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Abstract: Fucoidans encompass versatile and heterogeneous sulfated biopolysaccharides of marine
origin, specifically brown algae and marine invertebrates. Their chemistry and bioactivities have been
extensively investigated in the last few decades. The reported studies revealed diverse chemical skele-
tons in which L-fucose is the main sugar monomer. However, other sugars, i.e., galactose, mannose,
etc., have been identified to be interspersed, forming several heteropolymers, including galacto-
fucans/fucogalactans (G-fucoidans). Particularly, sulfated galactofucans are associated with rich
chemistry contributing to more promising bioactivities than fucans and other marine polysaccharides.
The previous reports in the last 20 years showed that G-fucoidans derived from Undaria pinnatifida
were the most studied; 21 bioactivities were investigated, especially antitumor and antiviral activities,
and unique biomedical applications compared to other marine polysaccharides were demonstrated.
Hence, the current article specifically reviews the biogenic sources, chemistry, and outstanding
bioactivities of G-fucoidans providing the opportunity to discover novel drug candidates.

Keywords: bioactives; brown seaweeds; fucoidans; heteropolysaccharides; structural features;
sulfated galactofucans

1. Introduction

Fucoidans are unique products of marine organisms, specifically sulfated polysac-
charides derived from brown algae and marine invertebrates [1]. They have gained great
interest in the last few decades from different fields of sciences, including chemistry, biology,
medicine, nutrition, and formulations [2–5]. All this interest is attributed to the diverse
physicochemical, chemical, and biological characteristics [6,7]. These characteristics are
relatively related to each other and have been studied previously in a wide variety of litera-
ture [8–13]. Hence, biological investigations are always performed after full chemical and
physicochemical characterizations of purified fucoidans [14–17]. Monosaccharide composi-
tion, molecular weight, sulfation pattern, and sulfation content were found to be the most
predominant factors that contribute to fucoidans’ molecular mechanisms [11,12,18,19].

The aforementioned characteristics of fucoidans were demonstrated to be highly
dependent on many factors, including downstream processes such as extraction either
by classical solvent or non-conventional extraction methods [20–22], fractionation and
purification methods [23–25], biogenic sources [24,26,27], and season of harvesting [28]. For
instance, fucoidans isolated from sea cucumber showed a homogeneous chemical structure
in comparison with brown seaweeds [27]. All of these factors have contributed to the
chemical diversity and complexity of fucoidans, the lack of reproducibility of investigational
results, and the difficulty of their approval by drug authorities and clear understanding of
structure–activity relationships [29].
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Following the recent advances in chromatographic methods, spectral analysis, and
biochemical characterization of many fucoidanases and sulfatases, the native chemical struc-
tures of many fucoidans have been elucidated [25,30–32]. Hence, identification of fucoidans’
monomeric composition, site of branching, and sulfation pattern has become more feasible
and reasonable than before. For instance, a number of sugar monomers were identified, i.e.,
fucose, galactose, glucose, xylose, mannose, mannitol, and rhamnose, in addition to uronic
acids [33]. The chemical diversity of fucoidans has resulted in various backbones that
can be classified according to monomeric composition into sulfated fucans (F-fucoidans),
galactofucans/fucogalactans (G-fucoidans or G-fucans), fucomannoglucuronans (GA or
U-fucoidans), and others [10,34–36]. Representative examples are demonstrated in Figure 1.
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Figure 1. Different chemical backbones of fucoidans isolated from marine seaweeds in which α-L-
fucopyranosyl residue (Fucp) is the major sugar monomer. (A) A sulfated fucan (F-fucoidans) 
isolated from Lessonia sp., where the Fucp monomers are linked by α(1→3) and sulfated at O-4 and 
partially at O-2 [34]. (B) A sulfated galactofucan (G-fucoidans) isolated from Hormophysa cuneiformis. 
β-D-Galactopyranosyl residues (Galp) are found mostly at the periphery of molecules as (1→6)-
linked (R=H or SO3-) [36]. (C) Fucoidan containing uronic acid at O-2 isolated from Cladosiphon 
okamuranus [37]. (D) A sulfated xylofucan from Punctaria plantaginea. β-D-Xylopyranosyl residues 
(R=H or Xylp) randomly substitute Fucp monomers at O-4 [38]. 

F-fucoidans are the most simple and regular form of fucoidans, where the fucoidan 
backbone is composed of α-L-fucose only, i.e., homopolymers of L-fucose. This form is 
abundantly extracted from marine invertebrates (e.g., sea cucumber) and to a lesser extent 
from brown algae [39,40]. However, the International Union of Pure and Applied 
Chemistry (IUPAC) has recently distinguished the sulfated fucans from fucoidans and 
classified them in a separate class [41]. The second class is the G-fucoidans, which are 
highly common in brown algae and composed of β-D-galactose in addition to the α-L-
fucose in variable ratios [37,42]. Based on previously reported findings, several species of 
Laminariales and Fucales are richer in G-fucoidans. In addition, the third and other classes 
of fucoidans are highly heterogeneous with a contribution of several other sugar 
monomers such as glucose, mannose, rhamnose, xylose, and uronic acids [38,43]. It is also 
noteworthy to mention that various or a mixture of the different classes of fucoidan 
oligomers may be found in the same organism extracts or fractions [36,44]. 
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outstanding broad spectrum of bioactivities and stability in response to autohydrolysis in 
comparison with other classes of fucoidans and marine polysaccharides [45,46]. For 
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prevention and treatment of coronavirus disease 2019 (COVID-19) [50]. The current 
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Figure 1. Different chemical backbones of fucoidans isolated from marine seaweeds in which
α-L-fucopyranosyl residue (Fucp) is the major sugar monomer. (A) A sulfated fucan (F-fucoidans)
isolated from Lessonia sp., where the Fucp monomers are linked by α(1→3) and sulfated at O-4 and
partially at O-2 [34]. (B) A sulfated galactofucan (G-fucoidans) isolated from Hormophysa cuneiformis.
β-D-Galactopyranosyl residues (Galp) are found mostly at the periphery of molecules as (1→6)-
linked (R=H or SO3

