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Quantitative hepatic perfusion parameters derived by fitting dynamic contrast-enhanced (DCE) magnetic reso-
nance imaging (MRI) of liver to a pharmacokinetic model are prone to errors if the dynamic images are not
corrected for respiratory motion by image registration. The contrast-induced intensity variations in pre- and
postcontrast phases pose challenges for the accuracy of image registration. We propose an overdetermined
system of transformation equations between the image volumes in the DCE-MRI series to achieve robust align-
ment. In this method, we register each volume to every other volume. From the transforms produced by all
pairwise registrations, we constructed an overdetermined system of transform equations that was solved ro-
bustly by minimizing the L1/2-norm of the residuals. This method was evaluated on a set of 100 liver DCE-
MRI examinations from 35 patients by examining the area under spikes appearing in the voxel time–intensity
curves. The robust alignment procedure significantly reduced the area under intensity spikes compared with
unregistered volumes (P � .001) and volumes registered to a single reference phase (P � .001). Our regis-
tration procedure provides a larger number of reliable time–intensity curve samples. The additional reliable
samples in the precontrast baseline are important for calculating the postcontrast signal enhancement and
thereby for converting intensity to contrast concentration. On the intensity ramp, retained samples help to
better describe the uptake dynamics, providing a better foundation for parameter estimation. The presented
method also simplifies the analysis of data sets with many patients by eliminating the need for manual inter-
vention during registration.

INTRODUCTION
Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) in the liver enables quantification of hepatic perfusion for
assessment of tumor response to radiation therapy, as well as
normal tissue damage (1-5). One of the challenges in liver
DCE-MRI is respiratory motion during acquisition, which can
cause blurring and artifacts in the images and intensity varia-
tions in the dynamic curves, and subsequently, errors in perfu-
sion quantification using pharmacokinetic (PK) models. To re-
duce respiratory motion-induced degradation of liver images
during DCE-MRI acquisition, a breathing control paradigm has
been proposed, during which the patient is instructed to hold
their breath multiple times (taking breaths in between) (5). The
dynamic image volumes acquired during the 2–3 minutes of
contrast uptake are still misaligned because of poor reproduc-
ibility of the liver position during multiple breath holds, loss of
control during breath holding, and occasionally gross move-
ment of the patient. Therefore, a voxel cannot be assumed to

cover the same piece of tissue throughout the whole examina-
tion, but, instead, it covers different pieces at different points in
time. Therefore, if not corrected for, breathing and gastrointes-
tinal motions can induce artifacts, such as intensity spikes and
wide bumps, in the contrast uptake curves. To estimate the
arterial and portal venous perfusion in the liver, a sufficient
number of reliable samples of the uptake curve must be collected
to fully describe the contrast uptake dynamics. The shape of the
precontrast plateau and the beginning of the intensity ramp
following contrast agent administration can have a large effect on
the estimated perfusion parameters, in particular on hepatic arterial
perfusion. Unwanted artifacts introduced into the uptake curve by
patient motion reduce the number of reliable samples, increasing
the risk of inaccurate PK model parameter estimation.

To correct for image misalignment in the DCE series, image
registration has been used to align the magnetic resonance (MR)
images at different points in time or phases (1, 6-8). However,
registration of the DCE-MRI phases has some unique challenges,
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for example, a large number of dynamic image volumes, low
spatial resolution, and low contrast-to-noise ratio that are
tradeoffs for the high temporal resolution. In addition, the image
contrast is changed completely over the whole course from
precontrast to rapid contrast uptake and to full contrast en-
hancement. Combined with all these effects, the dynamic con-
trast agent-induced intensity changes pose a difficult problem
even to registration methods using multimodality image-to-
image metrics such as mutual information (9-11).

