross ultimately generated the knockout

line of interest:Dhddsflx/flx iCre+.Dhddsflx/flx iCre+mice were first identified using tail snip genotyping (see also Figure S4).

To verify photoreceptor-specific gene excision, whole retinas harvested frommice identified asDhddsflx/flx iCre+ and age-

matched WT controls were subjected to direct tissue genotyping (C, see also Figure S4 for primer design strategy).

Retinas from Dhddsflx/flx iCre+ mice yielded short PCR product (584 bp, upper panel, (C) corresponding to the flanking

intronic region only (white arrow, B), while positive for Rho-iCre transgene (middle panel, C). Control retinal tissue,

negative for Cre recombinase (upper panel, C), did not exhibit excision of exon 3 (middle panel, C). PCR reaction against a

housekeeping gene (Dhcr7) demonstrates intact genomic content in all biological samples (bottom panel, C). Direct

tissue genotyping targeting Cre recombinase does not provide morphological context regarding its expression or

activity. Rho-iCre75 line was crossed with a ZsGreen reporter mouse: a representative confocal micrograph (D) shows

ZsGreen expression exclusively in majority of cells (overwhelmingly rods) in the photoreceptor layer at PN 4 weeks (scale

bar, 20 mm). In situ hybridization with a probe corresponding to exon 3 of Dhdds suggests successful ablation of Dhdds in

Dhddsflx/flx iCre+ mice (F), when compared with Dhddsflx/flx iCre� mice (E). (Scale bars: 20 mm in (E and F)).
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dot; bright-field images from ISH experiments in Dhddsflx/flx iCre+ and Dhddsflx/flx iCre� mice (Figures 2E

and 2F, respectively) suggest PR (outer nuclear layer [ONL])-specific loss of Dhdds transcript (tested at PN

30 days), whereas the adjacent inner nuclear layer (INL) retained a comparable level of ISH label as

observed in WT control retinas.

Profound and Rapid Retinal Degeneration and Dysfunction Are Observed in Dhddsflx/flx iCre+

Mice

Age-matched Dhddsflx/flx iCre� and Dhddsflx/flx iCre+ mice were subjected to in vivo retinal imaging and quan-

titative morphometric analysis using spectral domain optical coherence tomography (SD-OCT). ONL thickness

wasmeasured (in mm) around the optic nerve head. Figure 3A (left panel) shows a set of representative SD-OCT

images of retinas from PN 5-week-old controls versus PN 4-, 5-, and 6-week-old Dhddsflx/flx iCre+ mice. ONL

thickness values for PN 4-week-old Dhddsflx/flx iCre+ mice were comparable to those of control mice at PN

5 weeks of age (see Figure 3A, right panel). The ONL in the SD-OCT images appears as a hyporeflective region

(demarcated by yellow dotted lines, Figure 3A, left panel). The ONL inDhddsflx/flx iCre+ mice underwent signif-

icant thinning (ca. 50% compared with age-matched controls, n = 4, p < 0.01) by PN 5 weeks and was essentially

absent by PN 6 weeks of age (n = 4, p < 0.01). A graphical comparison of ONL thickness (in mm) is provided in

Figure 3A (right panel). The SD-OCT data correlate well with results obtained by conventional, paraffin-embed-

ment histological analysis (see Figures S13A and S13B).

Scotopic ERG responses inDhddsflx/flx iCre+ mice were diminished at all tested time points, relative to age-

matched Dhddsflx/flx iCre� controls (n = 7–12/group/time point) (Figure 3B). Scotopic a- and b-waves were

recorded using a customized 16-step regimen over a range of flash intensities spanning 10�5 to 500 cd-s/

m2. The a-wave amplitude is a measure of PR hyperpolarization in response to photon flash stimulus.

Scotopic a-wave amplitudes (at PN weeks 4, 5, and 6) were significantly lower, compared with those of

age-matched controls, at all flash intensities R0.4 cd-s/m2. Scotopic a-wave amplitudes in Dhddsflx/flx

iCre+ mice at PN 4 weeks (n = 9) were significantly diminished at all flash intensities (�75% of the maximal

control response amplitude [n = 12]). At PN 5 weeks of age (n = 12), a time point at which significant thinning

of the ONL was observed, a-wave response amplitudes were significantly diminished (�35% of control

values). The a-wave ERG responses in Dhddsflx/flx iCre+ were essentially extinguished by PN 6 weeks of

age (n = 7) (Figure 3B, upper panel). A similar time-dependent, significant decrease was observed in

scotopic b-wave responses of Dhddsflx/flx iCre+ mice, when compared with controls (Figure 3B, middle

panel). Interestingly, b-wave response amplitudes were significantly reduced in all age groups of

Dhddsflx/flx iCre+ mice compared with age-matched controls (for all flash intensities R10�3 cd-s/m2),

even at low flash intensities that may correspond to pure rod-mediated responses. Scotopic b-wave

response amplitudes of Dhddsflx/flx iCre+ mice at PN 6 weeks of age (n = 7) exhibited about a 7-fold

decrease compared with controls. Representative scotopic ERG traces for Dhddsflx/flx iCre+ mice and

age-matched controls, at a saturating flash intensity of 500 cd-s/m2, are provided in Figure S6. Under these

conditions, whereas control responses were robust at all ages tested, the Dhddsflx/flx iCre+ mice exhibited

diminishing response amplitudes, being nearly extinguished by PN 6 weeks.

Scotopic b:a wave amplitude ratios were significantly increased at PN 5 weeks of age in Dhddsflx/flx iCre+

mice at all flash intensitiesR0.4 cd-s/m2, compared with age-matched controls. However, at PN 4 weeks of

age, Dhddsflx/flx iCre+ mice showed increased scotopic b:a wave amplitude ratios only at flash intensities

R150 cd-s/m2 (Figure 3C, left panel). Also, implicit time values for scotopic b-wave were significantly

elevated at both PN 4 and 5 weeks of age in Dhddsflx/flx iCre+ mice (Figure 3C, right panel), compared

with age-matched controls.

In contrast, cone PR-driven (photopic) ERG responses (calculated as the difference between the photopic

b-wave and a-wave maxima) in Dhddsflx/flx iCre+ mice at PN 4 and 5 weeks were comparable with those of

age-matched controls at all flash intensities (ranging from 10�1 to 30 cd-s/m2) (Figure 3B, bottom panel).

However, photopic responses at PN 6 weeks of age were extinguished (n = 7) (i.e., equivalent to back-

ground noise levels), consistent with a rod-cone dystrophy (see Discussion).

Immunohistochemical (IHC) analysis of retinas from controls and Dhddsflx/flx iCre+ mice at PN 5 weeks (a

time point at which structural and functional deficits in the retina were observed) with antibodies against

rod opsin and glial fibrillary acidic protein (GFAP) suggested several key degenerative features. The

GFAP immunoreactivity pattern demonstrated gliosis of the degenerating Dhddsflx/flx iCre+ retina (green
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channel, Figure 4B). GFAP decorates only astrocytes and the Müller glial ‘‘endfeet’’ (i.e., the so-called inner

limiting membrane) in a representative control retina (green channel, Figure 4A). Anti-opsin immunohisto-

chemistry (red channel, Figure 4B) revealed dramatic shortening of ROS in Dhddsflx/flx iCre+ mice at PN

5 weeks, when compared with controls (red channel, Figure 4A), fully consistent with the ERG results

(see earlier discussion).

Defective trafficking (‘‘mislocalization’’) of opsin has been observed in animal models using either tunica-

mycin-induced or genetic inhibition of global proteome glycosylation (Murray et al., 2015; Fliesler and

Figure 3. Retinal Thinning and Light Response Deficits in Dhddsflx/flx iCre+Mice

(A, left panel) Retinal thickness in Dhddsflx/flx iCre+ and age-matched controls (n = 4/age group) was measured using SD-OCT. The panel provides

representative SD-OCT images (including optic nerve head [ONH]) comparing Dhddsflx/flx iCre� controls with Dhddsflx/flx iCre+ between PN 4 and 6 weeks

(color code for experimental groups for all panels has been provided within the OCT panel). The ONL is demarcated by yellow dotted lines. (A, right panel)

Graphical representation of the measured ONL thickness (in mm) in Dhddsflx/flx iCre+ mice and age-matched controls. Dhddsflx/flx iCre+ mice exhibit

ONL thickness comparable to controls at PN 4 weeks and undergo significant thinning at PN 5 weeks (reduced by 50%) and PN 6 weeks (reduced by

80%–90%) (n = 4).

(B, top and middle panels) Scotopic ERG responses in Dhddsflx/flx iCre+ mice were markedly diminished at all time points tested, relative to age-matched

Dhddsflx/flx iCre� controls (flash intensity range: 10�4 to 500 cd-s/m2). Both a- and b-wave amplitude maxima in response to flash stimuli were plotted as a

function of flash intensity (top and middle panels, respectively). At very low flash intensities (10�4 cd-s/m2), pure rod response b-wave amplitudes were

significantly reduced in all age groups. Both scotopic (rod-driven) a-wave and b-wave responses of PN 6-week-old Dhddsflx/flx iCre+ mice were significantly

decreased. (See Figure S6 for representative scotopic ERG traces at saturating flash intensity.) (B, bottom panel) Light-adapted, photopic (cone-driven) ERG

responses of Dhddsflx/flx iCre+ mice were comparable to those of controls at PN 4 and 5 weeks, despite reduced photopic responses at those time points.

However, Dhddsflx/flx iCre+ photopic ERG responses were minimal at PN 6 weeks and differences were statistically significant compared with age-matched

controls.