−) [36]. (C) Fucoidan containing uronic acid at O-2 isolated from Cladosiphon
okamuranus [37]. (D) A sulfated xylofucan from Punctaria plantaginea. β-D-Xylopyranosyl residues
(R=H or Xylp) randomly substitute Fucp monomers at O-4 [38].

F-fucoidans are the most simple and regular form of fucoidans, where the fucoidan
backbone is composed of α-L-fucose only, i.e., homopolymers of L-fucose. This form is
abundantly extracted from marine invertebrates (e.g., sea cucumber) and to a lesser extent
from brown algae [39,40]. However, the International Union of Pure and Applied Chemistry
(IUPAC) has recently distinguished the sulfated fucans from fucoidans and classified them
in a separate class [41]. The second class is the G-fucoidans, which are highly common
in brown algae and composed of β-D-galactose in addition to the α-L-fucose in variable
ratios [37,42]. Based on previously reported findings, several species of Laminariales and
Fucales are richer in G-fucoidans. In addition, the third and other classes of fucoidans are
highly heterogeneous with a contribution of several other sugar monomers such as glucose,
mannose, rhamnose, xylose, and uronic acids [38,43]. It is also noteworthy to mention that
various or a mixture of the different classes of fucoidan oligomers may be found in the
same organism extracts or fractions [36,44].

Particularly, G-fucoidans have been more investigated recently and showed an out-
standing broad spectrum of bioactivities and stability in response to autohydrolysis in
comparison with other classes of fucoidans and marine polysaccharides [45,46]. For in-
stance, they showed antioxidant, antiviral, anti-inflammatory, anti-hyperglycemic, antico-
agulant, and antitumor activities [47–49] and were promising candidates for prevention
and treatment of coronavirus disease 2019 (COVID-19) [50]. The current production status
of brown seaweeds is continuously increasing [51], specifically for Saccharina or Laminaria
species and Undaria pinnatifida which are major G-fucoidan producers. For instance, the
annual Saccharina production was estimated at 5.7 million tons worth USD 330 million and
2.1 million tons of U. pinnatifida worth USD 0.9 billion [52].
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Hence, the current review aims at addressing different aspects of G-fucoidans, includ-
ing biogenic sources, chemistry, and reported bioactivities. Moreover, proposed structure–
activity relationships are highlighted. This may help the further investigation and conse-
quences of galactose presence in the fucoidan chemical backbone.

2. Occurrence, Distribution, and Chemistry

Brown seaweeds, in contrast to marine invertebrates, can synthesize more complicated,
diverse, and heterogeneous fucoidan backbones, including glycosidic linkages, monomeric
composition, and branching sites [53–55]. Therefore, various G-fucoidans with different
fucose:galactose ratios have been reported in the different brown algae orders, including
Fucales, Laminariales, and Dictyoales [56,57].

Traces of other sugars may be found, as in the case of Dictyota menstrualis [58] and
Sargassum sp. [59]. Nevertheless, the presence of high percentages of glucose, i.e., fu-
cose:galactose:glucose ratio of 1:0.3:0.25, may indicate contamination of the G-fucoidan with
laminarin [60]. In such cases, fucoidans are partially purified by ethanol or cetyltrimethy-
lammonium bromide (CTAB) precipitation and not purified by a specific chromatographic
method, including anion exchange resin using diethylaminoethyl cellulose (DEAE-C) [61]
or affinity chromatography [62].

In addition, previous studies, with the aid of advanced spectral analyses, i.e., 2D NMR
(e.g., HMQC, TOCSY, and NOESY) and mass spectrometry, have attempted to reveal many
structural features of G-fucoidans of various biogenic sources, including glycosidic linkages,
sugar configuration, branching sites, sulfation pattern, and galactose position [6,63,64]. In
addition, they could deduce tentative structure bioactivity relationships, as in the case of
the anti-inflammatory mechanism of galactofucan isolated from Saccharina japonica [65].