A number of methods have been developed to tackle the
DCE-MRI registration problem. Some methods attempt to regis-
ter each phase to a reference phase selected among all phases.
Such methods use either region-limited rigid registration (12) or
deformable registration (9, 10). Deformable registration may yield
incorrect volume changes around contrast-enhanced lesions
unless the method is adapted to explicitly counteract such
changes (11). As an alternative to reference phase-based regis-
tration, image intensity changes can be modeled using a PK
model and the model incorporated into the registration algo-
rithm (13-16). Such PK-based methods can be slow because of
the need for repeated PK model parameter estimation. For a
faster procedure, principal component analysis (PCA) can be
used to generate reference images for registration (17). However,
PCA may not be able to adequately describe the spatially vary-
ing time–intensity curves. Therefore, the phases could alterna-
tively be decomposed into a low-rank and a sparse image com-
ponent in a procedure called robust PCA that can be combined
with image registration (18, 19). Robust PCA can also be used to
combine registration with reconstruction, but this requires ac-
cess to raw data from the MRI scanner (20). However, when
comparing the 3 representative registration methods (21), 1 PK
model-based, 1 PCA-based, and 1 sequentially registering each
phase to its preceding phase, the sequential registration method
performed better (average error 14.7% in estimated parameters)
than the more complex iterative, PCA-based and PK model-
based methods (average errors: 39.5% and 39.2%, respectively).
Nevertheless, all image registration methods reduced errors in
the estimated parameters in the tumors in comparison with
without image registration methods.

The performance of the sequential method can be under-
stood by considering that the changes between neighboring
phases are small. Therefore, registration has a greater chance of
success. However, misregistration errors are accumulated and
propagated from the earlier phases to the later phases. If regis-
tration at the early phase fails, all following phases will be
incorrectly aligned with the first phase.

Inspired by the findings in Rajaraman S et al.’s study (21),
and taking into account the aforementioned drawback of the
sequential registration procedure, we introduce an overdeter-
mined system for achieving robust registration for the DCE
image series. In this procedure, rather than registering each
phase to a reference phase or to a preceding phase, each phase is
registered to every other phase. This produces an overdeter-
mined system of transform equations that can be solved using
robust statistical methods to reject outliers corresponding to
failed registrations. This new method is evaluated on a set of 100
liver DCE-MRI examinations, and the results are compared with
those of a conventional registration method where all phases are

registered to 1 postcontrast reference phase. A robust registra-
tion method for liver DCE-MRI would greatly simplify the work-
flow of clinical liver perfusion studies with a large number of
participating patients by eliminating the need for manual inter-
vention following faulty registration.

MATERIALS AND METHODS
Imaging
Under institutional review board approval, 100 DCE-MRI
examinations of the liver from 35 patients were included in
this study (women, 8; men, 27; age at examination, 51–83
years; number of examinations per patient, 1–4). The patients
were imaged for about 3 minutes using a repeated breath-
hold paradigm (5). For this paradigm, the patients were in-
structed to initially hold their breath for as long as they could
and then hold their breath repeatedly with a single deep
inhalation in between each breath hold. Images acquired
during deep inhalations showed large liver movement and
severe motion blur. Therefore, these were excluded from
further analysis. Dynamic MR imaging was started at the
beginning of the first breath hold and a gadobenate-dime-
glumine-based contrast agent (MultiHance, Bracco S.p.A.,
Italy) was administered intravenously.

A 3 T MRI scanner (Magnetom Skyra, Siemens Medical
Systems, Erlangen, Germany) was used for imaging. A 3-dimen-
sional gradient echo sequence that speeds up acquisition using
stochastic sampling with view sharing (time-resolved an-
giography with stochastic trajectories; TWIST) was used for
10 patients, and a sequence that enhances speed through partial
Fourier reconstruction (volume interpolated breath hold exam-
ination; VIBE) was used for 25 patients. Sequence parameters
varied among the patients (Table 1).

