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Abstract
Background: Serum albumin is a key component in mammalian sperm capacitation, a functional
maturation process by which sperm become competent to fertilize oocytes. Capacitation is
accompanied by several cellular and molecular changes including an increased tyrosine
phosphorylation of sperm proteins and a development of hyperactivated sperm motility. Both of
these processes require extracellular calcium, but how calcium enters sperm during capacitation is
not well understood.

Methods: BSA-induced changes in intracellular calcium concentration were studied using Fluo-4
and Fura-2 calcium imaging with wild-type and Catsper1 knockout mouse sperm.

Results: We found that the fast phase of the BSA-induced rises in intracellular calcium
concentration was absent in the Catsper1 knockout sperm and could be restored by an EGFP-
CATSPER1 fusion protein. The calcium concentration increases were independent of G-proteins
and phospholipase C but could be partially inhibited when intracellular pH was clamped. The
changes started in the principal piece and propagated toward the sperm head.

Conclusion: We conclude that the initial phase of the increases in intracellular calcium
concentration induced by BSA requires the CATSPER channel, but not the voltage-gated calcium
channel. Our findings identify the molecular conduit responsible for the calcium entry required for
the sperm motility changes that occur during capacitation.

Background
During mammalian fertilization, freshly ejaculated sperm
do not have the ability to fertilize oocytes until after they
undergo capacitation, a functionally defined, but poorly
understood maturation process by which sperm become
capable of fertilizing eggs [1-3]. Sperm become capaci-
tated in vivo, by interacting with environmental stimuli in
the female reproductive tract before encountering eggs.
This process can also be mimicked in vitro by incubating

sperm in defined capacitation media. Several commonly
used components are essential for successful in vitro capac-
itation in sperm from many mammalian species. Among
them are bovine serum albumin (BSA), Ca2+ and bicarbo-
nate (HCO3

-) [3]. Capacitation leads to several cellular
and behavioral changes, including an increase in tyrosine
phosphorylation of sperm proteins, rises in intracellular
pH (pHi) and Ca2+ concentration ([Ca2+]i), membrane
hyperpolarization, and hyperactivated motility [4-6].
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Increases in [Ca2+]i and intracellular [pH]i are believed to
play central roles in both sperm capacitation and the acro-
some reaction (AR) [3,7,8]. The capacitating agent BSA
induces Ca2+ influx in sperm, but the molecular mecha-
nisms underlying such an influx are not well understood.
Multiple Ca2+-permeable ion channels have been detected
in mammalian sperm, including voltage-gated Ca2+ chan-
nels (CaVs), transient receptor potential (TRP) channels,
cyclic nucleic gated (CNG) channels and CATSPER chan-
nels [9-12]. Among these ion channel proteins, only the
four mammalian CATSPER members (CATSPER 1-4) are
specifically found in sperm and spermatogenic cells [13-
17]. All four Catsper genes are required for male fertility as
mice with any of these genes disrupted are infertile
[15,18-20]. Disruptions in Catsper1 and Catsper2 are also
associated with male infertility in humans [21-23].

Using Ca2+-sensitive fluorescent probes, we and others
have shown that CATSPERs are required for the Ca2+ entry
induced by stimuli such as cyclic nucleotides, alkaline
depolarizing medium and egg coat proteins [24-26]. Ca2+

entering the channel in sperm tail can trigger Ca2+ propa-
gation toward the head [25,26]. CATSPER's roles in the
migration of sperm toward the oocyte and in penetrating
the egg coat have been clearly established by studies show-
ing that Catsper mutant sperm cannot migrate to the egg in
vivo [27] and that, in in vitro fertilization (IVF), they can-
not penetrate coat-intact eggs but can fertilize those with-
out the zona pellucida [18]. In contrast, CATSPER's
function in sperm capacitation is less clear. Catsper mutant
sperm do not develop hyperactive motility after incuba-
tion in capacitation medium, as do normal sperm. The
mutant sperm also have a progressive decrease of motility
under certain incubation conditions [14,15,19,24,28,29].
This finding suggests that CATSPER has a role in the
motility aspect of sperm capacitation. On the other hand,
wild-type and Catsper mutant sperm do not differ in their
patterns of protein tyrosine phosphorylation after sperm
capacitation [19,24] or in their capacitation and AR effi-
ciency, as examined with the chlortetracycline (CTC)
assay [25,26]. In this study, we investigated CATSPER's
potential role in sperm capacitation by studying the Ca2+

influx induced by BSA.