The results of spectral analyses showed that α-L-fucopyranose (Fucp) and β-D-galactop-
yranose (Galp) are identified mainly, in which Fucp forms the major backbone and is linked
via (1→4) and/or (1→3), while the β-D-galactopyranose molecules are found at branching
sites, usually at (1→6), as in case of the G-fucoidan isolated from Hormophysa cuneiformis.
In addition, the sulfation pattern is variable based on the glycosidic linkages. For instance,
sulfate groups may occupy 2-O and 4-O in →3Fucp1→ or 2-O and 3-O in →4Fucp1→,
in addition to 2-O in→3,4Fucp1→ [36]. Other models of sulfated galactofucans derived
from Sargassum thunbergii were found to possess→3Fucp1→ as a main backbone with a
2-O-sulfated and 2,4-O-disulfated pattern, while the Galp residues interspersed Fucp in
the main chain were linked mainly with →6Galp1→ and 4-O sulfation [46]. Moreover,
G-fucoidan isolated from S. polycystum was built up mainly of a 4-O sulfated→3Fucp1→
backbone containing single→2Galp1→ residues sulfated similarly at the 4-O position [66].
Several other models are demonstrated in Figure 2 and Table 1 and in relation to their
biomedical applications.
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Table 1. Marine species of brown macroalgae (Phaeophyceae) producing G-fucoidans highlighting various structural features.

Brown Algae
(Seaweed)

Species

Source of
Seaweed
Biomass

Structural Characteristics References

Monosaccharide Composition Glycosidic Bonds of
Backbone

Molecular
Weight (kDa)

Fucose/Galactose
Ratio

Sulfate
Content (%) Sulfation Pattern

Dictyotales

Canistrocarpus
cervicornis Wild Gal, fuc, glcAc, xyl, ND 2 16.5 ND [67]

Dictyota dichotoma Wild Gal, fuc, man, xyl, ara, rha, glc 23.6 1.5 33 ND [68]

D. implexa Wild Gal, fuc ND 1 18.3 ND [69]

Lobophora
variegata Wild Gal, fuc, Glc, man, xyl, glcAc; Gal, fuc;

Gal, fuc, Glc
(1,3)- and (1,4)-α-L-fuc, and

(1,3)-β-D-gal 35; ND; 1400 0.79; 0.5; 0.5 32.6; 0.2 *;15 At C4 (fuc) [42,70]

L. variegata ND Gal, fuc ND 360–1600 0.3 23.3–35.5 ND [71]

Padina boryana Wild Gal, fuc (1,4)-α-L-fuc, and
(1,3)-β-D-gal 317.5/8.5 1.1 18.6 At C2 and C4 (fuc

and gal) [72]

Spatoglossum
schroederi Wild Gal, fuc, xyl, glcAc; Gal, fuc, xyl; (1,4)-β-D-gal, (1,4)-α-L-fuc,

and (1,4)-β-D-xyl 21.5; 21.5–24 0.5; 0.5 19; 2.1–2.9 * At C3 (gal) and C4
(fuc) [73–76]

Ectocarpales

Adenocystis
utricularis Wild Gal, fuc, rha, man; Gal, fuc, rha; Gal,

fuc, man (1,3)-α-L-fuc >100 5.53; 4.82; 5.53 23; 24; 23 At C4 (fuc and gal) [48,77]

Scytosiphon
lomentaria Wild Gal, fuc, rha, xyl, man, uronic acid (1,3)-α-L-fuc, and

(1,6)-β-D-gal 8.5 7.33 29.5 At C3 and C4 (fuc),
and C3 (gal) [78]

Fucales

Cystoseira
compressa Wild Gal, fuc (1,3)- and (1,4)-α-L-fuc 100 2.32 14.7 At C2 and C4 (fuc) [64]

Sargassum
duplicatum Wild Gal, fuc (1,4)-α-L-fuc and β-D-gal

(alternating) 34–191 1 31.7 ND [14]

S. feldmannii Wild Gal, fuc (1,3)-α-L-fuc 183–184 2–2.6 25.3–32
At C2, C3 and C4

(fuc), and C2, C3, C4
and C6 (gal)

[14,79]

S. fusiforme Wild Gal, fuc, xyl, Glc, glcAc, man, uronic
acid; Gal, fuc, xyl, man, rha, glcAc, Glc (1,3)- and (1,4)-α-L-fuc 90; 118.3/3.9 2; 3.7 17.5; 28.5 At C3 (fuc) [80,81]

S. hemiphyllum Wild Gal, fuc
(1,6)-β-D-gal, (1,3)- and

(1,4)-α-L-fuc, and
(1,3)-β-D-gal

148 4.5 32 At C2 and C4 (fuc) [82]

S. mcclurei Wild Gal, fuc; Gal, fuc, man, xyl, glc (1,3)-α-L-fuc ND 1.4; 2 35; 30.5 At C2 and C4 (fuc) [83,84]
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Table 1. Cont.

Brown Algae
(Seaweed)

Species

Source of
Seaweed
Biomass

Structural Characteristics References

Monosaccharide Composition Glycosidic Bonds of
Backbone

Molecular
Weight (kDa)

Fucose/Galactose
Ratio

Sulfate
Content (%) Sulfation Pattern

S. patens Wild Gal, fuc, man, xyl, Glc, galactosamine ND 424 1.9 14.4 ND [85–87]

S. polycystum Wild Gal, fuc, glc; Gal, fuc, man, xyl, glc (1,3)-α-L-fuc, and
(1,6)-β-D-gal 39.5; ND 5.84; 1.48 33.6; 23.4 At C2 and C4 (fuc) [84,88]

S. siliquosum Wild Gal, fuc, glc, xyl, man, rha; Gal, fuc, Glc,
xyl, man, rha, uronic acid (1,3)- and (1,4)-α-L-fuc 107.3; ND 1.9; 1.9 19.5; 20 At C4 and C6 (gal) [10,89]