During a breath hold, the liver should ideally be still. Un-
fortunately, partial inhalation during a breath hold, imperfect
reproducibility of the exhale state, and changes to patient pos-
ture result in liver movement between images. These move-
ments, however, are smaller than those observed during free
breathing. For the spatial resolution, signal-to-noise ratio, and

Table 1. DCE-MRI Sequence Settings for
TWIST and VIBE Sequences

TWIST VIBE

Flip angle 10–20° 9°

Repetition time 2.5–2.53 ms 2.22 ms

Echo time 0.84–0.86 ms 0.78–0.79 ms

Temporal resolution 2.3–4.3 s 1.99–6.82 s

Voxel volume 15.6–45.8 mm3 34.2–100 mm3

Number of phases 52–60 38–60

Acquisition time 2.0–3.7 min 2.0–6.7 min

Number of examinations 31 69

Abbreviations: DCE-MRI, Dynamic contrast-enhanced magnetic reso-
nance imaging; TWIST, time-resolved angiography with stochastic
trajectories; VIBE, volume interpolated breath hold examination.
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artifact level seen in this study, we, therefore, chose to use rigid
registration to correct for the observed range of motions.

Preprocessing
Before registration, a number of preprocessing steps were
performed. These were the same for the robust registration
procedure (section Robust Registration) and the conventional
procedure (section Conventional Registration) to which it was
compared.

Reference Phase Selection. The conventional procedure in-
volved alignment of all phases to 1 reference phase. For each
examination, this reference phase was selected among all phases
as the phase with the smallest sum of mean absolute distances to
the other phases in intensity, which is calculated as follows:

iref � argmin
i

�
j�1

nphases
1

nvoxels
�
k�1

nvoxels

�Ii(rk) � Ij(rk)�

where iref is the index of the reference phase among the nphases,
phases, nvoxels is the number of voxels in a phase, and Ii(rk) is the
image intensity of the ith phase at a spatial position of the kth
voxel, rk. This step makes the selection of the reference phase
deterministic and avoid manual intervention. The reference
phase was also used for the robust registration procedure to
define the coordinate system that the final transforms were
given with respect to.

Region-Limited Image Registration. Because we wish to cor-
rect for the motion of the liver with a rigid transform and the rest
of the body inside the field of view (FOV) does not move in the
same way as the liver, region-limited registration was used. For
this purpose, a region of interest (ROI) was drawn around the
liver on the reference phase. This ROI was drawn snugly along
the edge of the liver. For the region-limited registration, it is
advantageous to include a margin outside the liver ROI. This
margin covers the contrast-rich interface between the liver and
the surrounding tissue, and it helps to drive the registration
algorithm. The margin was set to 15 mm for all registrations.

Bias Field Correction. MR images commonly contain a spatial
intensity variation that is not the result of intrinsic tissue prop-
erties but of the position of the tissue with respect to the trans-
mission and receiver radiofrequency coils. This “bias field” can
cause misregistration if it is the dominant feature in an image.
Fortunately, the bias field typically varies slowly with respect to
the spatial position. The effect of the bias field on the images
used for registration was reduced by dividing each phase by a

filtered version of itself. The modified phases used for registra-
tion were then given by the following equation:

Ii,reg(r) � Ii(r)⁄(Ii(r) * G(r ;0, �2II))

where G(r, 0, �2 II) is a 3-dimensional Gaussian filter kernel with
standard deviation � � 30 mm in each dimension and � is the
convolution operator. These bias-field-corrected images were
only used for registration and not for the uptake curve extrac-
tion, as the uptake curves could be corrupted by the correction.

Robust Registration
The robust registration procedure for each DCE time series was
divided into 5 stages—3 translational registration stages and 2
rigid registration stages with both translation and rotation. For
the robust procedure, the workflow for each stage is illustrated
in Figure 1. Either each possible pair of phases or each pair in
a subset of all possible pairs was registered. Thus, each
registered pair gave rise to a rigid transform describing the
relative position of the 2 phases of the pair. For the registra-
tion of each pair, the first phase of the pair was used as a fixed
image and the second as a moving image. The dilated liver
ROI was applied as a mask to the fixed image to restrict the
domain for which the registration metric was evaluated.
Because of this asymmetry, the registration of pair �i, j�,
where i is the index of the fixed image and j is the index of the
moving image, did not produce the same transform as the
registration of pair � j,i�.