Methods
Reagents
Fluo-4 AM, Fura-2 AM and pluronic F-127 were purchased
from Molecular Probes (Invitrogen, Eugene, OR). Pertus-
sis toxin (PTX) and ionomycin were from CalBiochem
(Gibbstown, NJ) and Cell-Tak was from BD Biosciences
(Bedford, MA). BSA (fraction V, fatty acid-depleted, Sigma
#A3059), disodium salt ATP, and other reagents were pur-
chased from Sigma. Similar Ca2+ responses in sperm were
also observed with fatty acid-free BSA (Sigma #A8806; not
shown).

Animals
Animals were treated according to institutional regula-
tions. This study used Catsper1 knockout mice that were
backcrossed to C57BL/6J for more than 10 generations
[18]. Sperm of the Catsper1 knockout mice lack not only
CATSPER1, but also CATSPER2 [28] and the associated
auxiliary proteins CATSPERβ [16] and CATSPERγ [17]. To
reflect this fact, we do not distinguish CATSPER1 from the
other CATSPERs throughout the paper. The EGFP-Catsper1
transgenic mice have a Catsper1 null background but carry
an EGFP-CATSPER1 fusion protein gene that rescues the
male sterile phenotype of the Catsper1 null mutant [16].

Sperm Ca2+ imaging
Non-capacitated caudal sperm were used for Ca2+ imag-
ing, as previously described [25,26]. Briefly, sperm were
released into HS medium containing (mM): 135 NaCl, 5
KCl, 2 CaCl2, 1 MgCl2, 30 HEPES, 10 glucose, 10 lactic
acid, and 1 pyruvic acid (pH adjusted to 7.4 with NaOH),
and concentrated to 5 × 106 -1 × 107/ml. Cells were loaded
with 10 μM Fluo-4 AM and 0.05% pluronic F-127 for 30
min at room temperature in the dark, followed by two
washes in imaging medium (HS supplemented with 15
mM NaHCO3), each with a 4 min spin at 300 × g. Washed
sperm were resuspended in imaging medium and loaded
into a small-volume imaging chamber (~1 cm diameter,
~90 μl) formed with Sylgard on a Cell-Tak coated cover-
slip, and allowed to attach for ~10 min.

For imaging sperm from EGFP- Catsper1 transgenic mice,
a ratiometric measurement with Fura-2 (5 μM for load-
ing) was used because of the EGFP fluorescence. A mono-
chromator (DeltaRAM V, PTI) with a 75-W Xenon lamp
was used to generate the excitation at 488 nm for Fluo-4
(or 340 nm and 380 nm for Fura-2). A 60× objective and
a 1.6× adaptor on an inverted microscope (IX-71, Olym-
pus) were used for imaging. Emissions (515-565 nm)
were bandpass filtered (HQ540/50, Chroma) and col-
lected with a cooled CCD camera (CoolSNAP HQ, Roper
Scientific) for 25 ms in every 0.5 s for fast recording, or
100 ms in every 6 s for slow recording. Online control,
data collection, and image processing were conducted
using commercial software (ImageMaster 3, PTI).