S. thunbergii Wild Gal, fuc (1,3)-α-L-fuc 7.2–333.5 5.26–5.88 27.2–30.1 At C2 and C4 (fuc),
and C4 (gal) [46,63]

S. thunbergii Purchased from
local store Gal, fuc (1,4)-α-D-gal, and

(1,3)-β-L-fuc 373 1.2 ND NA [90]

S. wightii Wild Gal, fuc, Glc, man; Gal, fuc (1,3)-α-L-fuc >3.5; ND 0.6; 3–3.5 379.1 †;
8.1–19.5

At C2 and/or C4
(fuc), or C2 and C3

(gal)
[91–93]

Turbinaria ornata Wild Gal, fuc; Gal, fuc, man, xyl, glc (1,3)-α-L-fuc ND 5; 1.2 32; 25.6
At C2 and/or C4

(fuc), and/or C2, C3,
C4/C6 (gal)

[84,94]

Laminariales

Alaria angusta Wild Gal, fuc (1,3)-α-L-fuc ND 1.1 24 At C2 (fuc), and C2
and C4 (gal) [95]

Costaria costata Wild Gal, fuc, man, rha, xyl ND ND 1.2 18.9 ND [96]

Ecklonia cava Wild Gal, fuc, man, rha; Gal, fuc, rha, glc ND ND 4.8; 3.6 19.1; 22.2 At C2 (fuc) [96]

Laminaria
hyperborea ND Gal, fuc (1,3)-α-L-fuc 469 44.5 53.8 At C2 and C4 (fuc) [12]

Saccharina
angustata Wild Gal, fuc, xyl, uronic acid (1,3)-, (1,4) and

(1,2)-α-L-fuc 56 9.1 4.2 At C4 (fuc and gal) [97]

S. gurjanovae Wild Gal, fuc (1,3)-α-L-fuc 123 3.2 25.1
At C2 and C4 (fuc),
and C2 and/or C3

(gal)
[98]

S. japonica Wild

Gal, fuc; Gal, fuc, man, xyl; Gal, fuc,
man, rham, xyl; Gal, fuc, uronic acid,

man, glcAc; Gal, fuc, Glc, man, rha, xyl;
Gal, fuc, xyl, Glc, glcAc, rha, uronic acid

(1,3)-α-L-fuc
195/13.7; 1800;

ND; 106.3;
23.5; 11

3.6; 1.1; 1.8; 9.1; 0.5;
10

21; 23.3; 23;
36.9; 18; 41.3

At C2 and C2/C4
(fuc) [81,99–102]
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Table 1. Cont.

Brown Algae
(Seaweed)

Species

Source of
Seaweed
Biomass

Structural Characteristics References

Monosaccharide Composition Glycosidic Bonds of
Backbone

Molecular
Weight (kDa)

Fucose/Galactose
Ratio

Sulfate
Content (%) Sulfation Pattern

S. japonica Cultivated Gal, fuc; Gal, fuc, man, rham, xyl, Glc;
Gal, fuc, man, Glc, rha, xyl, uronic acid (1,3)- and (1,4)-α-L-fuc 261.7; 131.5;

8.1 3.8; 2.1; 5.8 11.4; 9.1; 41.8 At C4 (fuc) [65,103,104]

S. japonica Provided by Fujian
Yida Food Co. Gal, fuc, man ND 527.3 0.9 26.7 ND [105]

S. japonica ND Gal, fuc (1,3)-α-L-fuc, and
(1,6)-β-D-gal >10 3.5 48.3

At C4 and/or C2/C4
(fuc), and C4 and/or

C3/C4 (gal)
[106]

S. latissima Wild Gal, fuc; Gal, fuc, xyl, man, Glc (1,3)-α-L-fuc 416–449; 453 7.8; 4.1 0.8 ‡; 0.6 ‡ ND [107,108]

S. longicruris Wild Gal, fuc, xyl, man, Glc, glcAc; Gal, fuc,
xyl, man, Glc, galAc, glcAc 1529; 638 0.8; 0.4 17.6; 19.1 At C4 (fuc), and C3

(gal) [109]

Undaria
pinnatifida Wild Gal, fuc, man; Gal, fuc, rha; Gal, fuc,

Glc, man, rha, xyl, ara (1,3)- or (1,4)-α-L-fuc ND; 290; ND 1.1; 1.2; 1.3 29; 0.94 ‡; ND
At C2, C3, C4 (fuc),
or C2 and C4 (fuc

and/or gal)
[99,110,111]

U. pinnatifida
(sporophylls)

Wild Gal, fuc, xyl, man (1,3)-α-L-fuc >150 1.5 15 ND [112,113]

Cultivated Gal, fuc; Gal, fuc, man; Gal, fuc, xyl,
man; Gal, fuc, man, xyl, uronic acid

(1,3)-α-L-fuc, and (1,3)-,
(1,4)-, (1,6)-β-D-gal

ND; 1.4–3.7;
1246; 2100 1.4; 1.1; 1.1; 5 31; 8.4; 9.2; 7.4 At C2/C4 (fuc), and

C3/C6 (gal) [114–116]

From mussel
farms

Gal, fuc, xyl, Glc, man; Gal, fuc, xyl, Glc,
man, uronic acid 171; >150 1.5; 1.5 15; 15 ND [44,117]

U. pinnatifida

From Marine
Resources Pty Ltd. ND ND ND ND [118]