(C, left panel) Scotopic b:a wave magnitude ratios were significantly increased at all flash intensitiesR1.25 cd-s/m2 in PN 5-week-old Dhddsflx/flx iCre+ mice,

when compared with age-matched controls. (C, right panel) Scotopic b-wave implicit times were significantly lengthened in both PN 4- and 5-week-old

Dhddsflx/flx iCre+mice, when compared with controls, for all flash intensitiesR0.4 cd-s/m2. (n = 12 for control; n = 9 forDhddsflx/flx iCre+ PN 4 weeks; n = 12 for

Dhddsflx/flx iCre+ PN 5 weeks; n = 7 for Dhddsflx/flx iCre+ PN 6 weeks). *p < 0.05, **p < 0.01; Welch’s (unpaired) t test.
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Basinger, 1985; Fliesler et al., 1984a, 1985). However, in the Dhddsflx/flx iCre+ retina at an intermediate

degenerative stage (PN 5 weeks), we did not observe such defects, e.g., inner segment/cytoplasmic accu-

mulation of opsin, plasma membrane localization along the inner segment, and even to the synaptic ter-

minal. Despite shortening of ROS, opsin trafficking was comparable to that of age-matched control (Fig-

ures 4A and 4B). We utilized an established murine model of autosomal dominate RP (adRP)—the

NogRho�/- mouse, harboring mutations of the two N-terminal asparagine residues, N2 and N15—to

demonstrate the trafficking fate of opsin in an animal model of true opsin hypoglycosylation. IHC revealed

Figure 4. Morphological and Degenerative Features of the Dhddsflx/flx iCre+ Retina

(A and B) Confocal micrographs of (A)Dhddsflx/flx iCre� and (B)Dhddsflx/flx iCre+ mouse retinas at PN 5 weeks of age. Note

the shortening of rod outer segments (detected using anti-opsin; red channel) in Dhddsflx/flx iCre+ retina (B) and the

accompanying gliosis (detected using anti-GFAP; green channel). GFAP labeling was limited to M}uller glial endfeet and

astrocytes (comprising the internal limiting membrane at the vitreoretinal interface) in controls (A). Dhddsflx/flx iCre+ mice

did not exhibit anti-opsin immunostaining in either the inner segments (IS) or the photoreceptor perinuclear space,

suggesting unhindered opsin trafficking (scale bars, 20 mm).

(C and D) Electron micrographs of Dhddsflx/flx iCre+ outer retina at PN 5 weeks, indicating grossly shortened and poorly

aligned, but otherwise ultrastructurally normal, outer segments (OS) (blue arrows, D) and functional RPE phagocytosis

(yellow arrow, D). Note pyknotic nuclei (blue arrowheads, C) and thinning of ONL (6 nuclei in a row, yellow bracket, C).

Scale bars: 10 mm in (C) and 500 nm in (D).

(E) Dhddsflx/flx iCre� retina did not exhibit TUNEL labeling. Iba-1 immunoreactivity of microglial cell bodies and arbors

was limited to few cell bodies in PN 4- to 5-week-old Dhddsflx/flx iCre� retina (see Figure S8D) (scale bar: 20 mm).

(F) Retinal dystrophy in Dhddsflx/flx iCre+ mice was characterized by photoreceptor-specific autonomous cell death, as

evidenced by TUNEL labeling (white arrows, 488-nm channel). Autonomous cell death in Dhddsflx/flx iCre+ mice was

accompanied by infiltration of Iba-1-positive microglia (red channel) into the ONL and subretinal space (white arrows.

Furthermore, we observed microglial phagocytosis of TUNEL-negative photoreceptors (‘‘phagoptosis’’) leading to non-

autonomous cell death (denoted by asterisks) (scale bar: 20 mm).

(G) Western blot analysis and semi-quantitative densitometry indicates significant up-regulation of GFAP (marker of

gliosis) and ICAM-1 (facilitates trans-endothelial migration of leukocytes and breakdown of the blood-retinal barrier).

GLUL and ACTB served as loading controls for Müller glia and total protein, respectively. (H) Quantification of GFAP

levels in Dhddsflx/flx iCre� (black) vs. Dhddsflx/flx iCre+ (gray) mouse retinas on Western blots (see G), normalized to ACTB.

(I) Quantification of ICAM1 levels in Dhddsflx/flx iCre� (black) vs. Dhddsflx/flx iCre+ (gray) mouse retinas on Western blots

(see G), normalized to ACTB. *p < 0.05, **p < 0.01; Welch’s (unpaired) t test.
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opsin accumulation in the inner segment, perinuclear space, as well as synapses ofNogRho�/- retinas (white

arrows, Figure S7). Furthermore, low- and high-magnification electron micrographs (Figures 4C and 4D,

respectively) of Dhddsflx/flx iCre+ retinas also suggested thinning of the ONL (yellow bracket, Figure 4C)

and disorganized ROS (blue arrows, Figure 4D), but with normal lamellar disk membrane ultrastructure

(Figure 4D). Surprisingly, despite the rod-specific and essentially quantitative ablation of Dhdds, these ob-

servations are not comparable with pathological features in models of opsin glycosylation defects.

We evaluated whether the rapid thinning of the outer retina was due exclusively to rod cell death, owing to

the rod-specific deletion of Dhdds. For this purpose, formaldehyde-fixed, paraffin-embedded sections of

eyes from Dhddsflx/flx iCre+ and control mice (at PN 5 weeks, a time point at which the retina is in an inter-

mediate stage of degeneration) were subjected to TUNEL analysis. Confocal fluorescence microscopy re-

vealed TUNEL labeling (green channel) exclusively in the ONL of the Dhddsflx/flx iCre+ retina (Figure 4F;

white arrows, Figures S8A–S8C); the labeling pattern was consistent with that expected for rod (not

cone) PRs. Control retinas did not exhibit TUNEL-positive labeling, as expected (Figure 4E). These data

are consistent with the ERG data described earlier in the discussion, suggesting a role for autonomous

rod PR cell death in the observed ONL thinning.

We further observed that PR cell death was accompanied by phagocytosis of live, TUNEL-negative neurons

by activated microglia, as has been reported for other models of retinal degeneration (Zhao et al., 2015).

IHC analysis using antibodies to Iba-1 (a faithful marker of microglia) inDhddsflx/flx iCre+ mice revealed infil-

tration of activatedmicroglia into theONL (asterisk, Figure 4H) as well as the subretinal space (i.e., the zone

normally occupied by PR outer segments) (arrows, Figures 4H and S9A–S9C). By contrast, age-matched

control retinas showed horizontally ramified microglia in the inner retinal layers only, as expected (Figures

4G and S8D). Representative high-magnification confocal microscopic images of activated microglia with

phagocytic cups engulfing PR soma were observed (red arrows, Figure S8F). Activated microglia/macro-

phages in the subretinal space were quantified (utilizing hematoxylin and eosin [H&E] staining) as the

number of nuclei in the typically acellular subretinal space (n = 3 sections of 10 mm thickness per animal,

n = 8/group) (black arrows, Figures S8A and S8B). Dhddsflx/flx iCre+ mice exhibited a 4-fold increase in

the number of nuclei in the subretinal space, when compared with the same region of the retina in age-

matched controls (nuclei in the subretinal space were observed only in peripheral retina of WT mice).

This was further observed as DAPI-positive, Iba-1-positive cells (interpreted as microglia/macrophages)

in the subretinal space (white arrowheads, Figures 4F, S8E, S9A, and S9B)

Because Iba-1 immunoreactivity is indicative of an endogenous immune response, we adopted an unbi-

ased (‘‘shotgun’’) cytokine screening approach to reveal other molecular players in the observed retinal

degeneration. Surprisingly, the only two prominent targets with significant change (>2-fold increase)

that emerged in Dhddsflx/flx iCre+ retinas, when compared with age-matched controls, were ICAM-1 and

CXCL-10. Cytokine array data along with quantification are provided in Figure S10. Up-regulation of

ICAM-1 and GFAP in Dhddsflx/flx iCre+ retinas (n = 3/group) was further validated by western blot analysis

and semi-quantitative densitometry. Whole retinal ICAM-1 and GFAP levels were approximately 8- and 4-

fold higher (n = 3/group), respectively, in Dhddsflx/flx iCre+ retinas compared with age-matched controls

(Figures 4G–4I). Glutamine synthetase (GLUL) and b-actin (ACTB) served as loading controls for M}uller

glia and total retinal protein, respectively (Figure 4G).

Protein N-glycosylation Is Active in the Dhddsflx/flx iCre+ Retina

We investigated the glycosylation status of proteins in PN 5-week-old Dhddsflx/flx iCre+ retinas compared

with retinas from age-matched Dhddsflx/flx iCre� mice (which served as controls, instead of WT mice). This

was achieved by adopting a dual-lectin staining strategy that exhibits differential binding of lectins to rod

versus cone PRs: Concanavalin-A (Con-A, a lectin with specific affinity for non-reducing a-D-mannosyl and

a-D-glucosyl residues and which binds to the interphotoreceptor rod matrix sheath) and peanut agglutinin

(PNA, a lectin that preferentially binds to galactosyl-b(1,3)-N-acetylgalactosamine, a constituent of the in-

terphotoreceptor cone matrix sheath) (Varner et al., 1987; Hageman and Johnson, 1986). If Dhdds ablation

inhibitedN-glycosylation as hypothesized, we expected to observe a lack of Con-A binding to rod PRs. Sur-

prisingly, Con-A labeling of the rod-rich outer retinal layer of Dhddsflx/flx iCre+ mice at PN 5 weeks was

robust (including ROS, ONL, and outer plexiform layer [OPL]), comparable to age-matched controls (green

channel, Figures 5A and 5B). PNA staining (far-red channel, pseudocoloredmagenta) suggested that cone

PR density and distribution in rod-Dhdds-null mice was not altered at PN 5weeks (Figures 5A–5D). PNGase-
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F-treated sections subsequently subjected to dual lectin staining were utilized as true ‘‘negative’’

controls (Figures 5C and 5D), as PNGase-F treatment should remove all N-linked glycans and, hence,

abolish Con-A binding. Similar to Con-A labeling, wheat germ agglutinin (which detects N-acetyl-D-

glucosamine residues) also exhibited robust binding to Dhddsflx/flx iCre+ retinas, comparable to that of

controls (Figure S11).