For imaging using Fluo-4, [Ca2+]i changes are presented as
ΔF/F0 ratios after background subtraction, where ΔF was
the change in fluorescence signal intensity and F0 was the
baseline as calculated by averaging the 10 frames before
stimulus application. In sperm loaded with Fura-2, [Ca2+]i
changes are presented as the ratio of fluorescence from
excitation at 340 nm to that at 380 nm (F340/F380) after
background subtraction. All the imaging experiments
were done at room temperature. Cells with uneven dye
loading were excluded from the analysis. Motile sperm
(~60% of the population) that had at least two points
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attached to the coverslip were used for analysis. Cells with
peak changes of >50% in ΔF/F0 (for Fluo-4) or >0.1 in
F340/380 (for Fura-2) after application of stimuli were
counted as responsive. To detect the Ca2+ responses at
"clamped" membrane potential (Vm), K+ ionophore vali-
nomycin (1 μM) was added to the imaging buffer, with
additional K+ as indicated to replace an equimolar
amount of Na+. EK was calculated with the assumption of
a 120 mM intracellular K+ concentration [30,31]. To
"clamp" intracellular pH, sperm were preincubated for 5
min with 3 μM carbonylcyanide-p-trifluoromethoxyphe-
nyl hydrazone (FCCP) and 1 μM valinomycin [32].

Statistical methods
Data analyses were performed with ImageMaster3, Excel
and Origin. Student's t-tests and ANOVA were used for
statistical comparisons between different treatment
groups. P < 0.05 was considered statistically significant.

Results
CATSPER channels are required for the BSA-induced 
[Ca2+]i rise in mouse sperm
When applied to non-capacitated sperm lightly immobi-
lized onto coverslips, BSA elevated [Ca2+]i in the sperm
head (Figure 1A) at concentrations as low as 0.1 mg/ml
(Figure 1B). The responses were dependent on the pres-
ence of extracellular Ca2+ (Figure 1A), suggesting a role for
Ca2+ entry. These properties of BSA-induced changes
under our conditions are comparable with other studies
in mouse and human sperm [33-35].

How BSA induces [Ca2+]i changes in sperm is not well
understood, but one possibility is through CaVs [34-36].

Our recent studies, however, suggest that mature sperm
do not have detectable functional CaV channels [25]. To
determine whether the BSA-induced [Ca2+]i rises are
dependent on CATSPERs, we compared the [Ca2+]i
changes in wild-type mouse sperm with those in the
Catsper1 null mutants. Upon bath application of BSA (5
mg/ml), 98% of wild-type sperm (107/109) showed ini-
tial responses in the head within 20 s and 17% (10 of 58)
had a 2nd response more than 2 min later (Figure 2A, E).
In contrast, the initial [Ca2+]i changes were absent in
CATSPER1-deficient sperm within 2 min of BSA stimula-

BSA-induced [Ca2+]i changes in the sperm head of wild-type mice monitored with single cell imagingFigure 1
BSA-induced [Ca2+]i changes in the sperm head of 
wild-type mice monitored with single cell imaging. (A) 
Representative recordings of [Ca2+]i changes (represented as 
normalized Fluo-4 fluorescence changes) in response to 
application of BSA (5 mg/ml; indicated by vertical arrow) to a 
bath containing 2 mM Ca2+ or no Ca2+ (with 5 mM EGTA). 
Some cells also had a second phase of [Ca2+]i rise (see Figure 
2A). Ionomycin (5 μM, used as a control) caused a [Ca2+]i 
rise in the absence of extracellular Ca2+ by releasing intracel-
lular Ca2+. (B) Dose -dependence of peak amplitude of the 
BSA-induced Ca2+ responses.
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tion (Figure 2B, E), although the delayed responses were
present in some sperm (23%, Figure 2C). The BSA-
induced [Ca2+]i rises were restored by a transgene encod-
ing an EGFP-CATSPER1 fusion protein in the Catsper1
null background (Figure 2D, E). These results indicate that
CATSPER1 is required for the initial [Ca2+]i responses.