From Marinova
Pty Ltd. Gal, fuc, xyl, man (1,3)-α-L-fuc 51.7 1.3 21.5 At C2 and C4 (fuc) [119]

ND ND ND ND ND [120]

U. pinnatifida
(sporophylls) ND Gal, fuc; Gal, fuc, uronic acid; Gal, fuc,

xyl, man
(1,3)-α-L-fuc, and (1,3)-,

(1,4)-, (1,6)-β-D-gal 9; 9; 104.4 0.9; 0.9; ND 10.4; 10.4; 21 At C2 (fuc), and C3
and C6 (gal) [121–123]

Sphacelariales

Sphacelaria indica Wild Gal, fuc, xyl, man, Glc (1,3)-α-L-fuc 26 3.3 4 At C4 (fuc) [124]

ND, not detailed; NA, not applicable; * reported as molar ratio to fucose; † reported as mg/g fucoidan; ‡ reported as degree of sulfation.
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3. Potential Pharmacological Activities

Diversity in fucoidans’ chemical structures is always associated with promising and
various bioactivities, which are typical with G-fucoidans [11,103]. The following subsec-
tion highlight these bioactivities. A systematic review in the Google Scholar and Scopus
databases was performed using the keywords “galactofucan*”, “bioactivity”, and “biomed-
ical”. A timeframe was not pre-established; however, the selection criteria were set to
include full-length English articles in peer-reviewed journals and articles addressing biolog-
ical activities along with the chemical properties of galactofucans. Moreover, publications in
which the chemical compositions or structures based on previous analyses were consulted
in addition to these original articles. Nevertheless, they were not included in the current
review if they did not include any biological assessment. We also identified additional
sources through manual reference tracing within the selected articles.

Seventy-two articles that evaluated the various bioactivities of galactofucans from
brown seaweeds were identified between 2002 and 2021. In general, research on this topic
went from 1.77 papers year−1 during 2002–2010 to 5 papers year−1 for the most recent
period (2011–2021). These values show increasing attention to galactofucan bioactivities
during recent years (Figure 3).
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Among the reported pharmacological applications, antitumor/anticancer and antiviral
activities were by far the most studied, with 25 and 22 publications, respectively (Figure 4).

Our literature survey revealed that galactofucans from 31 brown algal species had
shown promising biological activities. Undaria pinnatifida and Saccharina japonica were the
most studied species with 17 and 11 publications, respectively. It is also worth noting
that the genera Sargassum (10 species) and Saccharina (5 species) presented the highest
numbers of species (Figure 5). Special attention has been paid to sporophylls of U. pinnat-
ifida (mekabu), which is used in Japan and Korean cuisines, as well as in other countries
of East Asia [125,126]. Mekabu’s fucoidan is a galactofucan with anticancer/antitumor,
anticoagulation, antimetastatic, antioxidant, antithrombotic, and antiviral activities [122].
Currently, the company Biocorp, a Korean manufacturer of health food made of naturally
derived ingredients, sells mekabu’s fucoidan from Jeollanam-do Sea in South Korea [127].
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The majority of the publications used wild seaweeds for galactofucan extraction.
A low number utilized cultivated biomass from open-sea farms, corresponding to either
U. pinnatifida (and more specifically the sporophylls) or S. japonica (Figure 6). Standardizing
bioactivity using seaweed cultivars is necessary if this industry wants to develop high-value
markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals [128]. In
the case of G-fucoidans, this would imply more studies using cultivated species to identify
cultivars with high bioactivities.
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Figure 6. Number of publications (n) classified according to the source of seaweed biomass used for
extracting galactofucans with reported bioactivities.

Bioactivities were mostly evaluated using in vitro tests in most of the publications
evaluated (n = 58). Studies involving both in vitro and in vivo (n = 8) and only in vivo
tests (n = 5) accounted for fewer publications. Galactofucans showed the highest number
of reported bioactivities compared to other classes of polysaccharides in brown, red, and
green seaweeds (Figure 7). These findings might support the idea that, among fucoidans,
the galactofucan components concentrate the biological activities [24].
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3.1. Anticancer/Antitumor Activity

Several studies have reported the anticancer/antitumor activities of galactofucans
in different cancer cell lines, as well as antiproliferative, antimetastasis, and antiangio-
genic effects. For example, mekabu’s galactofucans showed antitumor activity against PC-3
(prostate cancer), HeLa (cervical cancer), A549 (alveolar carcinoma), HepG2 (hepatocellular
carcinoma), MCF-7 (breast adenocarcinoma), and A-549 (lung carcinoma) cells, in a similar
or superior pattern to a commercial fucoidan from Fucus vesiculosus. Structural elucidation
of this fucoidan demonstrated an O-acetylated sulfated galactofucan backbone with a



Mar. Drugs 2022, 20, 412 10 of 21

fucose:galactose ratio of 1.0:1.1, sulfate (0.97 mol/mol), and acetate (0.24 mol/mol), in addi-
tion to the absence of uronic acids. However, this research did not determine any chemical
property of the control fucoidan used, i.e., commercial fucoidan from F. vesiculosus, and
hence, comparison based on structure–activity relationship was not possible [44,117,130],
(Table 2). Another study using Hca-F (mouse hepatocarcinoma) cells showed that the
anticancer activity of mekabu might be mediated through the mechanism involving inacti-
vation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways [123].
In addition, Saccharina latissima has been proposed as a more appropriate source of sulfated
galactofucan with antitumor activity superior to commercial heparins (Table 2). When
compared to F. vesiculosus or other algae species, S. latissima showed lower contents of
co-extractable compounds (e.g., phenolic derivatives), a requirement for any potential
medical application [107].