After the registration of all pairs of 1 of the steps, the resulting
transforms were used to produce a set of consistent transforms as
described in the next section. These transforms were then applied to
the phases before proceeding to the next stage.

The registration of the 2 phases of a pair was performed
using the open source registration software Plastimatch, version
1.6.0-beta (http://plastimatch.org). The settings of the transla-
tional and rigid registration steps are shown in Table 2. For the
robust procedure, the first 2 translational steps only regis-
tered a subset with 10nphases pairs selected randomly among
the nphases�nphases � 1� possible pairs. These 2 steps helped
roughly align the liver ROI for all the phases in preparation for
the full registrations performed by the third through the fifth
stage.

Figure 1. Registration of each
possible pair of phases. The trans-
forms produced by each registra-
tion transform any coordinate in
the fixed image coordinate system
into its corresponding point in the
moving image coordinate system.
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Consistent Solution
The registration of a pair �i, j� of phases i and j results in a rigid
transform described by a rotation matrix Bi, j and a translation
vector bi, j. Thus, given a structure found in phase i at spatial
coordinates r�i� � �x, y, z�T, the corresponding structure, as indi-
cated by the registration, can be found at position r�j� �
Bi, jr�i� � bi, j in phase j.

Let us assume that there is a transform given by rotation
matrix Ai and translation vector ai, which transforms the coor-
dinates of any structure in the reference phase iref into the
coordinates of the same structure in phase i. If all of the coor-
dinates for the voxels inside the liver ROI are inserted into the
columns of a matrix R, the corresponding points in phase j are
given by AjR � aj1, where 1 � �1, . . . , 1�1�nvoxels

. However, if the
registration of phase pair �i, j� is successful, the same coordi-
nates are also given by the application of the true transform
from the reference phase to phase i followed by the registration
transform from i to j such that: such that:

Bi, j(AiR � ai1) � bi, j1 � (AjR � aj1) . (1)

We then have npair of equations of the same form as equation (1),
1 for each registered phase pair, and up to nphases�nphases�1� are
registered for a given stage. However, there are only nphases � 1
true transforms given by Ai and ai. Therefore, the system in
equation (1) is overdetermined if npair 	 nphases �1. Because the
registration of a phase pair may not produce the true transform
but only an estimate, equation (1) is not valid for all registered
pairs �i, j� in general. Therefore, we must choose in what sense to
solve the system in equation (1). If we define equation (2) as
follows:

Ei, j � Bi, j (AiR � ai1) � bi, j1 � (AjR � aj1) (2)

we can observe that �Ei, j�F
2 is the sum of the squared distances

between the liver voxel coordinates given by Bi, j�AiR �
ai1� � bi, j1 and AjR � aj1. Finding the true transforms given by
Ai and ai by minimizing the following equation:

� (i, j), i
j�Ei, j�F
2 (3)

where �·�F is the Frobenius norm and would produce the least
squares solution. If the error in the mapping of the liver voxel
coordinates could be described by a normally distributed ran-
dom variable, then minimizing equation (3) would produce a
good solution for Ai and ai. However, because some of the phase
pair registrations could fail and produce severely erroneous
transforms, Bi, j and bi, j, the sum in equation (3) could be dom-
inated by a few large terms that would thwart the accurate
estimation of Ai and ai. Therefore, to lessen the impact of outlier
registration transforms, Ai and ai can be robustly estimated by
minimizing the following equation:

� (i, j), i
j�Ei, j�F
p (4)

with p � 2 (p � 1⁄2 for this work). This can be done by using the
iteratively reweighted least squares algorithm. For iteratively
reweighted least squares, the following equation is solved re-
peatedly:

�(k�1) � argmin�� (i, j), i
jwi, j(�
(k))�Ei, j(�)�F

2 (5)

where

wi, j(�) � (E0 � �Ei, j(�)�F)
p�2 (6)

and � is the set of all transform parameters �Ai� and �ai�, and ��k�

is the k th iteration of �. Equation (5) is iterated until conver-
gence. To avoid division by 0 in equation (6), a nonzero regu-
larization term E0 is needed. As �Ei, j �Fnpairs

�1⁄2 is the root mean
squared difference of the liver voxel coordinates produced by
the left-hand side (LHS) and right-hand side (RHS) of equation
(1), E0npairs

�1⁄2 should be smaller than the best expected registration
accuracy. For this work, E0npairs

�1⁄2 was selected as 0.01 mm.
Each iteration of equation (5) amounts to solving a con-

strained, weighted-least-squares problem, where the constraint
is that all Ai must be rotation matrices. Because the minimiza-
tion problem in equation (5) is a rigid-body problem, it can be
broken up into 2 independent problems, 1 problem for the
translation of the liver center of mass and 1 problem for the
rotation of the liver about its center of mass. This can be seen by
noting that:

�Ei, j�F
2

� Tr(Ei, jEi, j
T ) � npairsTr(Fi, jFi, j

T � Gi, jGi, j
T )

� npairs(�Fi, j�F
2

� �Gi, j�F
2) (7)

where

Fi, j � (Bi, jAi � Aj)L (8)

Gi, j � Bi, jãi � b̃i, j � ãj (9)

ãi � ai � (I � Ai) (10)

b̃i, j � bi, j � (I � Bi, j) (11)

 � R1⁄npairs (12)

� � (R � 1)(R � 1)T⁄npairs (13)

and L is the lower triangular matrix in the Cholesky decompo-
sition of � � LLT. Thus, the problem in equation (5) can be
written as the following 2 problems:

Table 2. Plastimatch Parameters for
Translational and Rigid Registration

Plastimatch
Parameter

Translational
Registration

Rigid
Registration

xform translation rigid

impl itk itk

optim rsg versor

metric mattes mattes

mi_histogram_bins 48 48

num_samples 100 000 30 000

max_step 25 5

min_step 0.001 0.001

max_its 300 300

min_its 10 10

translation_scale_factor N/A 10 000

res 1 1 1 1 1 1

Robust DCE-MRI registration
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�1
(k�1) � arg min �1� (i, j), i
jwi, j(�

(k))�Fi, j(�1)�F
2 (14)

�1
(k�1) � arg min �2� (i, j), i
jwi, j(�

(k))�Gi, j(�1)�F
2 (15)

where equation (14) is a problem to find the rotation matrices
�1 � �Ai� only, whereas equation (15) is a problem to find the
transformed translation vectors �2 � �ãi� only and � � ��1, �2�.
The problem in equation (15) is a system of linear equations of the
following form:

wi, j
1⁄2(Bi, jãi � b̃i, j � ãj) � wi, j

1⁄2Gi, j (16)

that can be solved in a least squares sense for �ãi� using the
Moore–Penrose pseudoinverse. When solving this system, the
solution from equation (14) is used to fix ãiref

to a constant by
setting airef

� 0. The problem in equation (14) can similarly be
written as a system of matrix equations as follows:

wi, j
1⁄2(Bi, jAi � Aj)L � wi, j

1⁄2Fi, j (17)

To find a solution for equation (17), a heuristic algorithm
was used as described below. By summing over i, equation (17)
can be rewritten as follows:

Aj �
� iwi, j

1⁄2Fi, j

� iwi, j
1⁄2

L�1 �
� iwi, j

1⁄2Bi, jAi

� iwi, j
1⁄2

(18)

where the RHS is an approximation of the first term in the LHS,

with an error given by the second term of the LHS. This formula
can be solved recursively. However, �Ai� is a rotation matrix and
needs to be orthogonal with det �Ai� � 1. To ensure this, the
RHS of equation (18) can be decomposed into its singular
value decomposition to produce a set of the following itera-
tion equations:

Uj
(l�1)�j

(l�1)�Vj
(l�1)�T �

� iwi, j
1⁄2Bi, jAi

(l)

� iwi,j
1⁄2

(19)

Cj
(l�1) � Uj

(l�1)	1 0 0
0 1 0
0 0 �1


�Vj
(l�1)�T (20)

Aj
(l�1) � Cj

(l�1)�Ciref
(l�1)��1 (21)

where the sign of the last diagonal element in equation (20) is
selected to make the determinant of Cj

�l�1� positive and equation
(21) is needed to ensure that Airef

�l�1� � I. The stopping criteria for
equations (19) to (21) are as follows:

maxi�Ai
(l�1) � Ai

(l)� � 10�12. (22)

Empirically, the outer recursive sequence given by equation
(5) was observed to converge within 20 iterations for a few test
cases. Therefore, 20 iterations of equation (5) were used for all
examinations.

Conventional Registration
A conventional registration procedure was used as a benchmark
for the robust registration. This conventional procedure regis-
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Figure 2. Signal intensity from an intrahepatic
region of interest (ROI) from a dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI)
examination. The left side of the plot shows the
time–intensity curves for a 1-cm3 cube placed 1
cm below the dome of the liver of a patient. The
black curve shows the intensity before registration,
and the gray curve shows the intensity after robust
registration. Phases corresponding to deep inhala-
tions during the examination are shown as circles
and are not included in the main curves. The right
box illustrates the local mean signal intensity (red
line) and the local spike area (solid red triangle)
around a sample (red dot).
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tered each phase to the reference phase using the same 5 regis-
tration stages as for the robust procedure. However, phases were
not registered to anything but the reference phase, and no
processing of the resulting transforms was performed except the
combination of the transforms from the 5 stages for each phase.
The same ROI was used to limit the registration region, and the
settings in Table 2 were used for alignment.

Evaluation
The effect of registration on the mean signal intensity versus
time for a 1-cm3 cubic ROI placed 1 cm below the dome of the
liver for 1 patient is illustrated in Figure 2. The spikes seen in the
intensity for the nonregistered time series are caused by tissue
moving in and out of the ROI due to breathing.

Given the appearance of the signal variations seen in
Figure 2, a suitable metric for the quality of the DCE-MRI time
series should reflect how smooth the time–intensity curves are

for the voxels inside the liver ROI. The temporal resolution of the
time series as compared with the rise time of the time–intensity
curve should also be reflected by the alignment quality metric. If
only a few samples are collected during the rise time of a curve,
the impact of 1 erroneous sample will be greater than that if a
larger number of samples are collected. The variation of tempo-
ral sampling density across examinations can be taken into
account by transforming the time of a given phase t into a
normalized time � as follows:

� �
t � t0

T
(23)

where t0 is the time at the center of the intensity ramp and T is
half of the rise time. Thus, the rise time of the mean liver
intensity for each examination is similar after transformation.
The values of t0 and T were determined by fitting the time–
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intensity curve for the whole liver for each examination to the
phenomenological function as follows:

s(t) � s0	1 �
�max

2
	1 � erf 	 t � t0

T


e�

�(t�t0)

T 
 (24)

where s0 is the baseline intensity, �max is the maximum signal
enhancement, and � is the decay rate of the plateau. The func-
tion was fitted to the data using minimization of the L1-norm of
the signal residuals.

Furthermore, errors in the baseline will be more trouble-
some for parameter estimation than had they appeared in the
postcontrast plateau. In light of these considerations, we have
chosen to use an approximation of the local spike area divided
by the mean temporally local signal intensity to calculate the
metric (see right panel of Figure 2 for illustration).

