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Abstract
Objectives To develop and evaluate an automated method for prostate T2-weighted (T2W) image normalization using dual-
reference (fat and muscle) tissue.
Materials and methods Transverse T2W images from the publicly available PROMISE12 (N = 80) and PROSTATEx 
(N = 202) challenge datasets, and an in-house collected dataset (N = 60) were used. Aggregate channel features object 
detectors were trained to detect reference fat and muscle tissue regions, which were processed and utilized to normalize the 
3D images by linear scaling. Mean prostate pseudo T2 values after normalization were compared to literature values. Inter-
patient histogram intersections of voxel intensities in the prostate were compared between our approach, the original images, 
and other commonly used normalization methods. Healthy vs. malignant tissue classification performance was compared 
before and after normalization.
Results The prostate pseudo T2 values of the three tested datasets (mean ± standard deviation = 78.49 ± 9.42, 79.69 ± 6.34 and 
79.29 ± 6.30 ms) corresponded well to T2 values from literature (80 ± 34 ms). Our normalization approach resulted in signifi-
cantly higher (p < 0.001) inter-patient histogram intersections (median = 0.746) than the original images (median = 0.417) and 
most other normalization methods. Healthy vs. malignant classification also improved significantly (p < 0.001) in peripheral 
(AUC 0.826 vs. 0.769) and transition (AUC 0.743 vs. 0.678) zones.
Conclusion An automated dual-reference tissue normalization of T2W images could help improve the quantitative assess-
ment of prostate cancer.
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Introduction

Prostate cancer is the second most commonly diagnosed 
cancer and the leading cause of cancer-related deaths 
among men worldwide [1]. Multiparametric magnetic reso-
nance imaging (mpMRI) has been established as a valuable 

diagnostic tool for prostate cancer [2, 3]. T2-weighted (T2W) 
MR imaging is considered an essential pillar of mpMRI for 
prostate cancer diagnosis due to the high spatial resolu-
tion and the superior anatomical details it provides [3–5]. 
However, unlike other mpMRI sequences such as diffusion-
weighted and dynamic contrast-enhanced imaging, the use 
of T2W imaging has mainly been limited to a qualitative 
evaluation of prostate anomalies. Its utility for quantitative 
analysis is hindered by, among other things, non-standard 
signal intensity (SI) attributed to scanner parameters such 
as the field strength, coil type, signal amplification, and 
acquisition protocols [6–9]. To make use of T2W images 
for quantitative analysis, an image processing step called SI 
normalization is often required, which theoretically removes 
the variation in SI between images from different scan ses-
sions. Consequently, SI normalization enables comparing 
T2W image values from different patients (inter-patient 
comparison), patient follow-up at multiple scans over time 
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(intra-patient comparison), and tissue classification tasks in 
the setting of a radiomics or computer-assisted diagnosis 
approach [10, 11].

SI normalization is not new, and over the years, differ-
ent approaches have been proposed for prostate imaging. 
Due to their simplicity, histogram-based approaches, which 
typically depend on pre-set histogram landmarks to deform 
or rescale the SI [7, 12], have become the most commonly 
used [10, 13–16]. A drawback of these methods is that they 
usually rely on the content in the complete 2D or 3D image, 
which is subject to variation due to differences in scan set-
tings (e.g. the field-of-view) and patient-related factors 
(e.g. bladder filling). Recently, SI normalization utilizing 
single or multiple reference tissues has shown promise as 
an alternative to histogram-based methods [17–21]. In sin-
gle reference tissue normalization, the original T2W image 
SI is scaled by the SI in the corresponding reference tis-
sue region-of-interest (ROI). One common example of this 
in the prostate is normalization to the SI of the obturator 
internus or levator ani muscles [17, 22–24]. Multi-reference 
tissue normalization, on the other hand, utilizes the SIs of 
multiple reference tissues to create a linear or non-linear 
regression model to estimate the normalized T2W image 
values [18, 19]. The assumption is that reference tissue-
based normalization is less sensitive to variations in scan 
settings and patient-related factors. However, a key aspect 
of this approach is labelling the reference tissues, to enable 
SI extraction. Currently, this is done manually, which is a 
time-consuming and tedious process. Automated delineation 
of reference tissue ROIs would make the approach more effi-
cient and could possibly facilitate its integration into clini-
cal practice. This can for example be achieved using auto-
mated semantic segmentation or object detection methods. 
In comparison with semantic segmentation, object detection 
requires less processing power, time and data [25, 26].