We further verified protein N-glycosylation in Dhddsflx/flx iCre+ retinas by examining PNGase-F sensitivity

of opsin (the most abundant rod PR-specific glycoprotein) and LAMP2 (lysosome-associated membrane

glycoprotein). Opsin and LAMP2 western blot analysis of PNGase F-treated versus untreated

retinal protein extracts from Dhddsflx/flx iCre+ and control mice at PN 5 weeks was consistent with the

lectin cytochemical staining results described earlier in the article. Both opsin and LAMP2 from

Dhddsflx/flx iCre+ retinas (Figures 5E and 5F) were sensitive to PNGase-F treatment, and exhibited

mobility shifts relative to the untreated specimens (biological triplicates), as expected. These findings

were comparable to those obtained with PNGase-F-treated versus untreated control retinas (Figures

5E and 5F).

Retinal Dolichol Levels Are Markedly Reduced in Dhddsflx/flx iCre+ Mice

Age-dependent reduction of PR number in Dhddsflx/flx iCre+ retinas (Figures 3A and 3B) presents a chal-

lenge in delineating the expected decrease in total dolichol content due to ablation ofDhdds, as opposed

to the decrease in the PR population (cell mass). Therefore, we utilized retinas from PN 4-week-old

Dhddsflx/flx iCre� and Dhddsflx/flx iCre+ mice to measure whole retinal dolichol content—a time point at

which no significant attrition in PR mass was observed (Figures 3A and 3B). For mass spectrometry

Figure 5. Protein N-Glycosylation is Functional in the Dhddsflx/flx iCre+ Retina

(A–F) The glycosylation status of Dhddsflx/flx iCre+ retinas (PN 5 weeks) was evaluated and compared with that of controls

using a dual-lectin cytochemical staining strategy (Concanavalin-A [Con-A] in green channel, and cone PR-specific peanut

agglutinin [PNA] in far-red [pseudocolored magenta] channel). Confocal fluorescence micrographs demonstrate robust

Con-A labeling in Dhddsflx/flx iCre+ retina (B) comparable to that in controls (A), suggesting normal protein N-

glycosylation in Dhddsflx/flx iCre+ mouse retinas. This was validated by testing the PNGase-F sensitivity of Con-A binding.

Both control and Dhddsflx/flx iCre+ retinas (C and D, respectively) were sensitive to PNGase-F activity and exhibited

markedly reduced Con-A binding. Furthermore, cone density and distribution (as indicated by PNA binding) was

comparable in both control and Dhddsflx/flx iCre+ retinas. PNA labeling was unaffected by PNGase-F treatment, because

PNGase-F does not cleave the cognate disaccharide Gal-b(1,3)-GalNAc to which PNA binds. Scale bars: 20 mm in (A–D).

Retinal protein extracts fromDhddsflx/flx iCre+ and control mice (n = 3/group, at PN 5 weeks) were subjected to PNGase-F

treatment, and western blot analysis was performed, probing the blot with antibodies to opsin (RHO) and LAMP2 (E and F,

respectively). Untreated protein extracts served as negative controls for PNGase-F treatment. Opsin and LAMP2 proteins

from Dhddsflx/flx iCre+ retinas exhibited PNGase-F sensitivity, and a subsequent Mr mobility shift (from �37 to �35 kDa,

and from �120 to �40 kDa, respectively) as a consequence of cleaving their N-linked glycans, relative to the lanes

containing untreated retinal extracts. This same behavior was observed when retinal extracts from control mice were

subjected to PNGase-F treatment. Hence, RHO and LAMP2 were N-glycosylated in Dhddsflx/flx iCre+ mice. Note the

decreased levels of opsin in lanes corresponding to Dhddsflx/flx iCre+, when compared with controls.
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quantification of dolichol, five retinas were pooled per sample to obtain sufficient tissue mass (n = 3

for Dhddsflx/flx iCre� mice, n = 4 for Dhddsflx/flx iCre+ mice). Liquid chromatography-mass spectrometry

(LC-MS) analysis was performed to quantify the two dominant dolichol species—C90 (Dol-18) and C95

(Dol-19) (denoting dolichol species with 18 or 19 isoprene units and containing 90 or 95 carbon atoms,

respectively); the sum of C90 plus C95 species was taken to represent the total retinal dolichol content.

As shown in Figure 6 (top panel, Figure 6A), retinas from Dhddsflx/flx iCre+ mice exhibited about a 50%

reduction (p < 0.01) in total dolichol content, relative to Dhddsflx/flx iCre� (control) retinas. Despite this,

the distribution of dolichol species remained unaltered: no significant difference was observed in the ratio

of Dol-18 to Dol-19 (bottom panel, Figure 6A). Representative mass spectra of C90 and C95 dolichols from

Dhddsflx/flx iCre+ retinas are shown in Figure 6B.

DISCUSSION

Several in vivo biochemical, pharmacological, and genetic studies (Fliesler et al., 1984a, 1985; Kean, 1980;

Fliesler and Basinger, 1985; Murray et al., 2015) have demonstrated retinal de novo synthesis of dolichol

and the requirement of dolichol-dependent N-glycosylation in maintaining the normal structure and func-

tion of the retina, particularly as regards the intracellular trafficking and incorporation of opsin, the pre-

dominant PR-specific glycoprotein, into ROS membranes. Recent whole-exome sequencing studies have

revealed the RP59-causative missense mutations in the gene coding for DHDDS, which catalyzes the

committed step of the mevalonate pathway directed toward dolichol synthesis (Zelinger et al., 2011; Zuch-

ner et al., 2011). The present study is the first to employ a genetic approach, using conditional deletion of

DHDDS in retinal rod PRs, to study the effects of altered PR dolichol homeostasis, as a tractable step toward

understanding the pathological mechanisms underlying RP59. The following discussion provides broad in-

sights into the challenges in modeling a complex metabolic disorder pertaining to dolichol homeostasis

and compares the findings of this study (i.e., rapid structural and functional degeneration of PRs and mark-

edly decreased dolichol content, but without any obvious impact on protein N-glycosylation), using a

murine model, with the human RP59 disease.

Figure 6. Dolichol Content Is Markedly Decreased in Dhddsflx/flx iCre+ Retinas, Relative to Age-Matched Controls

(A) LC-MS analysis of dolichols extracted from Dhddsflx/flx iCre+ and control retinas demonstrated�50% decrease in the total dolichol content of Dhddsflx/flx

iCre+ retinas (n = 4), when compared with controls (n = 3) (upper panel, A). However, there was no selectivity as a function of dolichol chain lengths: the Dol-

18:Dol-19 ratio [C90:C95] in Dhddsflx/flx iCre+ retinas was comparable to that of age-matched controls (lower panel, A).

(B) Mass spectra of Dol-18 and Dol-19 species fromDhddsflx/flx iCre� (control) andDhddsflx/flx iCre+ retinas. Note that signals of ammoniated [M +NH4]
+ and

sodiated [M + Na]+ forms of respective Dol isotopologues are clearly visible. Each sample analyzed was prepared by pooling five retinas from the respective

genotype group. *p < 0.05; Welch’s (unpaired) t test.
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Important Considerations in Generation and Verification of Rod PR-Specific Dhdds Knockout

Mice

Multiple rod PR-specific, Cre recombinase-expressing mouse lines (driven by rod PR-specific Nrl,/LMOP/RHO

promoters) may be utilized for the targeted excision of the loxP-modified gene of interest selectively in rod cells

(Brightman et al., 2016; Le et al., 2006; Li et al., 2005). We set out to compare the spatiotemporal expression/ac-

tivity of Cre recombinase in two Cre lines (LMOP-Cre and Rho-iCre75), utilizing the ZsGreen reporter strategy

(Figures 2D,S3, and S5). The Rho-iCre75 mouse line exhibited Cre recombinase activity in almost all terminally

differentiated rod PRs (Figure S5 and 2D), in good agreement with the original report describing the Rho-iCre75

mouse line (Li et al., 2005), whereas the LMOP-Cre line exhibited mosaic Cre-recombinase activity (ZsGreen re-

porter expression in�30%–40%of rodPRs only at PN90days) (Figure S12). Therefore,weutilized the Rho-iCre75

line to generate the Dhddsflx/flx iCre+ model, which successfully induced Dhdds deletion in terminally differen-

tiated rod PRs. Importantly, Cre expression in the Rho-iCre75 line commences at around PN day 7; at that stage

of retinal development, rod cell fate has been determined, but initiation of ROS assembly has just barely

commenced and full maturation of rods has yet to be achieved.

Tail snip genotyping does not provide direct evidence for exon excision in the target tissue/cell type.

Owing to the lack of availability of reliable antibodies against murine DHDDS, it is challenging to directly

verify DHDDS protein levels, or cell type-specific knockout of the target. Therefore, we verified the estab-

lishment of this model by multiple approaches: (1) indirect tail snip genotype analysis (Figure S4), (2) direct

retinal genotyping (testing whole tissue genomic DNA extract for Dhdds excision, Figure 2C), (3) the

ZsGreen reporter mouse approach to detect Cre-recombinase activity (Figure 2D), and (4) ISH (Figures

2E and 2F) to obtain histology-level verification of cell type-specific Dhdds ablation. PCR assay involving

whole retinal genetic material utilized a short extension period to only select for the 584-bp intronic PCR

product (upon exon excision). One would predict that using a long extension period would amplify the

long, non-excised Dhdds allele arising from other retinal cell types and may not distinguish heterozygous

from homozygous knockouts. Therefore, retinal genotyping, when preceded by preliminary tail snip anal-

ysis (to confirm loxP homozygosity), and the reporter mouse strategy may provide better qualitative evi-

dence for target excision. ISH using an RNA-based technology (BaseScope; ACD Bio) to probe control

and Dhddsflx/flx iCre+ retinas (Figures 2E and 2F) provided important morphological and physiological

context regardingDhdds expression in the retina, as well as direct verification of successfulDhdds excision

in a cell type-specific manner. Importantly, ISH labeling of the adjacent INL provides an on-section internal

positive control for validating Dhdds mRNA detection by the BaseScope ZZ probes.