If the normalized temporal spacing between phases is ��, an
approximation of the time-normalized, intensity-normalized
spike area (TISA) metric, m�r, i�, at phase i and position r is then
given by the following equation:

m(r, i) �
��Ii�1(r) � 2Ii(r) � Ii�1(r)���⁄2

�Ii�1(r) � Ii(r) � Ii�1(r)�⁄3
(25)

where the numerator is the spike area and the denominator
is the mean signal intensity of the voxel for the phase and its
2 temporal neighbors. Because the preceding and the follow-
ing phases are needed to evaluate equation (25) for a phase,
equation (25) cannot be evaluated for phases adjacent to
others omitted because of deep inhalations during the
examination.

RESULTS
After the consistent registration solution has been found from
the overdetermined system of transform equations by minimiz-
ing equation (4), the individual norms �Ei, j �F show how well a
particular transform �Bi, j, bi, j� agrees with the overall solution.
This is illustrated in Figure 3 for the last registration stage of 1
examination. The small dark square in the lower left corner of
the figure represents the registration errors among the precon-
trast phases. The larger dark square in the upper right corner
represent the errors among the postcontrast phases. These 2
groups have relatively small deviations from the consistent
solution compared with the errors found for registrations be-
tween pre- and postcontrast phases as represented by the
brighter rectangles in the upper left and lower right corners. This
pattern was seen for a majority of the examinations registered
and indicates that registrations between pre- and postcontrast
phases are more likely to produce transforms that do not agree
with the consistent solution.

By sampling the intensity along a 1�1-cm-thick column
extending 20 cm above and 20 cm below the liver dome, the
effect of registration on the position of the liver can be illus-
trated. Figure 4 shows the intensity along such a column for the
phases of 1 examination along with the time–intensity curves
for a 1-cm3 cubic ROI placed 1 cm below the liver dome. The
inferosuperior intensity profile exhibits motion before registra-
tion. After conventional registration, the motion is reduced for
most phases, but it fails for a few precontrast phases. The

intensity profile produced by the robust registration method has
no such obviously failed registrations. Failed registrations like
the one seen in Figure 4C–D were not found among any of the
registrations produced by the robust method.

The mean TISA, m, for all examinations is shown with
respect to the normalized time in Figure 5B. As a reference to
help interpret the normalized time, �, the mean of all liver
time–intensity curves is shown in Figure 5A. This figure further
illustrates where a particular value of � corresponds to the
precontrast region (� � �1.5), the intensity ramp (�1.5 � � �
1.5), or the postcontrast region �t 	 1.5). The TISA curves are
consistently higher in the precontrast region compared with
those in the postcontrast region. This is a result of the lower
mean intensity of the phases in the precontrast region. In addition,
at the beginning of the intensity ramp (around � � �1), the
conventional registration procedure performs almost as poorly
as no registration, as seen by the close proximity of their TISA
curves (green and red). Confidence intervals for the paired
TISA differences between the robust method, the conventional

Figure 5. The mean time–intensity curve from all
examinations is shown in (A). The mean time-nor-
malized intensity-normalized spike area, m, is
shown in (B). For (B), the mean of mwas calcu-
lated for all examinations and a time window that
was one normalized time unit wide. The colored
bands show the 95% confidence interval for the
mean.
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method, and no registration are given in Table 3. The robust
method is significantly better than no registration for the whole
time interval (paired t test, P � .001). It is also significantly
better than the conventional method for the precontrast and
early contrast regions (P � .001).

DISCUSSION
In this study, we have implemented an overdetermined registra-
tion procedure for liver DCE-MRI examinations. We found that
our procedure significantly reduced the image registration er-
rors in the DCE time curves, particularly in the precontrast and
early contrast uptake phases, compared with a conventional
reference-phase-based registration method. Registration errors
in the precontrast baseline could profoundly affect the calcula-
tion of signal intensity changes and the conversion to contrast
concentration, whereas errors in the early contrast uptake curve
propagate into derived parameters that are sensitive to the early
curve dynamics, for example, hepatic arterial perfusion in liver
DCE-MRI. The improved DCE curves describe the contrast agent
uptake dynamics more correctly, and thereby, provide a better
foundation for PK model parameter estimation.