The contribution of this work is a novel method for auto-
mated dual-reference tissue normalization of T2W images of 
the prostate, based on object recognition to extract the refer-
ence tissue ROIs. We compared the automatically extracted 
reference tissue intensities with those of manually delineated 
ROIs, and evaluated the merit of the proposed method for 
inter- and intra-patient comparison of T2W image intensities 
and for the classification of malignant lesions versus healthy 
prostate tissue.

Materials and methods

Datasets

In this study, transverse T2W images from three separate 
datasets were used: the PROMISE12 grand challenge dataset 
(N = 80) [27], the PROSTATEx challenge dataset (N = 202) 

[28] and a dataset of in-house collected T2W images from 
patients who underwent two sequential MRI scans for detec-
tion and biopsy-guiding, respectively (N = 60). The Regional 
Committee for Medical and Health Research Ethics (REC 
Mid Norway) approved the use of the in-house collected 
dataset (identifier 2017/576) and granted permission for pas-
sive consent to be used, whereas the two other datasets were 
publicly available.

The PROMISE12 dataset [27] consists of multi-centre 
and multi-vendor transverse T2W images obtained with dif-
ferent field strengths, acquisition protocols and coils. It also 
includes manual expert segmentations of the whole prostate 
for 50 cases. The PROSTATEx challenge dataset [28] con-
sists of pre-biopsy mpMRI sequences acquired at Radboud 
University Medical Centre, Nijmegen, Netherlands. The 
whole prostate, peripheral zone, and cancer-suspicious vol-
umes of interest (VOIs) were manually delineated by radi-
ologists (at Miller School of Medicine, Miami, FL, USA) 
based on targeted biopsy locations provided by the challenge 
organizers. The presence of clinically significant prostate 
cancer (Gleason score > 3 + 3) in the targeted biopsy cores 
was then used to label each cancer-suspicious VOI as a true 
positive (malignant) or false positive radiological finding. 
The rest of the prostate was considered healthy tissue.

The in-house collected dataset was obtained from St. 
Olavs Hospital, Trondheim University Hospital, Trond-
heim, Norway between March 2015 and December 2017. It 
consists of pairs of pre-biopsy 3 T images from 60 patients 
(median age = 65.5 years; range 47–75 years) acquired at two 
different time points: first, at the initial visit for detection of 
prostate cancer (scan 1), and second, during an MR-guided 
biopsy procedure (scan 2). The interval between scans ranged 
1–71 days with a median interval of 7 days. T2W imaging 
was performed on a Magnetom Skyra 3 T MRI system (Sie-
mens, Erlangen, Germany) with a turbo spin-echo sequence 
(Scan 1: repetition time/echo time = 4800–9520/104 ms, 
320 × 320 – 384 × 384 matrix size, 26–32 slices, 3 mm slice 
thickness and 0.5 × 0.5–0.6 × 0.6  mm2 in plane resolution. 
Scan 2: repetition time/echo time = 5660–7740/101–104 ms, 
320 × 320–384 × 384 matrix size, 19–26 slices, 3 mm slice 
thickness and 0.5 × 0.5–0.6 × 0.6  mm2 in plane resolution). 
The whole prostate volumes were manually delineated by a 
radiologist in training.