DHDDSbelongs to the superfamily of CPT enzymes involved in the synthesis of long-chain polyisoprenoid prod-

ucts upon cis-condensation of FPP and IPP (yieldingRC55 long-chain products). Structural elucidation of E. coli

undecaprenyl pyrophosphate synthase (UPPS) has revealed critical amino acids involved in hydrogen bonding

and hydropathic interactions with FPP and IPP (Guo et al., 2005). Multiple sequence analysis using CLUSTALW2

algorithm suggests that these critical amino acids are well conserved inmurine DHDDSCPT and othermamma-

lian CPT enzymes (compare Figures S1 and S2) (Larkin et al., 2007). Targeted ablation of coding exon 3 ofDhdds

is predicted to render the enzyme fully inactive due to the loss of the amino acids required for hydropathic inter-

action with FPP and hydrogen bonding with the phosphate groups of IPP (Figures S1 and S2). Furthermore,

compensatory mechanisms for dolichol synthesis can be ruled out due to the absence of DHDDS homologs.

Whole-exome sequencing of patients with RP59 revealed pointmutations in theDHDDSgene, the predominant

mutation being K42E. The K42E mutation renders the human DHDDS gene product hypoactive, unlike the

mouse rod-specific Dhdds exon 3 knockout (with expected total loss of function of DHDDS activity) (Figure S2).

Another reported pathogenic DHDDSmutation isW64X (phenylalanine to STOP codon), which resulted in early

postnatal lethality (Sabry et al., 2016). This clinically ‘‘severe’’ mutation generates a fully dysfunctional gene prod-

uct comparable to the loss of the DHDDS catalytic activity in theDhddsflx/flx iCre+ mousemodel. TheDhddsflx/flx

iCre+ mouse model differs from the human RP59 disease in at least two respects: (1) the RP59-causing DHDDS

mutations (see Figure S3) globally affect all tissues and cell types, including the retina, whereas our mouse

knockoutmodel employs targetedDhdds ablation only in rod PRs and (2) the predominant RP59 pointmutation,

K42E, is only hypomorphic, whereas our knockout model is a total loss-of-function insult, although cell type spe-

cific. Despite these differences, the findings in this study suggest that conditional deletion ofDhdds in rod PRs is

sufficient to elicit a profound and rapid retinal degeneration. Furthermore, the Dhddsflx/flx iCre+ mouse line

serves as a reliable biochemical model (owing to the presumed complete loss of DHDDS activity) to investigate

the rod PR requirement for the dolichol pathway (Figure S2).
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Structural, Functional, and Pathological Consequences of Rod Photoreceptor-Specific Dhdds

Deletion

The current study was aimed at investigating the PR-specific disease mechanism(s) of RP59. In vivo retinal imag-

ing (SD-OCTanalysis, Figure 3A) suggested thatONL thickness inDhddsflx/flx iCre+micewas comparable to that

of age-matched controls at PN 4 weeks. Surprisingly, the unaltered structural integrity at PN 4 weeks in

Dhddsflx/flx iCre+ retinas did not correspond to full functional integrity (see Figures 3B, and S6): scotopic ERG

responses (a- and b-waves) at all flash intensities (10�4 to 500 cd-s/m2) were significantly lower compared with

those of age-matched (PN 4 weeks) controls. Dhddsflx/flx iCre+ retinas exhibited both profound structural and

functional deficits at PN 5 and 6 weeks. ONL thickness was significantly reduced at PN 5 weeks (by �50%

[p < 0.05], compared with age-matched WT C57BL/6J controls, Figure 3B). Low-magnification images of

H&E-stained sections of eyes from PN 5-week-old Dhddsflx/flx iCre+ mice showed PR thinning (Figures S13B

and S13D) compared with age-matched controls (Figures S13A and S13C). The rapid PR loss observed in

Dhddsflx/flx iCre+ mice can be attributed to the following two degenerative processes: (1) autonomous rod

PR-specific cell death, as observed by TUNEL labeling, and (2) phagocytosis of live PRs by activated, Iba-1-pos-

itivemicroglia (Figures 4F, S8E, S8F, and S9), leading tonon-autonomous loss of PRs. The exact details of rod PR-

autonomous defective cell processes leading to cell death upon Dhdds deletion remain to be elucidated. The

Dhddsflx/flx iCre+ mice also exhibited activated microglia in the subretinal space, i.e., between the outer neural

retina and the underlying retinal pigment epithelium (Figures 4F, S8E, S8F, and S9), which is normally ‘‘virtual’’

space filled with PR outer segments and associate extracellular matrix constituents. By contrast, the microglial

population in retinas of young, age-matched control mice was notably sparse, and restricted to just the inner

retinal layers (nner plexiform layer [IPL], ganglion cell layer [GCL]), as judged by Iba-1 immunostaining (Figures

4E and S8D). Although previous investigators have made similar observations regarding the distribution of mi-

croglia in the normal C57BL/6 mouse retina (Xu et al., 2007; Kaneko et al., 2008; Chen and Xu, 2015), often the

Iba-1-positive cells were more numerous than what we observed in the present study. The reasons for these dif-

ferences are not fully apparent, but could be due to age-dependent population differences (e.g., prior studies

tended to use oldermice than those employed here), or possibly to differences in the type of embedmentmedia

used (i.e., optimal cutting temperature embedment medium [O.C.T.] frozen sections versus paraffin sections)

(Atiskova et al., 2019; Noailles et al., 2019). Proteomic and/or transcriptomic approaches offer potentially fruitful

avenues to investigate the downstream cellular and molecular processes that are altered upon Dhdds-depen-

dent inhibition of dolichol synthesis. Pharmacological inhibition of microglial activity in the retina also may pro-

vide a therapeutic avenue for preventing the rapid retinal degeneration observed in theDhddsflx/flx iCre+mouse

model. Our cytokine array analysis (and correlative western blot analysis) revealed >8-fold up-regulation of

ICAM-1 levels in Dhddsflx/flx iCre+ retinas compared with age-matched controls; such has been implicated in

leukocyte adhesion, as well as breakdown in the blood-retinal barrier (Williams and Luscinskas, 2011; Devine

et al., 1996; Mesri et al., 1994). The presumed involvement of ICAM-1 in microglial recruitment and in the

observed retinal degeneration in this animal model also remains to be investigated further. Another key degen-

erative feature of theDhddsflx/flx iCre+ retina is gliosis, as evidencedby significant up-regulation ofGFAP relative

to that of the Müller glial marker glutamine synthetase (Figures 4B and 4G–4I).

The SD-OCT results (i.e., ONL thinning) demonstrated rapid retinal degeneration inDhddsflx/flx iCre+ mice;

however, whereas most of that loss reasonably could be attributed to rod cell degeneration and demise

(given that rods account for �97% of the PRs in the mouse retina; Carter-Dawson and Lavail, 1979), the

involvement of cone degeneration and demise cannot be discounted. Cone function was directly assessed

utilizing photopic ERG analysis at all tested time points (PN 4, 5, and 6 weeks) (Figure 3B, bottom panel).

Electrophysiological responses of cone PRs were unaltered and robust until massive rod dropout was

observed at PN 6 weeks (Figure 3B, bottom panel), suggesting a rapid rod-cone dystrophy. The rod-

cone dystrophy observed in this animal model, although consistent with the rod-cone dystrophy observed

in patients with RP59 (Kimchi et al., 2018), should be interpreted with caution. The rod-cone dystrophy

observed in theDhddsflx/flx iCre+ mouse model is ‘‘by design,’’ i.e., rod PR primary cell death is attributable

to the rod-targeted excision of Dhdds, whereas cone PRs exhibit secondary dysfunction (i.e., a ‘‘bystander

effect’’; Ripps, 2002; Cusato et al., 2006; Ma et al., 2018), which is independent ofDhdds activity. Cone-spe-

cific PNA staining, as expected, did not reflect any significant cone PR dropout even at PN 5 weeks (Figures

5C and 5D). The density and distribution of PNA-positive structures in Dhddsflx/flx iCre+ mouse retinas ap-

peared qualitatively comparable to that of age-matched controls, in agreement with the photopic ERG re-

sponses observed at PN 5 weeks (Figure 4C). PNA binds toO-linked glycans (specifically, the disaccharide

Gal-b(1–3)-GalNAc), and therefore its binding to cone PRs is unaltered by PNGase-F treatment. We further

documented cone arrestin distribution in PN 5-week-old Dhddsflx/flx iCre+ retinas, compared with age-
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matched controls. We observed cone arrestin-positive structures both in the inner/outer segment region

and in the OPL (PR synapses) (Figures S13C and S13D).

Furthermore, we observed age-dependent increase in the scotopic b:a wave ratio (Figure 3C, left panel), in

accordance with severe reductions in scotopic a-wave amplitudes, in relation to the reduction in b-wave

amplitude. A similar increase in b:a wave ratio has been described in patients with PMM2-CDG (Thompson

et al., 2012). However, we observe a significant decrease in both scotopic b-wave and a-wave amplitudes in

the Dhddsflx/flx iCre+ mice. Given that the Dhdds excision occurs exclusively in rod PRs, we interpret the

increase in b:a wave ratio to be due to a significant and specific decrease in the a-wave component of

the ERG. In addition, implicit times forDhddsflx/flx iCre+mice were significantly longer compared with those

of controls (Figure 3C, right panel). This finding along with the ERG amplitude analysis at all flash intensities

clearly suggest less robust and more sluggish scotopic response in Dhddsflx/flx iCre+ mice compared with

age-matched controls. The increased b:a wave ratio in the conditional Dhddsflx/flx iCre+ mouse model may

not be directly suggestive of similar trends in patients carrying systemic DHDDS point mutations; however,

a:b wave ratios have not been characterized, to date, in the DHDDS-CDG patient population.