Elevations in BSA -induced [Ca2+]i start in the sperm tail 
and propagate to the head
The finding that the BSA-induced increase in [Ca2+]i in the
sperm head was dependent on CATSPER1 was intriguing
because CATSPER proteins and the current through the
channels are strictly localized in sperm principal piece,
which is 20 mm away from the head [18,37]. To test
whether the BSA-induced [Ca2+]i changes in the sperm
head were a result of Ca2+ entry through CATSPER in the
tail, we analyzed the spatial-temporal kinetics of [Ca2+]i
changes along the entire length of the sperm. After BSA
application, [Ca2+]i rises started in the principal piece, and
then were seen in the mid-piece and head of the sperm
(Figure 3A). The differences in the response onsets
between the principal piece and head were 2.46 ± 0.52 s
(n = 10) with 1 mg/ml BSA (Figure 3B) and 2.76 ± 0.25 s
(n = 10) when induced with a higher concentration (5
mg/ml, Figure 3C). In contrast to BSA, the Ca2+ ionophore
ionomycin (5 μM) increased [Ca2+]i simultaneously in the
principal piece, mid-piece and sperm head (Figure 3A).

The BSA-induced increases in [Ca2+]i partially depend on 
pHi changes
How does BSA induce a CATSPER-dependent Ca2+ entry?
Stimuli such as egg coat proteins (e.g. zona pellucida) can
lead to CATSPER-dependent Ca2+ influx likely via pertus-
sis toxin (PTX)-sensitive G proteins and a phospholipase
C-dependent signaling pathway that can be inhibited by
neomycin [10,25,38]. To test whether the CATSPER-
dependent Ca2+ influx activated by BSA uses a similar
pathway, we recorded BSA-induced [Ca2+]i changes in the
absence and presence of PTX (100 ng/ml, Figure 4B) or
neomycin (1 mM, Figure 4C). Neither PTX or neomycin
inhibited the BSA-induced [Ca2+]i rises (Figure 4D).

BSA also changes the membrane lipid composition by
facilitating cholesterol efflux, and such a change likely
contributes to capacitation-associated events such as tyro-
sine phosphorylation [39-42]. The ability of BSA to
remove lipids, however, does not seem to be required for
its induction of CATSPER-dependent Ca2+ influx since
pre-incubating sperm with cholesterol sulfate to presum-
ably saturate BSA and reduce its ability to remove choles-
terol [36,41] did not inhibit the BSA-induced Ca2+ influx
(Figure 5).

Depolarization-activated voltage-gated channels such as
the T-type Ca2+ channel have also been proposed to medi-

ate the BSA-induced [Ca2+]i increases [34-36]. In addition,
CATSPER channels are not primarily voltage-activated,
but do have some weak voltage-sensitivity [37]. To test
whether voltage changes are required for the BSA-induced
Ca2+ entry into mature sperm, we compared [Ca2+]i
changes at various membrane potentials "clamped" with
a K+ ionophore valinomycin. Although the amplitudes of
the [Ca2+]i change varied with the clamped membrane
potentials, BSA still raised [Ca2+]i even when the voltage of
the membrane was held at -40 (Figure 6B, D) or -20 mV
(Figure 6C, D), conditions that are expected to completely
inactivate the T-type Ca2+ channel[25]. These data suggest
that voltage changes nor T-type Ca2+ channels are required
for the BSA-induced elevations in [Ca2+]i.

Another effect of BSA in particular, and capacitation in
general, is an intracellular alkalization by 0.4 pHi units

The BSA -induced [Ca2+]i rises start in sperm tail and propa-gate toward the headFigure 3
The BSA -induced [Ca2+]i rises start in sperm tail and 
propagate toward the head. (A) Representative time 
courses of the [Ca2+]i changes in the principal piece (PP1), 
midpiece (MP1) and head of the sperm. Increases in [Ca2+]i 
start in the principal piece and propagate to the head. The 
Ca2+ ionophore ionomycin (5 μM) induced [Ca2+]i increases 
simultaneously in all subregions. (B-C) Time differences 
between the application of BSA (B, 1 mg/ml; C, 5 mg/ml) and 
the onset of fluorescence changes (defined as the time point 
when ΔF/F0 started to have steep rise) in different regions 
within the principal piece (PP1, PP2), midpiece (MP1, MP2) 
and head as shown in the inset. PP1 and MP1 are both 5 μm 
from the annulus. There is a 5 μm distance from PP1 to PP2, 
and from MP1 to MP2. * indicates statistically significant (P < 
0.05).