Proposed intensity normalization method

Figure  1 gives an overview of the proposed method, 
termed AutoRef. The method contains several tune-
able parameters, which were optimized as described in 
the next section. In the final, optimized version, the 3D 
T2W images were first pre-processed, which included N4 
bias field correction [29], rescaling to the 99th percen-
tile intensity value and resizing the transverse slices to 
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384 × 384 pixels with 0.5 × 0.5 mm in-plane resolution. 
Two separate aggregate channel features (ACF) object 
detectors [25] were then trained, using two training stages 
for the iterative training process, to detect rectangular 
ROIs containing fat and muscle (levator ani muscle) tis-
sue on the 2D transverse slices. Both object detectors 
were forced to focus on regions where the ROIs were 
expected to minimize the detection of unwanted struc-
tures. For fat, the focus region comprised the lower (pos-
terior) 50% of the image in the lower (inferior) 75% of 
the slices. For muscle, the focus region comprised the 
middle (posterior-anterior) 50% of the image in the mid-
dle (inferior-superior) 50% of the slices. The three slices 
containing the rectangular ROIs with the highest prob-
ability of fat/muscle were identified, and post-processed 
by Otsu thresholding [30] and morphological opening, 
with disk shape of one-pixel radius, to extract the larg-
est connected bright and dark structures in the detected 
rectangle, representing fat and muscle ROIs, respectively. 
The fat ( Ifat ) and muscle ( Imuscle) reference intensity val-
ues were then calculated as the 90th and 10th percen-
tiles, respectively, of the intensity values in these ROIs. 
Subsequently, the 3D image intensities ( I(x, y, z) ) were 
normalized to pseudo T2 values ( pT2(x, y, z) ) by linearly 
scaling Ifat and Imuscle to their respective T2 values at 3 T 
from literature ( T2fat = 121 ms and T2muscle = 40 ms) [31], 
using Eq. (1):

(1)
pT2(x, y, z) =

I(x, y, z) − Imuscle

Ifat − Imuscle
× (T2fat − T2muscle) + T2muscle.

Training, validation and testing

The PROMISE12 dataset was shuffled and split for train-
ing (N = 40), validation (N = 20), and testing (N = 20) of 
AutoRef. Since prostate segmentations were only available 
for 50 cases, the splitting was semi-random and controlled 
in a way that ensured that only cases with the required seg-
mentations were included in the validation and test subsets. 
The PROSTATEx and the in-house collected datasets were 
used for testing only.

The training and validation subsets were used to train 
the object detectors and to find the optimal pre- and post-
processing settings resulting in the best performance of 
AutoRef. An overview of the optimization results in the vali-
dation subset is provided in Online Resource 1. The trained 
detectors and optimal parameter settings, as described in the 
previous section, were subsequently applied to normalize 
the images in the PROMISE12 test subset, the PROSTATEx 
dataset and the in-house collected dataset.

Verification of reference tissue intensities

The reference tissue intensities extracted from muscle and 
fat tissue by AutoRef, Ifat and Imuscle , respectively, were com-
pared with those of manually drawn ROIs in the PROM-
ISE12 test subset. In the manual approach, a researcher with 
3 years of experience with prostate imaging (MRSS) deline-
ated three ROIs in both fat and muscle tissue on what were 
judged to be representative T2W slices by visual inspec-
tion. The 90th and 10th percentiles of the intensity values 
within the manual fat and muscle ROIs, respectively, were 

Fig. 1  Overview of AutoRef, the proposed normalization method. 
The T2W images were first pre-processed including bias field correc-
tion, rescaling and resizing. Rectangles containing fat/muscle were 
then detected slice by slice using trained aggregate channel features 
(ACF) detectors. The three slices containing rectangular regions with 

the highest probability of containing fat/muscle were identified and 
post-processed by Otsu thresholding and morphological opening to 
extract the largest connected fat/muscle region-of-interest (ROI). 
From these ROIs, fat/muscle reference intensities were obtained for 
normalization of the 3D image intensities
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compared to Ifat and Imuscle and the relative differences and 
absolute relative differences were calculated. Visual inspec-
tion of all automatically extracted fat and muscle ROIs from 
the PROMISE12 test subset, the PROSTATEx dataset, and 
the in-house collected dataset was performed by the same 
researcher to reveal any suboptimal ROIs. A ROI was con-
sidered suboptimal when it failed to detect the tissue of 
interest or covered additional regions not belonging to fat 
or muscle on any of the three slices.

Inter‑ and intra‑patient performance 
of normalization

The performance of AutoRef was compared to the origi-
nal images and three other automated normalization meth-
ods, commonly used in literature, i.e. histogram stretching 
(Eq. (2)) [8], histogram equalization (histeq function from 
 MATLAB®), and Gaussian kernel normalization (Eq. (3)) 
[8]:

where Imax and Imin represent the maximum and minimum 
intensity values, respectively, in the original image I.

where � and � represent the mean and standard deviation 
of the voxel intensities in the original image I , respectively.