In summary, the key features of this novel Dhddsflx/flx iCre+ model include progressive ROS shortening,

gliosis, PR cell death, and microglial activation, microglial migration to ONL and subretinal space, and

phagoptosis of entire PR cells, leading to rapid rod-cone dystrophy by PN 5–6 weeks (Figures 2, 3, and

4). The findings in this model (characterized by presumed total loss of DHDDS CPT activity) may be impor-

tant in ultimately understanding the underlying mechanisms involved in RP59 (caused by homozygous

point mutations with mildly hindered CPT activity). Parallel efforts to this work in our laboratories currently

involve generation of DHDDS dual point mutant knock-in mice harboring both K42E and T206A mutations,

to create a potentially more representative model of RP59 (unpublished studies). Surprisingly, the K42E ho-

mozygous knock-in model (even up to PN 1 year of age) does not replicate the structural or functional

deficit features observed either in patients with RP59 or in the Dhddsflx/flx iCre+ model reported here,

with the exception of marked gliosis (Ramachandra Rao et al., 2020).

Biochemical Features of the Degenerating Dhddsflx/flx iCre+ Retina

We originally predicted that rod-specific Dhdds ablation would cause defective proteinN-glycosylation in rods

because of the biochemical requirement of protein glycosylation for Dol-P (see Figure 1) (Denecke and Kranz,

2009; Buczkowska et al., 2015; Kean, 1977, 1980, 1999; Behrens and Leloir, 1970). We first verified excision of

Dhdds exon 3 in terminally differentiated rod PRs (Figures S5 and Figure 2) and utilized thismodel to analyze do-

lichol content and N-glycosylation status. However, contrary to our initial expectations, the observed rapid PR

degeneration was not accompanied by a glycosylation defect (Figures 5 and S11). In vitro and in vivo studies

involving deletion of genes encoding enzymes involved in dolichol synthesis have utilized different model sys-

tems, different genes of interest, various gene editing techniques, and different time points during cell

growth/tissuedifferentiation. A study utilizingglobal ablationofDhdds at the one-cell embryo stage in zebrafish,

which has a cone-rich retina (unlikemouse), indicated defective protein glycosylation in the PRs, as evidenced by

lack of cone PR-specific PNA staining (Zuchner et al., 2011). Mouse embryonic/conditional ablation ofNUS1, the

geneencodingNgBR, thedimeric partner of the geneproduct ofDhdds, causes embryonic lethality before E6.5,

aswell as lossofN-glycosylation (Parketal., 2014, 2016).However, curiously, biological samples (blood, urine, and

fibroblasts) from patients with RP59 have been reported to exhibit a shift toward shorter dolichol chain length

(increased Dol-18:Dol-19 mole ratios), without any appreciable hypoglycosylation defects (Wen et al., 2013;

Lam et al., 2014). Furthermore, DHDDS knockdown experiments in fully confluent cell culture models did not

lead to an observable glycosylation defect (Sabry et al., 2016). One possible explanation for the divergent obser-

vationsacross variousmodelsmay involveelevateddolichol synthesisduring tissuedevelopment and theunusual

biological stability (long half-life) of dolichol, particularly in neural tissue. The rate of dolichol synthesis and accu-

mulation is highest during cell growth and tissue development (Sakakihara and Volpe, 1984; Wong and Lennarz,

1982;CarsonandLennarz, 1981;Volpeetal., 1987;AdairandCafmeyer, 1987;DoyleandKandutsch,1988; Larsson

and Wejde, 1992). Furthermore, dolichols are biologically very stable lipids with long half-lives, and the only

known forms of dolichols are the free alcohol, phosphorylated derivatives, and esters of carboxylic acids (Choj-

nacki and Dallner, 1988; Parentini et al., 2005). Oxidative catabolism of dolichol, although postulated, has not

yet been fully documented in vivo (Swiezewska and Danikiewicz, 2005). It should be noted that the control and

Dhddsflx/flx iCre+ mice utilized in this study were on a C57BL/6J background, and this study did not directly

test the potential effects of other modifier mutations on the severity of the phenotype. However, we posit that

the Dhdds K42E point knock-in mouse model may provide a better avenue to investigate the effects of genetic
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backgroundon theRP59 phenotype (Westphal et al., 2002; Slijkermanet al., 2015; Ramachandra Rao et al., 2020).

LC-MS analysis of whole retinal dolichol content suggests�50% reduction upon RhoiCre-mediated deletion of

Dhdds in rod PRs (see Figures 2 and 6). Retinal dolichol content in our Dhddsflx/flx iCre+ model was significantly

reduced, whereas the Dol-18/Dol-19 ratio was unaltered, unlike observations as mentioned earlier regarding tis-

sues and fluids obtained from patients with RP59 (Wen et al., 2013) (see Figure 6). Reduction in whole retinal do-

lichol levels can be reasonably attributed to PR-specific loss ofDhdds. However, this findingmay not account for

any residual dolichol in PRs that may have been synthesized before Rho-iCre-mediated deletion of Dhdds had

taken place in rod PRs (Figures 2 and S5). Future investigations into the role of mammalian DHDDS and its het-

erodimeric partner, NgBR, during PR genesis and retinal developmentmaymore fully explain the ‘‘hypoglycosy-

lation-free’’ phenotype observed in theDhddsflx/flx iCre+mousemodel described in this study (see Figures 5 and

S10), as well as provide a deeper understanding of dolichol synthesis and homeostasis in retinal PRs. In addition,

studying theeffectsof PR-specificDhddsdeletiononother importantglycanmodificationsofproteins, suchasO-

mannosylation, may provide additional clues regarding the underlying mechanism driving RP59 pathology.

Inhibition ofN-linked glycosylation perturbs vectorial trafficking of opsin and other ROS-destined proteins

in PR cells and consequently compromises the inability to form PR outer segments (Fliesler et al., 1984a,

1985; Fliesler and Basinger, 1985; Ulshafer et al., 1986; Defoe et al., 1986; St Jules et al., 1990). However,

surprisingly, although we observed shortening of ROS, we did not observe mislocalization of opsin, e.g.,

aberrant accumulation in the inner segment or in the perinuclear space of the ONL (see Figures 5A and

5B). In fact, we observed successful outer segment formation (see Figures 4C and 4D). Thus, our observa-

tions (see Figures 5 and 6) would argue against defective N-glycosylation upon Rho-iCre-mediated Dhdds

excision, where Rho-iCre recombinase is expressed (starting at PN 7 days) after cell fate commitment to rod

PR terminal differentiation (Li et al., 2005). However, the PR-specific ablation of Dhdds is sufficient to elicit

primary degeneration of PRs, suggesting the requirement of continued endogenous dolichol synthesis in

terminally differentiated rod PRs.

Limitations of the Study

RP59 is an autosomal recessive, non-syndromic form of RP, caused by mutations in DHDDS (Zelinger

et al., 2011; Zuchner et al., 2011). Hence, although all cells require dolichol derivatives to carry out protein

N-glycosylation, only the retina seems to be negatively impacted by such mutations in this disease. The

present study was aimed at neither addressing the question of why RP59 is non-syndromic nor creating a

faithful animal model that replicates the human disease phenotype. The immediate goal of the present

study was to create a tractable in vivo model that would allow a further understanding of the requirement

for dolichol homeostasis and DHDDS activity in retinal PR cells specifically. This targeted approach was

taken because (1) global deletion of Dhdds likely would be embryonic lethal, and (2) PRs represent the

predominant cell type affected in the RP59 retinal degeneration. Such targeted gene ablation in rods

is best achieved by using the Dhddsflx/flx iCre+ model as employed here. Also, the synthesis of dolichol

and its derivatives requires the activity of two enzymes— DHDDS and Nogo-B receptor (NgBR)—func-

tioning together as a heterodimeric complex (Park et al., 2014, 2016). In this study, we have modeled

the effect of PR-specific deletion of the gene that encodes only one of the two heterodimeric partners.

In addition, this cell type-specific targeted gene ablation occurs only in rod PRs and is dependent on the

onset of opsin gene expression (the promoter driving Cre expression), which starts at PN day 4–7 (after

the onset of expression of the transcription factor Nrl, which determines rod cell fate). This scenario is

significantly different from what occurs in human patients with RP59: first, RP59 involves DHDDS point mu-

tations, rather than gene ablation; second, those mutations are found in every cell type throughout the

retina (and the entire body), rather than being restricted just to rod cells; third, the global expression

of mutant DHDDS in humans is initiated in utero during early embryogenesis, rather than commencing

after birth.

The lack of an observable defect in protein N-glycosylation in the retina in the Dhddsflx/flx iCre+ model may be

attributed to at least two factors: (1) the other heterodimeric partner, NgBR (gene: Nus1), required for dolichol

synthesis (which, presumably, remains active in the absence ofDhdds)may be able to at least partly take over the

role of Dhdds (i.e., enzyme activity is impaired, but not completely lost) and/or (2) the dolichol synthesized in PR

cells (or their precursors) before onset of Cre-recombinase expression may persist and be sufficient to support

protein N-glycosylation even after Dhdds has been ablated in the rod cells. The lack of suitable reagents or

methods to directly study the distribution and turnover rates of dolichol and its derivatives at the single cell
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and subcellular levels also presents a further impediment to obtaining a more complete understanding of

exactly how PR-specific ablation of Dhdds alters this aspect of isoprenoid homeostasis in those cells.
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SUPPLEMENTAL TABLES 

 

Table S1. Vendor information and identifiers for key reagents utilized in the study. Related 
to Figures 1 through 6 and Figures S1 through S13. 