Table 2. G-fucoidans showing anticancer/antitumor activity with their respective sources and half-
maximal inhibitory concentrations (IC50). Comparisons with standard or commercial compounds are
also shown.

Source IC50
Compared with

Standard/Commercial Compounds? References

Saccharina latissima 0.35 µg/mL (elastase inhibition) Yes. Superior to commercial heparins
(UFH and tinzaparin) [107]

Sargassum polycystum 84.63 µg/mL (leukemia cells) and
93.62 µg/mL (breast cancer cells) No [84,88]

S. thunbergii
29.7–93.5 µg/mL (inhibition of FGF1

binding) and 4.0–6.8 µg/mL
(inhibition of FGF7 binding)

No [46,63]

Undaria pinnatifida
(sporophylls)

0.10 mg/mL (breast adenocarcinoma)
and 0.15 mg/mL (lung carcinoma)

Yes. Superior to commercial fucoidan
from Fucus for both cancer cell lines [44,117,130]

Despite their promising bioactivities, fucoidans’ high molecular weight and viscous
nature (including galactofucans) may limit their use as therapeutic agents. In this regard,
lower-sized fucoidans have emerged as a possible solution to these problems. For ex-
ample, low-molecular-weight (LMG) mannogalactofucans derived from G-fucoidans of
mekabu strongly attenuated the growth of human prostate cancer cells both in vitro and
in vivo [116]. Similarly, an LMG sulfated galactofucan from Sargassum thunbergii, with high
fucose content, presented better antitumor and antiangiogenic effects against human lung
cancer A549 and human umbilical vein endothelial cells, respectively [63].

Our bibliographic search revealed that most of the studies have focused on analyz-
ing the anticancer effect in vitro. So far, only the galactofucans from U. pinnatifida and
Sargassum thunbergii have shown promising activities against prostate and lung cancer
in vivo, respectively. In both cases, a xenografted mouse model was used to study tumor
inhibition [46,116].

3.2. Antiviral Activity

Galactofucans show antiviral properties against a number of highly pathogenic viruses,
including the human immunodeficiency virus (HIV-1) (Table 3). They can block the early
steps of HIV entry into target cells [84] or inhibit reverse transcriptases [131]. According
to [100], the inhibitory activity of fucoidans is specific against viruses that use heparan
sulfate as the primary cell receptor. Although all fucans can be considered as poten-
tial anti-HIV agents, it seems that galactofucans are the most effective inhibitors among
them. Studies have also shown that G-fucoidans present high and selective antiviral
activity against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), showing 50%
cytotoxic concentration (CC50) >1000 µg/mL against Vero B cells and IC50 values in
the range 0.7–10.0 µg/mL [78], including both acyclovir (ACV)-sensitive and -resistant
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strains [85–87]. In addition, sulfated xylogalactofucan (F2S2) from Saccharina angustata
inhibited the HSV-1 adsorption/attachment to cells with higher potency (0.65 µg/mL)
and selectivity index (SI > 1538) than sulfated alginate (0.2–25 µg/mL) from the same
species [97]. Moreover, the antiherpetic effect of a commercial sulfated galactofucan from
U. pinnatifida has been confirmed in vivo [118]. All these results highlight the importance
of the sulfated galactofucans for the prevention of herpetic infections.

Table 3. Summarized antiviral activity of G-fucoidans with their respective sources and half-maximal
effective or inhibitory concentrations (EC50/IC50). Comparisons with antiviral drugs are also shown.

Source EC50/IC50 Compared with Antiviral Drugs? References

Adenocystis utricularis
0.6–0.9 µg/mL (HIV-1) Yes. Superior to azidothymidine [48,77]

0.3 µg/mL (HSV-1) and 0.5 µg/mL
(HSV-2) No [48]

Dictyota dichotoma 7.5 µg/mL (HSV-1), and 15.6 µg/mL
(CVB3) Yes. Superior to ribavirin [68]

Saccharina japonica
0.001–0.005 µg/mL (HIV-1) No [100]

0.2–25 µg/mL (HSV-1) Yes. Inferior to acyclovir and similar
to heparin [97]

Sargassum mcclurei 0.96 µg/mL (HIV-1) Yes. Inferior to AMD3100 (plerixafor) [84]

S. patens

1.3 µg/mL (HSV-2), 5.5 µg/mL
(HSV-1), and 4.1 µg/mL (HSV-1

acyclovir-resistant strain)
No

[85–87]
>50 µg/mL (virucidal activity against

HSV-2), 1.3–1.65 µg/mL (plaque
formation), 1.85–3.5 µg/mL

(inhibition of virus adsorption)

No

1.5–5.5 mg/mL (HSV-1 replication)
and 3–4 mg/mL (HSV-1 adsorption) Yes. Similar to acyclovir

S. polycystum 0.34 µg/mL (HIV-1) Yes. Inferior to AMD3100 (plerixafor) [84]

Scytosiphon lomentaria 0.76 µg/mL (HSV-1) and 1.34 µg/mL
(HSV-2) No [78]

Sphacelaria indica 1.3 µg/mL (HSV-1)