Furthermore, the performance of AutoRef using two 
reference tissues (as proposed) was compared to that of 
 AutoRefmuscle (Eq. 4), which uses only muscle reference 
intensity values, as by several other studies [17, 22–24]:

where Imuscle represents the mean value of the automatically 
extracted muscle ROIs and T2muscle the muscle T2 value 
from literature.

The histogram intersections (Eq. 5) of whole prostate 
voxel intensities of each pair of patients within the PROM-
ISE12 test subset were used as a metric of inter-patient per-
formance. In addition, the PROSTATEx dataset was used to 
separately evaluate the inter-patient histogram intersections 
in the peripheral (PZ) and transition zone (TZ):

where Hx and Hy represent the intensity histograms of patient 
x and patient y , respectively, and n represents the number of 

(2)Inormalized(x, y, z) =
I(x, y, z) − Imin

Imax − Imin

(3)Inormalized(x, y, z) =
I(x, y, z) − �

�

(4)pT2(x, y, z) =
I(x, y, z)

Imuscle
× T2muscle,

(5)Intersection
(

Hx,Hy

)

=

n
∑

i=1

min
(

Hx(i),Hy(i)
)

histogram bins (set to 100). Hx and Hy were normalized to 
the total number of voxels in the prostate or zone.

The in-house collected dataset was used to assess the 
intra-patient performance, by measuring the whole prostate 
histogram intersection between the pair of consecutive scans 
of the same patient (Eq. 6):

where H1 and H2 represent the histograms for the first and 
second scans of the same patient, respectively, and n rep-
resents the number of histogram bins (set to 100). H1 and 
H1 were normalized to the total number of voxels in the 
prostate.

For all datasets, the pT2(x, y, z) values of prostate tissue 
obtained with AutoRef and  AutoRefmuscle were compared 
to T2 values from the literature [31]. Furthermore, the 
pT2(x, y, z) values of prostate tissue obtained with AutoRef 
were compared between patients scanned with and without 
an endorectal coil.

Classification of malignant lesions versus healthy 
prostate tissue

Mean intensity values were extracted from the histologi-
cally verified malignant lesions and from healthy tissue 
in the PZ and TZ of the PROSTATEx dataset. The values 
were used as predictors in logistic regression models to dis-
tinguish healthy prostate tissue from malignant lesions in 
the PZ and TZ, separately. To ensure representative results 
least influenced by how the data was split, the models were 
trained and tested using 10 iterations with fivefold cross-
validation. In each iteration, the dataset was randomly split, 
in a controlled way, into training (4 folds) and testing (1 
fold) datasets, allowing each fold to be used once for testing. 
Receiver operating characteristic (ROC) curves were created 
to evaluate the performance of the classifier at each iteration 
and the mean and 95% confidence interval (CI) of the area 
under the curves (AUC) was reported.

Statistical analysis

Wilcoxon signed-rank tests were used to assess statisti-
cal differences between the manually and automatically 
obtained reference tissue intensities, and between the his-
togram intersections of the various normalization methods. 
Two-sample t tests were used to assess statistical differ-
ences between the pseudo T2 and literature T2 values of the 
prostate [31], and between the prostate pseudo T2 values 
of patients scanned with and without an endorectal coil. 
Wilcoxon rank-sum tests were used to assess statistical dif-
ferences between the mean intensity values of healthy and 

(6)Intersection
(

H1,H2

)

=

n
∑

i=1

min
(

H1(i),H2(i)
)
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malignant regions after normalization. DeLong’s method 
[32] was used to assess statistical differences between AUCs. 
The tests were followed by Benjamini–Hochberg correction 
for multiple comparisons [33] with false discovery rate of 
0.05. Corrected p values less than 0.05 were considered sta-
tistically significant.

All algorithms and analyses were implemented and per-
formed in MATLAB R2019b (The Mathworks, Nattick, MA, 
USA). The proposed algorithm will be made available on 
GitHub at https ://githu b.com/ntnu-mr-cance r/AutoR ef.