 

 

 

 
ANTIBODY 

 
SOURCE/VENDOR 

 
IDENTIFIER 

Anti-Opsin Abcam ab5417 
RRID:  AB_304874 

Anti-GFAP Dako Agilent Z0334 
RRID:  AB_10013382 

Anti-Iba1 Abcam ab178846 
RRID: AB_2636859 

Anti-Cone Arrestin Gift: Dr. Cheryl Craft 
USC, California, USA 

PMID: 18701071 

Anti-LAMP2 Abcam ab13524 
RRID: AB_2134736 

Anti-GLUL BD Biosciences 610517 
RRID: AB_397879 

Anti-ICAM1 R&D Systems AF796 
Anti-ACTB Cell Signaling Technologies 4970 

RRID: AB_2223172 
Rabbit IgG Sigma Aldrich 12-370 
Mouse IgG Sigma Aldrich 12-371 

 
LECTIN 

 
SOURCE/VENDOR 

 
IDENTIFIER 

Biotinylated Concanavalin-A Vector Laboratories B-1005 
RRID: AB_2336346 

AF647-Peanut Agglutinin Thermo Fisher Scientific L32460 
AF647-Wheat Germ 
Agglutinin 

Thermo Fisher Scientific W32466 

 
ASSAY 

 
SOURCE/VENDOR 

 
IDENTIFIER 

PNGase-F Assay New England Biolabs P0704S 
BaseScope ISH Assay ACD Biotech 323900, 323910 
Mouse Cytokine Assay R&D Biosystems ARY006 
TUNEL Assay Promega Corp. G3250 



TRANSPARENT METHODS 

Materials and reagents   

All reagents and materials utilized for SDS-PAGE and Western blot analyses were obtained from 

Bio-Rad Laboratories (Hercules, CA, USA). Other reagents were obtained from Sigma-Aldrich 

(St. Louis, MO, USA), unless otherwise stated. Plasticware (Falcon™) and all other general lab 

supplies were obtained from ThermoFisher Scientific (Waltham, MA, USA), unless otherwise 

indicated. 

 

Generation of rod photoreceptor-specific DHDDS KO mouse 

Two constructs containing lacZ flanked by FLP-FRT and Dhdds exon 3 flanked by loxP sites were 

obtained from the Knockout Mouse Project (Clones EPD0137_7_D05, EPD0137_7_D06; KOMP, 

UC Davis) and were linearized and introduced into mouse ES cells at the Roswell Park 

Comprehensive Cancer Center (RPCCC) Gene Targeting and Transgenic Facility (Buffalo, NY, 

USA) using standard technology. The lacZ cassette was excised from the established ES cells 

with FLP-FRT recombinase, and excision was confirmed by PCR with primers Dhdds-FWD: 5’-

GTGTCATCCCCTGCTGCAGAT-3’ and Dhdds-REV: 5’-TGGGTGTAGTGGCTCAGGTC-3’, 

designed in a region that is conserved in both WT and floxed alleles and in the region around the 

loxP sites. PCR products amplified are 393 and 517 bp for the WT and floxed alleles, respectively. 

These primers were used to verify the presence of the Dhddsflx/flx alleles in all subsequent 

breedings. Verified Dhddsflx/+ heterozygous mice were crossbred to generate homozygotes. In the 

Rho-iCre (iCre-75) mouse line, Cre recombinase transgene expression in rod photoreceptors is 

driven by the opsin (RHO) promoter (Li et al., 2005). Dhddsflx/flx mice were crossed with Rho-iCre 

(iCre-75) mice (Stock 015850, RRID: IMSR_JAX:015850, The Jackson Laboratory, Bar Harbor, 

MN, USA) to generate first filial generation (F1) rod photoreceptor-specific heterozygous 



knockouts (Dhddsflx/+ iCre+), which were bred to homozygous Dhddsflx/flx mice to generate an F2 

Dhdds knockout line that is homozygous for the floxed allele and heterozygous for iCre (Dhddsflx/flx 

iCre+). PCR verification of Cre transgene modification was carried out using forward and reverse 

primers, 5’-TCAGTGCCTGGAGTTGCG-CTGTGG-3’ and 5’-

CTTAAAGGCCAGGGCCTGCTTGGC-3’ yielding a 650 bp product. The PCR assay for Cre-

recombinase does not differentiate between homozygous and heterozygous transgenic mice. For 

the PCR assay involving direct tissue genotyoping, primers [FWD: 5’-GTGTCATCCCCTGCT-

GCAGAT-3’, REV: 5’-GTGAAACAAGAACCATTTACCT-3’] were designed upstream of the 

upstream loxP site, and downstream of downstream loxP site [Fig. 2], predicted to yield a specific 

584 bp remnant intronic region (due to exon 3 excision). Primers were designed to amplify an 

unaltered gene loci (Dhcr7) as a positive control using the following primer set: FWD 5’ – 

CCCTAGTCACAACTTATGGCCCTT – 3’, and REV 5’ – TAGTTCCCACAGGTGACATTA – 3’, 

which generates a 375 bp product 

Rod-photoreceptor-specific expression and activity of Cre-recombinase in Rho-iCre75 

mice was verified by breeding the mouse line to ZsGreen reporter mouse strain (B6.Cg-

Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J, Stock# 007906, RRID: IMSR_JAX:007906; The 

Jackson Laboratory). The first filial, iCre+ progeny of the cross would yield ZsGreen expression 

exclusively in Cre recombinase-expressing cell types, by deleting the loxP sites flanking the STOP 

codon upstream of the ZsGreen gene. 

Animals were maintained on a 12-h light:12-h dark cyclic light schedule (20-40 lux ambient 

light intensity at cage level), at 22-25C, and typically were sacrificed 6 h into the light phase. All 

procedures conformed to the National Research Council’s Guide for the Care and Use of 

Laboratory Animals (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-

laboratory-animals.pdf).  

 



PCR and mutation verification 

Genomic DNA from mouse tail snips was extracted using a Proteinase K-based method 

(Malumbres et al., 1997). Briefly, mouse tail snips were incubated for 4 h at 55C in Allele-In-One™ 

Mouse Tail Direct PCR buffer (Allele Biotechnology, San Diego, CA, USA; ABP-PP-MT01500). 

The one-step reaction makes the tail genomic DNA available for PCR amplification without 

purification. PCR amplification was performed using GreenTaq DNA Polymerase (Sigma-

Aldrich, S4438), and the MyIQ™ Single Color Real-Time PCR Detection System (Bio-Rad 

Laboratories; 170-9740) with cycles of 95oC denaturation. Extension period for indirect and direct 

(tail snip and retina) genotyping was 45s at 54°C. The PCR products obtained using the primers 

described above were electrophoretically separated in a 1.5% agarose gel and stained with EtBr 

to verify product size, in comparison with a DNA size standard (ThermoFisher Scientific, 

15628019), and visualized using a FOTODYNE FOTO/UV 21 Transilluminator (FOTODYNE 

Inc.). 

 

SDS-PAGE, Western blot and densitometric analyses 

Retinas from age-matched WT and Dhddsflx/flx iCre+ mice were harvested, and flash frozen 

immediately. Retinas were lysed with RIPA buffer (ThermoFisher Scientific, 89900) supplemented 

with protease inhibitor cocktail (ThermoFisher Scientific, 78441) at 1:100 dilution. Protein yield 

was estimated using a Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific, 23225). Western 

blot analysis was performed essentially as described previously (Ramachandra Rao et al., 2018), 

utilizing the following antibodies: mouse anti-opsin monoclonal antibody (Abcam, Burlingame, CA, 

USA; ab5417, RRID: AB_304874; 1:2000); rat anti-LAMP2 (Abcam, ab13524, RRID: 

AB_2134736; 1:1000); mouse anti-GLUL [BD Biosciences, San Jose, CA, USA; 610517, RRID: 

AB_397879; 1:1000], goat anti-ICAM-1 [R&D Systems, Minneapolis, MN, USA, AF796; 1:1000), 



rabbit anti-ACTB (Cell Signaling Technology, Danvers, MA, USA; 4970, RRID: AB_2223172; 

1:1000), and rabbit anti-GFAP (Dako Agilent, Sanata Clara, CA, USA; Z0334; 1:1000). Blots were 

then probed with appropriate host-specific alkaline phosphatase-tagged secondary antibodies (1h 

at room temperature). Detection of antibody binding was achieved using chemifluorescent 

enzyme substrate (GE Healthcare Life Sciences, Marlborough, MA, USA; 45000947) and a 

ChemiDoc™ MP Imaging System (Bio-Rad Laboratories). Semi-quantitative densitometry was 

performed using BioRad ImageLab® software. 

 

Immunohistochemistry, on-section PNGase-F assay, and confocal microscopy 

Eyes from WT and Dhdds-knockout animals were enucleated (6 h post light onset), fixed in 4% 

(w:v) formaldehyde (prepared from paraformaldehyde; Electron Microscopy Sciences, Hatfield, 

PA, USA; 30525-89-4)) in PBS on ice overnight, and then rinsed in chilled PBS three times. Fixed 

eyes were paraffin embedded, and 10-µm thick sections were collected onto glass Gold Seal™ 

UltraFrost™ microscope slides. The sections were de-paraffinized and antigen retrieval was 

carried out as described previously (Emoto et al., 2005). Immunohistochemistry was performed 

as described previously (Ramachandra Rao et al., 2018) using the following antibodies: mouse 

anti-opsin (Abcam, RRID: AB_304874; 1:200); rabbit anti-GFAP (Dako Agilent, Z0334, RRID: 

AB_10013382, 1:100); anti-Iba-1 (Abcam, ab178846, RRID: AB_2636859; 1:100); rabbit anti-

cone arrestin (kind gift by Dr. Cheryl Craft, University of South California, USA). Negative controls 

consisted of nonimmune IgG (10 g/ml) (Sigma-Aldrich; rabbit: 12-370, mouse: 12-371): from the 

same host species as that from which the primary antibody was derived. After three rinses with 

TBST (Tris-buffered saline, containing 0.2% (v/v) Tween-20), tissue sections were incubated for 

45 min at room temperature with secondary IgG from suitable host species, conjugated with Alexa 

Fluor 488/568/647 (1:500 in antibody diluent; ThermoFisher). 