0 20 40 60 80 100 120

0

200

400

600

PP2
PP1

M
P1

M
P2

Hea
d

0

2

4

6

8

10
1 mg/ml BSA

*

R
es

po
ns

e 
T

im
e 

(s
)

PP2
PP1

M
P1

M
P2

Hea
d

0

2

4

6

8

10
CB

* 
*

5 mg/ml BSA

A

Δ
 F

/ F
0 (

%
)

Time (s)

 PP1
 MP1
 Head

IonomycinBSA
Page 4 of 9
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2009, 7:119 http://www.rbej.com/content/7/1/119
[33,43]. When pHi was clamped with a H+ ionophore
FCCP and K+ ionophore valinomycin [32], the amplitude
of the BSA-induced [Ca2+]i rise was decreased and the per-
centage of responsive cells was reduced (Figure 6E, F), sug-
gesting that BSA induces [Ca2+]i increases, at least
partially, through pHi changes.

Consistent with a role of pHi changes in the BSA-induced
[Ca2+]i increases, the CATSPER channel can be activated
by intracellular alkalization [37] and alkaline medium
with an elevated concentration of K+ (the K8.6 medium)
can lead to a CATSPER-dependent rise in [Ca2+]i [24].
Thus, we investigated whether intracellular alkalization
alone can induce CATSPER-dependent [Ca2+]i rises and
the extent to which CATSPER channels contribute to the
increases. To do this, we compared the [Ca2+]i responses
to bath application of 20 mM NH4Cl, which leads to
intracellular alkalization and induces a slow [Ca2+]i rises
in sperm [44-47], in the wild-type and Catsper1 mutant
sperm. NH4Cl application evoked [Ca2+]i rises in wild-
type, but not in Catsper1 null sperm (Figure 7). The
NH4Cl-induced [Ca2+]i changes were restored by an EGFP-
CATSPER1 fusion protein in the Catsper1 null back-
ground (Figure 7C, E). These results suggest that the CAT-
SPER channel is necessary for the increase in [Ca2+]i
induced by pHi change.

The ATP-induced [Ca2+]i rises in mouse sperm are 
independent of CATSPER channel
The findings that Catsper1 mutant sperm lack the initial
[Ca2+]i increased induced by several stimuli tested (8-Br-
cGMP, 8-Br-cAMP, alkaline depolarizing medium, zona
pellucida, pHi change (NH4Cl) and BSA [24-26]) raises a
concern that a deficiency in the CATSPER channel leads to
a non-specific defect in sperm Ca2+ entry. To test this idea,
we compared the Catsper1 mutant and wild-type's sperm
[Ca2+]i responses to bath application of ATP, which was
reported to increase [Ca2+]i in bovine and mouse sperm by
activating a P2 purinergic receptor[48,49]. Similar to
other observations, ATP induced rises in [Ca2+]i in the
wild-type sperm head in a concentration-dependent man-
ner (Figure 8A). Unlike the BSA-induced [Ca2+]i increases,
those induced by ATP did not begin in the tail, but
instead, started simultaneously along the whole length of
the sperm (Figure 8C, D). The ATP-induced [Ca2+]i
changes were intact in the Catsper null sperm (Figure 8B),
indicating that the CATSPER channel does not contribute
to the ATP-induced elevation of [Ca2+]i.