Results

Verification of reference tissue intensities

Figure 2a shows the manually and automatically extracted 
fat and muscle intensities, respectively, for all cases in the 
PROMISE12 test subset before normalization. There were 
significant differences between the reference intensity values 
from manually and automatically detected fat (p = 0.048) 
and muscle (p = 0.018) ROIs, with relative differences 
(median (range)) of 2.52% (− 16.21 to 39.86%) for fat and 
7.03% (− 20.24 to 23.20%) for muscle. The absolute rela-
tive differences [median (range)] between the manual and 

automated approach were 5.25% (0.17–39.86%) for fat and 
9.10% (1.74–23.20%) for muscle intensities. Visual inspec-
tion revealed that automated ROIs were suboptimal in 4/20 
(20%), 4/202 (2%) and 0/120 (0%) cases for fat and in 0/20 
(0%), 3/202 (1.5%) and 0/120 (0%) for muscle ROIs in the 
PROMISE12 test subset, the PROSTATEx dataset and the 
in-house collected dataset, respectively, whereas the method 
performed well in all other cases. In the PROMISE12 test 
subset, 3/4 (75%) suboptimal ROIs were found in patients 
with an endorectal coil. Figure 2b shows representative 
examples of optimal ROIs automatically extracted with our 
method. All automatically extracted suboptimal ROIs are 
shown in Online Resource 2. It can be appreciated that the 
‘suboptimal parts’ of the ROIs are often relatively small and 
of similar image intensity compared to the ‘correct parts’ of 
the ROIs, so their impact on the normalization is limited as 
shown in Online Resource 2.

Inter‑ and intra‑patient evaluation of normalization 
performance

Figure 3 shows examples from the PROMISE12 test sub-
set, the PROSTATEx dataset, and the in-house collected 
dataset before and after normalization using AutoRef. 
The image intensities are more homogeneous within and 

Fig. 2  a The 90th and 10th percentiles of the fat and muscle intensities before normalization, respectively, in manually placed and automatically 
detected ROIs. b Representative examples of optimal fat (green) and muscle (red) ROIs automatically extracted with our method

https://github.com/ntnu-mr-cancer/AutoRef
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between the datasets after normalization. This improve-
ment is most obvious in the PROMISE12 dataset, which 
was acquired with varying protocols, field strengths, and 
at multiple centres.

The intensity histograms from the original and normal-
ized images of PROMISE12 test subset are displayed in 
Online Resource 3. Figure 4a and Table 1 show that AutoRef 
resulted in significantly higher inter-patient intersections 
than the original data and the other normalization methods, 
except for  AutoRefmuscle.

Figure 4b, c and Table 1 also present the inter-patient 
histogram intersections for PZ and TZ of the PROSTATEx 
dataset. In both zones, the histogram intersections after 
normalization with AutoRef were significantly higher than 
those of the original data and the other normalization meth-
ods, except for histogram stretching in TZ.

The intra-patient histogram intersections between scan 
1 and scan 2 of the in-house collected dataset are shown in 
Fig. 4c and Table 2. AutoRef resulted in significantly higher 
intra-patient intersections than histogram equalization but 

performed similar to the original data and the other normali-
zation methods.

Figure 5 compares the pseudo T2 values of the whole 
prostate obtained with AutoRef and  AutoRefmuscle with those 
reported in the literature (80 ± 34 ms) [31]. Using AutoRef, 
the mean ± standard deviation prostate pseudo T2 values 
were 78.49 ± 9.42 ms (p = 0.063), 79.69 ± 6.34 ms (p = 0.486) 
and 79.29 ± 6.30 ms (p = 0.161) for PROMISE12 test subset, 
the PROSTATEx dataset and the in-house collected dataset, 
respectively. Pseudo T2 values were not significantly differ-
ent between patients scanned with (83.15 ± 8.85 ms) or with-
out (79.36 ± 6.41 ms) an endorectal coil (p = 0.690). Using 
 AutoRefmuscle, the prostate pseudo T2 values were significantly 
higher (p < 0.001) than literature values for all the datasets.