DCE images acquired at different parts of the dynamic
curves have different sensitivities to image registration errors.
We found that registering precontrast phases to postcontrast
phases is more likely to result in registration errors than regis-
tering within the precontrast phases or within the postcontrast
phases. The conventional reference-based registration method
likely results in a higher misregistration rate for the precontrast
phases, as well as the early contrast uptake phases, if the post-
contrast phase is chosen as reference. As an effect of this phe-
nomenon, spikes can appear in or around the baseline plateau in
the time–intensity curves. The parameters of a PK model may
still be possible to estimate with such spikes present by using
robust regression methods. However, each registration failure
reduces the number of reliable samples. Even worse, if sample
points are lost on the intensity ramp by removing the misregis-
tration points, the remaining samples may not be able to cor-
rectly describe the dynamics of the curve, resulting in faulty PK
parameter estimates. Some parameters are highly sensitive to
the shape of the initial ramp of the uptake curve, for instance,
hepatic arterial perfusion in the liver. The robust registration
procedure presented reduces the number of failed registrations
in the precontrast region by rejecting them as outliers in an
overdetermined system of transform equations and thereby
provides a greater number of reliable samples for parameter
estimation.

For the postcontrast plateau, the robust registration method
and the conventional registration method perform almost
equally well. This is a result of the higher signal-to-noise ratio
and more stable contrast for the phases of this region. Both
registration methods produce smoother curves than no registra-
tion. The robust method is seen to have a slightly lower TISA
than the conventional method. This is because the robust
method takes the mutual information of all pairs of phases into
account when estimating the transform. Therefore, the robust
method acts as a more efficient estimator for the true transforms
than does the conventional method.

In this work, we performed each registration separately and
then combined the resulting transforms using a method that rejects
outliers. Another possible approach would be to maximize the sum
of the mutual information metrics of all pairs of phases using
strategies similar to those reported by others (22-24). Such an
approach might improve the registration of DCE-MRI further. In
addition, although the method presented in this paper is only applica-
ble to rigid registration, a method based on the maximization of
pairwise mutual information could aid in improving the robustness
of deformable registration for DCE-MRI. Robust deformable regis-
tration could allow free breathing examinations, which would
relieve subjects from the burden of repeatedly holding their breath.

The robust method produced a consistent registration
quality across all examinations, without failed alignments
such as those observed for the conventional method. It there-
fore reduces the need for manual intervention following
registration and helps to simplify the workflow of clinical
studies with many subjects.

CONCLUSIONS
A method has been presented that registers every possible pair of
phases from a DCE-MRI examination and derives a final set of
transforms from them using L1⁄2 minimization. The method is
robust, insofar as to be able to reject such failed registrations
that can appear when registering precontrast to postcontrast
phases. The robust registration method improves the smooth-
ness of the resulting time–intensity curves of voxels in the liver
by eliminating spurious intensity spikes induced by motion or
failed registration. Therefore, a baseline with reduced bias and a
larger number of reliable samples in the intensity ramp are made
available for the PK model parameter estimation. The consistent
registration quality produced for all examinations studied
shows that the method could simplify the workflow of clinical
studies with many patients by eliminating the need for manual
intervention following registration.

Table 3. Paired TISA Difference for 3 Registration Methods and Time Intervals

mconventional � mrobust munregistered � mrobust

Mean SD CI (95 %) Mean SD CI (95 %)

Pre-contrast (� � �1.5) 0.0046 0.0168 [0.0034, 0.0057] 0.0087 0.0087 [0.0081, 0.0093]

Early contrast (�1.5 � � � 0) 0.0030 0.0140 [0.0020, 0.0041] 0.0043 0.0061 [0.0038, 0.0048]

Whole time interval 0.0022 0.0109 [0.0018, 0.0026] 0.0058 0.0076 [0.0056, 0.0061]

Abbreviations: TISA, time-normalized, intensity-normalized spike area; SD, standard deviation; CI, confidence interval.
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