On-section PNGase-F N-glycosidase assay (New England Biolabs Inc., Ipswich, MA, 

USA; P0704S) was carried out as per manufacturer’s instructions. Briefly, each retinal section 

was treated with 200 U of PNG-ase F in 1X Glycobuffer 2 (10X buffer provided with the kit)  

supplemented with 1% NP-40 detergent at 37OC, overnight. WT and Dhddsflx/flx iCre+ retinal 

sections ± PNGase-F were incubated with biotinylated Concanavalin-A (Vector Laboratories, 

Burlingame, CA, USA: B-1005, RRID: AB_2336346; 1:100), followed by incubation with AF488-

conjugated streptavidin (Thermo Fisher Scientific, S11223) and AF647-conjugated Peanut 

Agglutinin (Thermo Fisher Scientific, L32460). AF647-conjugated Wheat germ agglutinin (Thermo 

Fisher Scientific, W32466) was utilized to test the synthesis of glycans containing N-acetyl-D-

glucosamine. 

Slides were rinsed with TBS, counterstained with DAPI (4’,6-diamido-2-phenylindole), 

coverslip mounted using Vectashield® mounting medium (Vector Laboratories, Burlingame, CA; 

H-1000), and examined with a Leica TCS SPEII DMI4000 scanning laser confocal fluorescence 

microscope (Leica Microsystems, Buffalo Grove, IL). Images were captured using a 40X oil 

immersion (RI-1.518) objective under nominal laser intensity (10% of maximum intensity), gain 

(850) and offset (-0.5) values, to optimize the signal-to-noise ratio. 

 

In Situ Hybridization (ISH) 

For the purpose of morphologic verification of successful deletion of exon 3 of Dhdds, we utilized 

an ISH methodology called BaseScope™ (ACDBio, CA, USA). Two sets of short 50 bp 

complimentary probes (which bind to the target mRNA, spanning a total of ~100bp), 

conventionally called “ZZ probes”, were custom-designed to detect transcript region 

corresponding to Dhdds exon 3 (bp 361-455 of NM_026144.4). ISH was performed according to 

manufacturer instruction protocol (ACDBio, 323910 and 323900). High signal/noise ratio enables 



visualization of specific stretches of the Dhdds target mRNA (in this case, Dhdds) as a single red 

chromogenic dot. Corresponding brightfield images were captures using Nikon 80i Fluorescence 

Microscope equipped with a digital camera and Image Pro analysis software (Nikon Instruments 

Inc., New York, USA) 

 

Spectral Doman Optical Coherence Tomography (SD-OCT) analysis 

All mice were maintained under a 12:12 light/dark cycle, at 20-40 Lux ambient room illumination. 

Overall retinal morphology and ONL thickness were periodically monitored and recorded non-

invasively in age-matched C57BL/6J control and Dhddsflx/flx iCre+ mice, using a Bioptigen 840 nm 

UHR-SD-OCT instrument (Bioptigen, NC, USA) essentially as described previously (Butler and 

Sullivan, 2018). Mice were anesthetized using ketamine-xylazine (75 mg/kg-5 mg/kg) by 

intraperitoneal injection. Both pupils were dilated using 1% Atropine (Acorn Inc., NDC 17478-215-

05). Following dilation, mice were positioned into the instruments AIM-RAS (animal imaging 

mount and rodent alignment stage) positioning setup, which allows for proper alignment of the 

mouse eye with the mouse retina bore. Horizontal SD-OCT scans (1.4 mm) were acquired, and 

B-scan cross-sectional images were analyzed. The image resolution allowed accurate 

determination of the integrity of the ONL and other retinal layers. The total ONL thickness was 

defined as the hyporeflective layer observed between the hyper-reflective OS and hyper-reflective 

OPL. ONL thickness around the optic nerve head (ONH) was measured in control and Dhddsflx/flx 

iCre+ mice, at PN 4, 5 and 6 weeks (n=4/group), utilizing Bioptigen InVivoVue® Clinic software. 

Layer thicknesses were measured manually. The measured ONL thickness was plotted as a 

function of distance from the ONH, and for statistical analysis one-way ANOVA was performed 

within GraphPad Prism® software (GraphPad Software, San Diego, CA, USA; RRID: 

SCR_002798). 



Electron microscopy  

Mouse eyes were processed for plastic embedment ultramicrotomy, and EM analysis as 

described in detail previously (Fliesler et al., 2004). In brief, a slit was made in the superior cornea 

with a razor blade and the eyes were fixed overnight at 4°C in fresh Karnovsky’s fixative (0.125 

M sodium cacodylate buffer (pH 7.4), containing 2.5% (v/v) glutaraldehyde, 2.0% formaldehyde 

and 0.025% CaCl2). The fixed eyes were then rinsed with 0.1 M sodium cacodylate buffer (pH 

7.4) containing 0.025% CaCl2, and post-fixed for 1 h in 1% (w/v) osmium tetroxide in 0.1 M sodium 

cacodylate buffer. After post-fixation, the eyes were rinsed twice in 0.1 M sodium cacodylate 

buffer and once in distilled water, then dehydrated using a graded ethanol series followed by 

propylene oxide and infiltrated overnight with Spurr's epoxy resin (Spurr Low Viscosity Embedding 

Kit; Sigma-Aldrich, EM0300-1KT). The eyes were then embedded in Spurr’s resin and allowed to 

polymerize in a 70°C oven for 48 h. Tissue sections were obtained with an ultramicrotome 

(UltraCut-E; Reichert Technologies Life Sciences, NY, USA) using glass or diamond knives. Thin 

(70- to 80-nm thickness) sections were collected on copper 75/300 mesh grids and stained with 

2% (v/v) uranyl acetate and Reynolds' lead citrate. Sections were viewed and micrographs 

obtained with a JEOL Model 100CX electron microscope (JEOL, USA; Peabody, MA, USA) at an 

accelerating voltage of 60 keV 

 

Electroretinography (ERG) 

Scotopic (dark-adapted) electroretinograms  were recorded from control C57BL/6J and Dhddsflx/flx 

iCre+ mice after overnight dark adaptation. Animals were anesthetized by intraperitoneal injection 

of a ketamine-xylazine mixture, followed by pupil dilation with an ophthalmic Atropine solution.  

Flash stimuli were applied using a ColorDome system (DiagnoSys LLC, Lowell, MA, USA). The 

ERGs were recorded from both eyes simultaneously using DTL thread contact electrodes 



(OcuScience®, Henderson, NV, USA), contacting the corneal surface with a conductive medium 

(Goniovisc (hydroxypropylmethylcellulose 2.5%), Hub Pharmaceuticals, 17238061015-EA). A 

bite bar and a platinum electrode under the skin served as reference and ground leads, 

respectively. Scotopic responses were obtained in 16 increasing flash intensity steps (10-3 to 500 

cd-sec/m2). Individual scotopic a-wave and b-wave responses for each strain examined were 

averaged (n=7-12). Individual b:a wave ratios were calculated at all flash intensities ≥1.25 cd-

sec/m2, and group averages and standard errors were calculated (n=7-12). Following rod 

desensitization achieved by maintaining a constant background illumination, photopic (light-

adapted) ERG responses were elicited with green light (520 nm) flicker illumination at 30 Hz, 

using an 8-step custom protocol with increasing flash intensities (10-1 to 30 cd-sec/m2). Statistical 

analysis using one-way ANOVA and Student’s t-test were performed on data acquired at 

individual flash intensities, using GraphPad® software. 

 

TUNEL assay  

To visualize cell death, the in situ fluorescence-based Terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) assay (for detection of apoptotic cell death) was utilized as 

described previously (Tu et al., 2013). Paraffin sections of control and Dhddsflx/flx iCre+ eyes were 

deparaffinized, and citrate buffer antigen retrieval was performed. Sections were subjected to 

TUNEL assay, using a DeadEnd™ Fluorometric TUNEL System (G3250; Promega Corporation, 

Madison, WI, USA), per the manufacturer’s instructions. Permeabilized sections were treated with 

equilibration buffer (provided by manufacturer), followed by Terminal Deoxynucleotidyl 

Transferase (TdT) labeling for one hour at 370C. Labeling reaction was halted by incubating in 

SSC Stop Buffer (provided by manufacturer) for 15 min. Sections were quickly rinsed three times 

in PBS and immunohistochemistry using Iba-1 monoclonal antibodies (Abcam, Cat. #ab178846; 

1:100, RRID: AB_2636859) was performed as described above. Sections were DAPI stained, and 



mounted using Vectashield® mounting medium (Vector Laboratories). Confocal fluorescence 

micrograph images were captured using the 488 nm wavelength channel to detect TUNEL-

positive cells. 