Classification of malignant lesions versus healthy 
prostate tissue

Figure 6a, b and Table 3 compare the performances (ROC 
curves and mean AUCs of the 10 iterations, respectively) of 

Fig. 3  Central slice through the prostates of five patients from the 
PROMISE12 test subset, the PROSTATEx dataset and the in-house 
collected dataset before (left panel) and after normalization (right 

panel). In both panels, the images were window-levelled from 0 to 2 
times the mean prostate intensity of all images in the respective data-
set
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Fig. 4  The inter-patient histogram intersections of the proposed 
method (AutoRef) compared to original and normalized images for 
the whole prostate (a), the peripheral (PZ; b) and transitional zone 
(TZ; c), respectively. The PROMISE12 test subset and PROSTA-
TEx dataset were used in a, and b and c, respectively. AutoRef inter-
sections were significantly higher (p < 0.001) than others, except 

for  AutoRefmuscle in a (p = 0.424) and histogram stretching in c 
(p = 0.154). The histogram intersections between scan 1 and scan 2 
of the in-house collected dataset (d) of AutoRef were significantly 
higher than for histogram equalization (p < 0.001), but similar to 
those of the other methods
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Table 1  The inter-patient histogram intersections before (Original data) and after normalization with our proposed method (AutoRef) and the 
other investigated methods in the whole prostate, peripheral (PZ) and transition zone (TZ)

The PROMISE12 test subset and PROSTATEx dataset were used in Whole prostate, and PZ and TZ, respectively. The bold values indicate a sig-
nificant difference from AutoRef after correction for multiple testing

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

Whole prostate
 Median 0.417 0.351 0.465 0.712 0.750 0.746
 Range 0.000–0.945 0.003–0.958 0.054–0.835 0.244–0.960 0.302–0.951 0.387–0.945
 p value  < 0.001  < 0.001  < 0.001  < 0.001 0.424

PZ
 Median 0.714 0.734 0.665 0.741 0.729 0.749
 Range 0.118–0.967 0.202–0.965 0.165–0.898 0.196–0.974 0.185–0.968 0.197–0.970
 p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

TZ
 Median 0.743 0.799 0.708 0.792 0.796 0.796
 Range 0.144–0.984 0.093–0.981 0.111–0.919 0.208–0.983 0.111–0.984 0.126–0.980
 p value  < 0.001 0.154  < 0.001  < 0.001 0.003

Table 2  The intra-patient histogram intersections between scan 1 and scan 2 of the in-house collected dataset before (Original data) and after 
normalization with our proposed method (AutoRef) and the other investigated methods

The bold values indicate a significant difference from AutoRef after correction for multiple testing

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

Median 0.884 0.885 0.788 0.883 0.884 0.889
Range 0.565–0.968 0.568–0.966 0.340–0.890 0.573–0.969 0.563–0.961 0.557–0.964
p value 0.640 0.640  < 0.001 0.774 0.640

Fig. 5  Box and whisker plots of the mean prostate pseudo T2 val-
ues of the patients in the PROMISE12 test subset, the PROSTATEx 
dataset and the in-house collected dataset after normalization with the 
proposed dual-reference normalization method (AutoRef) and sin-

gle reference tissue normalization  (AutoRefmuscle). The dashed lines 
correspond to the T2 values reported in literature. All the mean pros-
tate T2 values for  AutoRefmuscle, but not AutoRef, were significantly 
higher than those reported in literature (p < 0.001)
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AutoRef and other methods in the classification of healthy 
tissue versus biopsy-confirmed cancer regions. In the PZ, 
AutoRef performed significantly better than the original data 
and the other normalization methods. In the TZ, the perfor-
mance was similar to Gaussian kernel normalization and 
 AutoRefmuscle, but significantly better than the original data, 
histogram stretching and histogram equalization. Figure 6c 
shows box and whisker plots of the mean pseudo T2 values 
of healthy and malignant regions after AutoRef normaliza-
tion, which were significantly different in both the PZ and TZ 
(p < 0.001).

Discussion

In this paper, we propose a new method for automated 
dual-reference tissue normalization of T2W images of the 
prostate, which shows promise for quantitative assess-
ment of prostate cancer and could ease the comparison of 
T2-weighted images between and within patients. The pro-
posed method successfully uses a simple object detector 
to extract reference tissue intensities from fat and muscle 
surrounding the prostate, which are subsequently used for 

Fig. 6  The receiver operating characteristic curves and areas under 
the curves (AUC; mean of 10 iterations) for the proposed method 
(AutoRef), the original images and the other investigated normaliza-
tion methods in the peripheral (PZ; a) and transitional zone (TZ; b). 
In PZ, the AUC for AutoRef was significantly higher than that of the 

other methods (p < 0.001), whereas in TZ it was significantly higher 
than the original data (p < 0.001), histogram stretching (p = 0.010) 
and histogram equalization (p = 0.007). The mean pseudo T2 values 
(c) were significantly different between healthy and malignant regions 
in both the PZ and TZ. (p < 0.001)