Yes. Superior to acyclovir when
added to the overlay medium after
penetration of the viruses into the

host cell

[124]

Turbinaria ornata 0.39 µg/mL (HIV-1) Yes. Inferior to AMD3100 (plerixafor) [84]

Undaria pinnatifida
0.77 µg/mL (HSV-1) Yes. Superior to acyclovir [111]

32 µg/mL (HSV-1) and 0.5 µg/mL
(HSV-2) Yes. Superior to acyclovir [120]

U. pinnatifida
(sporophylls)

2.5 µg/mL (HSV-1), 2.6 µg/mL
(HSV-2), and 1.5 µg/mL (HCMV) No [121–123]

U. pinnatifida

1.1 µg/mL (HSV-1), 0.1 µg/mL
(HSV-2), and 0.5 µg/mL (HCMV) No [99,110,111]

3.1 µg/mL (HSV-1) and 1.6 µg/mL
(HSV-2) No [118]

Interestingly, this antiherpetic effect might help in the treatment of Alzheimer’s disease
(AD) patients. A galactofucan from U. pinnatifida prevented the HSV-1-induced accumula-
tion of the characteristic abnormal molecules of AD brains, Aβ and P-tau [111]. Other stud-
ies have also demonstrated the antiviral properties of these macromolecules against avian in-
fluenza A viruses, Coxsackie virus, and human cytomegalovirus [68,121,122]. Overall, only
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five brown algal species, i.e., Adenocystis utricularis, Dictyota dichotoma, Sargassum patens,
Sphacelaria indica, and U. pinnatifida, have shown similar or superior antiviral activities
against HIV-1, HSV-1, HSV-2, and/or CVB3 when compared to standard antiviral drugs
(Table 3).

Galactofucans might also be good candidates for preventing and/or treating severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the
current COVID-19 pandemic. A recent study showed that G-fucoidans from S. japonica
presented a strong bind ability to the virus spike glycoproteins (SGPs), one of the targets for
COVID treatment [50]. Furthermore, an in silico study revealed that sulfated galactofucan
achieved stable binding with receptor-binding domain (RBD) of SARS CoV-2’s spike protein
(S-protein) at two sites (sites 1 and 2) [132].

3.3. Anti-Inflammatory, Immunomodulatory, and Anticomplement Activities

Jin et al. have studied different factors that may affect the anticomplement activity of G-
fucoidans. Among them were extraction methods, molecular weight, fucose:galactose molar
ratio, sulfate content, uronic acid, type of glycosidic linkage, branching, and monomeric
composition. The study concluded that larger molecular weights were more related to
better activities [81]. G-fucoidans might also represent a novel and safer treatment strategy
for chronic inflammation or related ailments. Six brown algal species have shown promising
anti-inflammatory effects. Galactofucans from Sargassum wightii showed superior activity
to aspirin, with EC90 values ranging from 0.2 to 1.22 mg/mL for inhibition of inflammatory-
related enzymes [92,93]. Only the galactofucans from Saccharina japonica and Lobophora
variegata have been tested in vivo with positive results [42,65,70,104]. Chen et al. showed
that the investigated galactofucans from S. japonica were non-cytotoxic in the range of
3.125 to 25 µg/mL [65]. The anti-inflammatory was investigated in the form of fucoidan-
based cream using fucoidan derived from F. vesiculosus of fucose:galactose ratio 1.0:0.05. A
carrageenan-induced edema model in rats was employed, and the results showed 51–58%
inhibition at 50 mg/kg fucoidan, which was comparable to the diclofenac effect. Such an
effect was supposed to be linked with inhibition of IL-1β-induced COX-2 expression [133].

The reduction in the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) via
the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
as well as the suppression of pro-inflammatory cytokines tumor necrosis factor (TNF)-
α and interleukin (IL)-1β production via nuclear factor-kappa B (NF-κB) and mitogen-
activated protein kinase (MAPK) have been pointed out as the mechanisms behind the
anti-inflammatory activity reported for S. japonica. The fraction (LJNF3) could inhibit the
production of 39.7% and 47.08% for TNF-α and IL-1β at 25 µg/mL [65,104]. This species
presents a sulfated galactofucan that can be feasibly produced on a large scale due to
its low-cost processing and superior anti-inflammatory activity [104]. Interestingly, the
reviewed studies on S. japonica have been performed only on cultivated samples, meaning
that seaweed cultivars can be good raw materials for anti-inflammatory compounds.

Furthermore, immunomodulatory compounds help to regulate immune function
by accelerating or decelerating precise parts of the host response [134]. The comple-
ment system, an essential part of innate immunity, plays a pivotal role in eliminating
“harmful” substances from the body. However, in some situations, its overactivity leads
to diseases such as cancer or heart disease [82]. The immunomodulatory and anticom-
plement properties of galactofucans have been explored recently. Galactofucans from
Saccharina japonica and Lobophora variegata exhibited immune-modulatory effects on RAW
264.7 cells (monocyte/macrophage-like cells) [70,102]. Studies on S. japonica and Sargassum
fusiforme suggested that sulfated galactofucans were the active components of the anti-
complement activity, with IC50 values of 4.5 and 5.5 µg/mL, respectively [81]. In addition,
G-fucoidans from S. hemiphyllum presented higher anticomplement properties than sulfated
galacto-fuco-xyloglucuronomannan from the same species [82]. All in all, galactofucans
might be good candidates for immunomodulatory and anticomplement drugs.
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3.4. Anticoagulant and Antithrombotic Activities