 

PNGase-F assay 

Retinas from PN 5-week-old wild type and Dhddsflx/flx iCre+ retina were isolated and lysed in SDS-

free homogenization buffer (SDS interferes with PNGase-F activity). After protein quantification 

using BCA assay (see Western blot section, above), 50 µg of protein was subjected to non-

denaturing PNGase-F assay (New England Biolabs Inc., P0704S) as per manufacturer’s 

instructions. Briefly, the protein sample (50 µg) was treated with 2,500 U of PNG-ase F in 1X 

Glycobuffer (10X buffer provided with the kit)  supplemented with 1% NP-40 detergent at 37OC, 

overnight. PNGase-F-treated WT and Dhddsflx/flx iCre+ retinal protein extract were compared with 

untreated extract by Western blot analysis, probing the blots with anti-RHO antibody (see 

pertinent section above) 

 

Cytokine Array 

An unbiased, broad screening approach was utilized to test the upregulation of cytokines in the 

observed retinal degeneration. For this purpose, a membrane-based sandwich assay [Proteome 

Profiler Mouse Cytokine Array Kit, R&D Systems, Minneapolis, MN, USE; ARY006] was adapted 

as per manufacturer’s instructions.PN 5 week old Dhddsflx/flx iCre+ and Dhddsflx/flx iCre- retinal 

protein extract (n=3/group; 200 µg of protein extract/array) were mixed with a cocktail of 

biotinylated detection antibodies (kit content), and subsequently incubated with the mouse 

cytokine array membrane. The membrane was washed, and incubated with streptavidin-

horseradish peroxidase for 1 h. Femto Chemiluminescence detection system (ThermoFisher, 



34094) was used for signal amplification, and array imaging/signal detection was carried out on 

a BioRad ChemiDoc™ MP Imaging System. Background noise was subtracted from the cytokine-

specific signal utilizing ImageLab software, and background-corrected signal ratio between 

Dhddsflx/flx iCre+ and Dhddsflx/flx iCre- was calculated for individual cytokines.  

 

Analysis of dolichol content 

Five retinas were pooled and subjected to alkaline hydrolysis at 95°C for 1 h in hydrolytic solution 

(25% (w/v) KOH in 65% (v/v) ethanol, aq.). Nonsaponifiable lipids were then extracted three times 

with hexane, pooled extracts were evaporated to dryness under a stream of nitrogen, and the 

residue was dissolved in 2-propanol. UHPLC-ESI-HR-MS analyses of polyisoprenoids were 

performed by the method described in detail previously (Jozwiak et al., 2017), using an ACQUITY 

I-Class Ultra-Performance Liquid Chromatograph (Waters Corporation, Milford, MA, USA) 

coupled with a Synapt G2-S HDMS mass spectrometer (Waters) equipped with an electrospray 

ion source and quadrupole time-of-flight (q-TOF) mass analyzer. The chromatographic separation 

of polyisoprenoids was carried out using an Acquity BEH C18 column (2.1 x 100 mm, 1.7 µm) 

(Waters). Mass spectra of polyisoprenoid alcohols were recorded in the positive ion mode with 

the resolving power of a TOF analyzer 20000 FWHM. The exact mass measurements for all peaks 

were performed within 3 mDa mass error. The instrument was controlled and recorded data were 

processed using a MassLynx V4.1 software package (Waters). 
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SUPPLEMENTAL FIGURES 
 
 
 
 

 
 
 
Figure S1. Multiple sequence alignment and comparison of FPP and IPP binding sites in 
the DHDDS complex. Related to Figure 1.  
DHDDS is required for FPP and IPP condensation to generate polyprenol. Sequence alignment 
of murine (M. musculus) Dhdds against E. coli UPPS suggests conservation of critical amino 
acids required for FPP and IPP binding (yellow, green highlights), and hydrophobic interactions 
(cyan highlights). The conserved region required for FPP/IPP bindng is lost upon Cre-mediated 
excision of exon 3 of Dhdds (solid red underline corresponds to the region coded by exon 3; 
dashed red underline represents the peptide coded by downstream exons, which may not be 
translated due to the frameshift generated by deletion of exon 3). Notations: fully conserved (*); 
mostly conserved (:); partially conserved (.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S2.  Multiple sequence alignment reveals species conservation of DHDDS FPP/IPP 
binding sites at the protein level. Related to Figure 1.  
The peptide region coded by murine exon 3 of Dhdds (the targeted exon in this study, highlighted 
in yellow) is required for FPP binding, and is very well conserved between species. Critical FPP 
and IPP binding sites coded by exon 3 and downstream exons are highly conserved (see Figure 
S1). Known RP-associated DHDDS point mutations (K42E [green box], W64X [red box], T204A 
[blue box]) are shown. Downstream exons, which may not be translated due to the frameshift 
generated by deletion of exon 3, have been highlighted in cyan. Notations: fully conserved (*); 
mostly conserved (:); partially conserved (.). 
 
 
 
 
 
 
 
 
 



 
 
 
Figure S3. Knockout Mouse Project (KOMP) DHDDS conditional knockout alleles. Related 
to Figure 2. 
 A validated Dhdds plasmid construct was obtained from KOMP (U.C. Davis; Davis, CA, USA). 
The plasmid was linearized and introduced into mouse C57BL/6J mouse ES cells. Transformed 
cells were treated with FLP recombinase to excise the lacZ cassette, leaving a single FRT site. 
Confirmed FRT-excised ES cells were used to generate Dhddsflx/flx mice containing two loxP sites 
surrounding exon 3. Expression of Cre recombinase leads to excision of all sequence between 
the two loxP sites including all of exon 3, leaving behind a single loxP site.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Fig. S4. Representative agarose gel image of initial PCR genotyping analysis using tail 
snip. Related to Figure 1.   
A. Genomic DNA extracted from tail snips of Dhddsflx/flx iCre+, Dhddsflx/+ iCre+, and Dhdds+/+ iCre- 

mice was subjected to PCR genotyping to differentiate the floxed vs. wild type alleles, as well as 
Cre recombinase status. The Dhdds WT allele yields a 393 bp product, while the Dhdds floxed 
allele yields a 517 bp product. B. PCR genotyping for the Rho- iCre allele. The Rho-iCre transgene 
yields a 650 bp product. C. The gene sequence of the loxP-modified Dhdds allele is shown, along 
with the PCR genotyping strategy and primer choices for tail snip and retinal genotyping (see 
Figure 1). The intronic region is highlighted in cyan, Dhdds exon 3 is highlighted in green, 
upstream and downstream loxP sites are highlighted in yellow. Forward and reverse primers used 
in retinal genotyping are shown (yellow text, black highlight). Tail snip genotyping utilized the 
same forward primer as used for retinal genotyping; reverse primer for tail snip genotyping is 
shown (white text, black highlight). 
 
 
 
 
 
 
 
 



 
 
 
 
Figure S5. Cre recombinase activity is present in the majority of rod photoreceptors by PN 
15 days. Related to Figure 2.  
ZSgreen expression is exclusively expressed in rods, suggesting Rho-iCre activity. DAPI and 
GFP channels are shown separately to demonstrate ZsGreen expression exclusively in the 
majority of cells in the photoreceptor layer (97% of which are rods) at PN 15 days. (See Figure 
2 for ZsGreen expression at PN 30 days.)  [Scale bar: 20 µm.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S6. Representative scotopic ERG traces of age-matched Dhddsflx/flx iCre- and 
Dhddsflx/flx iCre+ mice. Related to Figure 3.  
Representative ERG traces of Dhddsflx/flx iCre+ mice (B,D,F) at highest flash intensity (500 cd-s/ 
m2) suggests rapid, age-related decline in scotopic response, compared to Dhddsflx/flx iCre- mice 
(A,C,E), as observed in Figure 3. Scotopic ERG response in Dhddsflx/flx iCre+ mice were 
essentially extinguished by PN 6 weeks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







 

 
 
 
 
 
Figure S9. Cell-autonomous photoreceptor cell death and phagoptosis in Dhddsflx/flx iCre+ 
mice. Related to Figure 4.  
Additional representative confocal micrographs (A-C) demonstrate TUNEL-positive 
photoreceptor cells (white arrows, green channel), as well as phagocytic uptake of live, TUNEL-
negative photoreceptors by Iba-1-positive microglial cells (asterisk, red channel). Iba-1-positive 
microglial cells were found in the subretinal space (white arrow head, red channel). DAPI labeling 
of the nuclear layers is shown on the right-hand side of each image.  [Scale bars: (A, B) 20 µm; 
(C) 10 µm.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 
 
 
 
Fig. S11. Lectin cytochemistry demonstrates fluor-conjugated wheat germ agglutinin 
(WGA) binding to retinal photoreceptors in Dhddsflx/flx iCre+ mice. Related to Figure 5.  
WGA (pseudocolored magenta) selectively binds to β-1,4-GlcNAc-containing extracellular matrix 
components surrounding rod, but not cone, photoreceptors as well as the extracellular matrix in 
the ONL. Note the comparable, robust WGA staining of retinas from PN 5-week old Dhddsflx/flx 
iCre+ (right panel) and control (left panel) mice. This is in agreement with the lack of glycosylation 
as observed in Figure 5. [Scale bar: 20 µm.]  
 
 
 
 
 
 
 
 
 
 
 
 
 





 
 

 
 
Figure S13. Low magnification image depicting retinal thinning and persistence of cone 
photoreceptors. Related to Figures 2 and 3.   
Spectral domain optical coherence tomography (SD-OCT) imaging demonstrated significant 
thinning of the Dhddsflx/flx iCre+ retina (see Figure 2). Low-magnification light micrographs of H&E-
stained control (A) and PN 5- week old Dhddsflx/flx iCre+ mice (B) also demonstrate significant 
thinning of the photoreceptor layer in Dhddsflx/flx iCre+ mice. Immunohistochemical analysis of 
ocular tissue sections from control (C) and Dhddsflx/flx iCre+ (D) mice, stained with anti- cone 
arrestin antibody (pseudocolor: red), demonstrating arrestin-positive cone synaptic termini as well 
as immunopositive elements in the inner and outer segment layer regions. [Scale bar: (A,B) 500 
µm; (C,D) 20 µm. 
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