Table 3  Areas under the curves (AUC; mean of 10 iterations) for the proposed method (AutoRef), the original images and the other investigated 
normalization methods when classifying healthy versus malignant tissues in the peripheral (PZ) and transition zone (TZ)

The bold values indicate a significant difference from AutoRef after correction for multiple testing
CI confidence interval

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

PZ
 AUC 0.769 0.782 0.766 0.804 0.801 0.826
 95% CI 0.765–0.772 0.778–0.787 0.761–0.771 0.800–0.808 0.797–0.805 0.822–0.830
 p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

TZ
 AUC 0.678 0.727 0.708 0.742 0.748 0.743
 95% CI 0.672–0.684 0.723–0.730 0.703–0.712 0.739–0.746 0.744–0.751 0.738–0.748
 p value  < 0.001 0.010 0.007 0.881 0.559
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intensity normalization of the 3D T2-weighted image. The 
proposed method generally resulted in higher inter-patient 
histogram intersections compared to the other investigated 
automated normalization methods, which indicates that the 
normalized intensity values in the prostate are more simi-
lar between images. Furthermore, the proposed method 
resulted in images with pseudo T2 values comparable to 
T2 values reported in the literature [31]. Lastly, as dem-
onstrated by the improved classification of healthy ver-
sus malignant tissue, the proposed method successfully 
reduced the inter-patient variation in T2W image intensi-
ties, which could facilitate the extraction and application 
of meaningful intensity-based image features for quantita-
tive assessment of prostate cancer, e.g. in a radiomics or 
computer-assisted diagnosis framework [34].

T2W normalization is paramount for the quantitative 
assessment of prostate cancer, and several methods have 
been previously proposed in the literature. Liu et al. [13] 
defined a non-parametric normalization standard as the 
median image intensity plus two times the inter-quartile 
range. Artan et al. [14] and Ozer et al. [15] normalized 
T2W images in a way similar to the Gaussian kernel 
method investigated here, but with the mean and stand-
ard deviation extracted from the PZ instead of the entire 
image. However, these methods require manual delineation 
of the PZ and might not be valid if the image intensities 
do not follow a Gaussian distribution [10]. Lemaitre et al. 
[10] chose to normalize the images using a parametric 
model assuming a Rician distribution of the voxel inten-
sities in the whole prostate. Yet differently, Nyúl et al. 
[7] proposed a two-stage method, wherein the first stage 
a template histogram with landmarks of interest is cre-
ated and in the second stage new histograms are mapped 
via linear transformation to the template. This method 
assumes that the MR images of the same sequence should 
have the same intensity distribution, which might not 
be the case for varying protocols. Vos et al. proposed a 
sequence-based approach, which depends on the original 
T2W signal, proton density value, a reference tissue, and a 
known sequence model to estimate new normalized T2W 
images [35]. Although this approach performs well, the 
intricate nature and additional scan time make its prac-
tical implementation difficult. Niaf et al. [20, 21] inves-
tigated a single reference tissue method that normalizes 
the image intensities by dividing by the mean intensity 
value of the bladder. Likewise, Peng et al. [17] normalized 
the images separately using each of the levator ani mus-
cle, urinary bladder, and pubic bone, and concluded that 
using levator ani muscle as a single reference tissue gave 
the best results. In this work, the performance of AutoRef 
using only muscle reference intensities was shown to be 
generally inferior to that based on a dual-reference tissue 
normalization approach, and unable to correctly map the 

image intensities to literature T2 values. Our method uses 
fat as a second reference tissue because it typically has 
high T2W intensity values, thus together with muscle cov-
ering the full range of expected prostate intensity values, 
it is present in all images and less vulnerable to external 
factors than for example the urinary bladder.