Discussion
The major finding of our study is that CATSPER channels
are required for the BSA induced [Ca2+]i increases in
mouse sperm. Stimuli known to induce a CATSPER-

PTX and neomycin do not inhibit the BSA-induced [Ca2+]i changeFigure 4
PTX and neomycin do not inhibit the BSA-induced 
[Ca2+]i change. (A-C) Representative recordings of the 
[Ca2+]i changes (ΔF/F0) in the sperm head induced by BSA (1 
mg/ml) from cells pre-incubated with control (B), PTX (100 
ng/ml, 30 min pre-incubation) or neomycin (C) (1 mM, 5 min 
pre-incubation). (D) Averaged peak ΔF/F0 changes. The num-
bers of total sperm (from two to three mice) are indicated.
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dependent Ca2+ entry now include some of the most
important mediators in sperm physiology: cyclic nucle-
otides, zona pellucida and serum albumin. There are
clearly also CATSPER-independent Ca2+ entry paths that
are responsible for the [Ca2+]i increases induced by stimuli
such as extracellular ATP, as we showed in this study, and
mechanical force (Xia and Ren, unpublished). Differences
in signal transduction pathways that link various stimuli
to CATSPER channels also exist. For example, the Ca2+

entry induced by the zona pellucid is dependent on G-
proteins and phospholipase C [10,25,38] whereas the
BSA-induced one is not (Figure 4).

Like several other stimuli such as 8-Br-cGMP [37] and the
zona pellucida [25], BSA does not directly activate CAT-
SPER channel currents in corpus sperm under whole cell
voltage clamp patch clamp recording (with intracellular
and extracellular pH buffered at 7.2 and 7.4, respectively
[25,37]; Xia and Ren, unpublished observation). We can-
not exclude the possibility that BSA can directly activate
CATSPER under more physiological conditions. During
sperm capacitation with BSA-containing medium, there is
an intracellular alkalization [43]. Consistent with a role of
the alkalization, the BSA-induced [Ca2+]i rises were
reduced when pHi was "clamped" (Figure 6). The [Ca2+]i

BSA-induced [Ca2+]i rises under clamped membrane poten-tial (Vm) or intracellular pH (pHi)Figure 6
BSA-induced [Ca2+]i rises under clamped membrane 
potential (Vm) or intracellular pH (pHi). (A-C) Repre-
sentative recordings in different [K+]o as indicated, without 
(A) or with (B and C) 1 μM valinomycin in the bath to "clamp" 
the membrane potentials to -40 mV ([K+]o = 24 mM) or -20 
mV ([K+]o = 54 mM). (D) Averaged peak ΔF/F0 in responsive 
cells under various [K+]o, with or without valinomycin. (E, F) 
Peak [Ca2+]i rise amplitude (E) and response percentages (F) 
induced by 5 mg/ml BSA without pHi clamp or under pHi 
clamp. Numbers of tested cells are indicated within the bars. 
*, P < 0.05 compared to the no pHi clamp condition.
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CATSPER1 is required for the NH4Cl-induced [Ca2+]i rise in mouse spermFigure 7
CATSPER1 is required for the NH4Cl-induced 
[Ca2+]i rise in mouse sperm. (A-C) Representative 
responses to 20 mM NH4Cl in sperm head from a wild-type 
(A), a Catsper1 null (B), and transgenic sperm expressing an 
EGFP-CATSPER1 fusion protein on the Catsper1 null back-
ground (C). Ionomycin (10 μM, A-C) and EGTA (50 mM) 
were applied as control stimuli. (D) Averaged ΔF/F0 changes 
induced by 20 mM NH4Cl in wild-type (WT) and Catsper1 
null (Mut) sperm. Numbers of analyzed cells are in parenthe-
ses. (E) Percentages of sperm responsive to NH4Cl applica-
tion in WT (n = 7 imaging runs; 3 mice, 56 cells), Catsper1 
null (Mut; n = 7; 3 mice, 31 cells), and the Catsper1 mutant 
rescued with the EGFP-CatSper1 transgene (Tg; n = 7; 2 mice, 
31 cells). Cells from Tg mice were imaged with Fura-2 and 
the others were imaged with Fluo-4.
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response, however, was not completely inhibited. The
residual BSA-induced [Ca2+]i changes under "pHi clamp"
condition are likely through pathways other than intracel-
lular alkalization.