Recently, Stoilescu et al. [19] showed that multi-reference 
tissue normalization of T2W prostate images significantly 
improved prostate cancer classification accuracy in compari-
son to non-normalized images. Four reference tissues were 
used based on manually annotated ROIs, which currently 
hinders the implementation of the method in clinical prac-
tice. Therefore, in our work, we developed an automated 
approach for detecting ROIs to enable multi-reference tissue 
normalization using two reference tissues (fat and levator ani 
muscle). The ACF detector used in this work is a relatively 
simple, classical machine learning approach that was able to 
accurately detect the fat and muscle ROIs in nearly all cases, 
despite the small training dataset (N = 40). Exceptions were 
found in 8/342 (2%) cases for fat and 3/342 (1%) cases for 
muscle ROIs when considering all patients, and in 1/331 
(0.3%) and 3/331 (1%) cases, respectively, when consider-
ing patients scanned without an endorectal coil. The detec-
tion of fat thus performs worse in patients scanned with an 
endorectal coil but this may not pose a problem in clinical 
practice, as 3 T MRI with body surface coils is currently the 
recommended and preferred method. The detection of both 
fat and muscle may be further improved by using a larger 
dataset for training, while the method can also be extended 
to include more reference tissues if deemed necessary, which 
is subject of further investigation.

Although AutoRef generally performed better than or 
similar to the other normalization methods in all datasets, 
the largest differences were observed in the multi-centre, 
multi-vendor PROMISE12 dataset. In this dataset, images 
were acquired with 1.5 T or 3 T scanners, with or without an 
endorectal coil, and with different acquisition protocols, all 
of which are likely to influence the T2W image intensity. An 
important advantage of our method to the other investigated 
normalization methods is that the image intensities could be 
correctly mapped to literature T2 values [31], irrespective of 
these factors. The pseudo T2 values could be an interesting 
alternative to quantitative T2 mapping, given the limited 
scan time available in clinical practice, but this needs further 
investigation in studies where T2 maps are also acquired. 
However, it should be noted that AutoRef does not correct 
for local differences in signal intensities caused by the non-
uniform sensitivity of the receiver coils. This effect is espe-
cially apparent for images acquired with an endorectal coil, 
which typically shows an intensity profile inversely related 
to proximity to the coil. Although we showed that the mean 
pseudo T2 values of images acquired with an endorectal coil 
were comparable to those acquired with body surface coils, 
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there may be differences in intensity distribution within the 
prostate gland that are not accounted for by AutoRef.

In the intra-patient evaluation, AutoRef had similar intra-
patient histogram intersections compared to the original data 
and most of the other investigated methods. This probably 
reflects the limited variability in the in-house collected data-
set, which has been acquired at the same centre, the same 
scanner, with the same protocols at a relatively short interval 
between scans. It would be insightful to assess the perfor-
mance of the method in a dataset where the same patients 
are systematically scanned at different hospitals, but such 
data are probably scarce.

Normalization with the proposed method resulted in a 
significantly higher AUC for the classification of histologi-
cally verified PZ lesions compared to the other methods. For 
TZ lesions, the AUC was significantly higher than the origi-
nal data, histogram stretching and histogram equalization, 
and on par with the other normalization methods. However, 
the differences in the classification performance were rela-
tively small, which again may be the result of the limited 
variability in a dataset acquired at a single centre and with 
a single protocol [28]. Furthermore, considerable overlap 
in pseudo T2 values was still present between healthy tis-
sue and malignant lesions, especially in the TZ, indicating 
that pseudo T2 values alone may not be sufficient to detect 
prostate cancer in clinical practice.

Our study has some limitations. Quantitative T2 maps 
were not available for the patients included in this study, 
which hindered a direct comparison of the pseudo T2 values 
with a gold standard. Although we included several com-
monly applied automated normalization methods in this 
study, there are still many more described in the literature, as 
discussed above, that may perform better than those included 
here. In addition, it would be interesting to compare the per-
formance of the proposed object detector to that of semantic 
segmentation for detecting ROIs, which will be subject to 
further research. Despite these limitations, we have shown 
that our proposed method for automated dual-reference tis-
sue normalization performed equal to or better than other 
automated normalization methods. The method requires no 
manual input and the resulting images can be used for both 
quantitative and qualitative assessment of prostate cancer.

Conclusion

We successfully developed a method for automated dual-
reference tissue normalization of T2W MR images of the 
prostate using object recognition. The method was shown 
to reduce T2W intensity variation between scans and could 
improve the quantitative assessment of prostate cancer on 
MRI.
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