Although weakly voltage-dependent, whole cell CATSPER
conductance can be increased by cell membrane depolari-
zation [37]. In addition, depolarization by increased
extracellular K+ concentrations, especially coupled with
alkalization medium (K8.6), can lead to a CATSPER-
dependent Ca2+ influx [24]. These results point to a possi-
ble role of membrane depolarization in the pathway lead-
ing to the BSA-induced Ca2+ entry. However, we consider
this possibility unlikely for several reasons. First, we show
here that the [Ca2+]i rises are not dependent on a mem-
brane voltage change since they persist when the voltage
is "clamped" with K+ ionophore. Second, inactivating the
T-type CaV channel, that is a proposed candidate for the
Ca2+ entry [34-36], by clamping the membrane at -20 mV
does not decrease the BSA-induced [Ca2+]i rises. This result
is consistent with our recent finding that mature sperm do
not possess detectable functional CaV channels [25].
Finally, BSA does not lead to depolarization during sperm

capacitation, instead, a hyperpolarization of ~15 mV has
been observed using voltage-sensitive fluorescence dyes
[31]. Along these lines, we used whole cell patch clamp
under current clamp mode to directly measure acute
membrane potential changes in corpus sperm upon BSA
application and found that BSA (4 mg/ml) produced a fast
and profound membrane hyperpolarization (11 ± 2 mV,
n = 6). While the exact mechanism of such a membrane
potential hyperpolization induced by BSA remains unde-
termined, we found no evidence for a role of membrane
depolarization in the BSA-induced Ca2+ entry through
CATSPER.

Conclusion
In summary, we determined the molecular identity of an
ion channel responsible for the fast Ca2+ influx induced by
BSA used in in vitro sperm capacitation. Three lines of evi-
dence support that CATSPER is the aforementioned chan-
nel. First, the BSA-induced [Ca2+]i increases are absent in
Catsper1 knockout sperm; second, such responses can be
restored by an EGFP-CATSPER1 fusion protein; and
finally, these [Ca2+]i rises start in the principal piece of
sperm where CATSPER proteins and current through CAT-
SPER channels are localized. The mechanisms by which
BSA is coupled to the CATSPER channel are largely
unknown. They are unlikely through a voltage change or
a cholesterol efflux. An intracellular alkalization appears
to be involved (Figure 6) but there is clearly a [pH]i
change-independent component that remains to be
uncovered.

Together with previous findings that the capacitation sta-
tus and changes in the pattern of tyrosine phosphoryla-
tion during capacitation do not require CATSPER while
the hyperactivated motility does [15,20,24,28], our data
genetically separate the Ca2+ requirements for the two
aspects of sperm capacitation: one mediating the change
of motility via the CATSPER channel and another mediat-
ing the increase of tyrosine phosphorylation via a source
yet to be determined. One possible source for the latter is
the second phase of [Ca2+]i rises that are also present in
the Catsper1 mutant sperm.
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CATSPER channels are not required for the ATP-induced [Ca2+]i riseFigure 8
CATSPER channels are not required for the ATP-
induced [Ca2+]i rise. (A) Dose-responses of ATP-induced 
[Ca2+]i rises in the sperm head of wild-type (WT) mouse. (B) 
Peak amplitudes of ΔF/F0 induced by 0.1 mM ATP in WT and 
Catsper1 null (Mut) sperm. (C) Representative recordings of 
the time course of ATP (1 mM) -induced fluorescence 
changes in the principal piece (PP1), midpiece (MP1) and 
head, in a WT sperm. Like the ones induced by Ca2+ iono-
phore (10 μM ionomycin), the ATP-elicited [Ca2+]i increases 
started simultaneously in all subregions (D, n = 8). The loca-
tions of the subregions were defined as in Figure 3.
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