Fucoidans are well-known for their anticoagulant and antithrombotic activities. These
polysaccharides have attracted extensive interest in discovering safer anticoagulants, with
less hemorrhagic risk and good antithrombotic activity [135]. As part of this complex
class of molecules, G-fucoidans also represent a source of potential antithrombotic drugs.
For example, a sulfated galactofucan from Spatoglossum schroederi was 2-fold more potent
than heparin in stimulating the synthesis of antithrombotic heparan sulfate by endothelial
cells of rabbit aorta. In vivo experiments were key to clarifying the antithrombotic activity
of this galactofucan, which initially did not show an anticoagulant effect during in vitro
experiments. Such an effect was demonstrated for the fraction C at 100 µg/mL with an
MW of 24 kDa [73]. Fucoidans can also enhance the plasma level of recombinant tissue
plasminogen activator (rtPA), a protein commonly used as a non-interventional treatment
to recanalize vessels occluded by acute thrombosis.

Moreover, a galactofucan from U. pinnatifida (specifically from mekabu) showed throm-
bolytic activity in vivo. This G-fucan’s competitive binding in vitro with PA inhibitor
(PAI-1), a molecule that quickly neutralizes and inhibits rtPA, was the mechanism underly-
ing fucoidan-mediated thrombolysis. It is worth mentioning that galactofucan from Korean
samples showed better thrombolytic activity and binding affinity with PAI-1 than that from
Russian samples. The authors suggested that Korean mekabu seemed to synthesize more
active galactofucan than its Russian analog [114].

Furthermore, the higher percentage of galactose may also result in higher anticoagulant
activity. For instance, Zayed et al. showed that fraction 6 (9% galactose) produced by dye
affinity chromatography from F. vesiculosus exhibited a longer coagulation time (thrombin
time 66 s) compared to other fractions, i.e., fractions 1 (7.4% galactose) and M (7.5%
galactose) with 47 s and 31 s, respectively, at a fucoidan concentration of 10 µg/mL [8].

3.5. Antioxidant Activity

The scavenging effect of fucoidans on harmful oxidants, such as superoxide anion,
hydrogen peroxide, hydroxyl radicals, and singlet oxygen, has attracted considerable
interest from the food and pharmaceutical industries [136]. In this regard, galactofucan
from the Tunisian brown seaweed Cystoseira compressa exhibited valuable antioxidant
properties when subjected to various antioxidant tests, i.e., ferrous ion chelation, ferric
ion reduction, and DPPH radical scavenging assays (Table 4). For instance, the DPPH
assay resulted in an IC50 value of 430 µg/mL compared to 560 µg/mL for sodium alginate
isolated from the same organism [64].

Table 4. G-fucoidans showing antioxidant activity with their respective sources and half-maximal
effective or inhibitory concentrations (EC50/IC50). Comparisons with standard or commercial com-
pounds are also shown.

Source EC50/IC50
Compared with Standard/Commercial

Compounds? References

Cystoseira compressa 0.43 mg/mL (DPPH) Yes. Inferior to ascorbic acid and butylated
hydroxyanisole [64]

Sargassum siliquosum 2.58 mg/mL (DPPH) No [10]

S. thunbergii 0.22 mg/mL (superoxide radical),
and 0.88 mg/mL (hydroxyl radical)

Yes. Similar (hydroxy radical) or superior
(superoxide radical) to vitamin C [90]

Similarly, a galactofucan from Sargassum thunbergii showed a higher scavenging effect
of superoxide radical compared to vitamin C (ascorbic acid) [90] (Table 4). However, care
should be considered when examining antioxidant activities, since contaminants such as
co-extracted secondary metabolites (e.g., phlorotannins), not the galactofucans themselves,
might be responsible for the reported bioactivities [1,107].
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3.6. Other Biological Activities

Two recent studies have reported that galactofucans from Sargassum siliquosum ex-
hibited antilipogenesis properties. According to the authors, the purified G-fucoidans
(80 µg/mL) from this species induced a 28.9% reduction in lipid synthesis in human hep-
atoma cell line HepG2 after being induced by lipid accumulation with 1.0 mM oleate. The
study used pioglitazone as a positive control at a concentration of 40 µg/mL [10,89]. In addi-
tion, the hypolipidemic effect was reported for a sulfated galactofucan from Saccharina japonica
via inhibition of pancreatic lipase activity in a dose-dependent manner. Interestingly, this
polysaccharide was not degraded by the human digestive system, likely due to its high
molecular weight. Hence, this study might correlate such bioactivity not to the systemic
effect, but through modulation of the microbiota composition. These results suggested that
galactofucans could serve as fat-reducing health supplements without affecting the total
sugar level [105].

In addition, in vitro and in vivo studies have shown antidiabetic and antihyperten-
sive potentials of G-fucoidans from Sargassum wightii. In addition, galactofucans from
this species showed superior antidiabetic activities compared to acarbose and diprotein-A
(antidiabetic agents). The antidiabetic properties have proven to be significantly higher
(p < 0.05) in terms of inhibitory activities for several enzymes involved in glucose metabolism,
including α-amylase (IC90 = 0.9 mg/mL), α-glucosidase (IC90 = 1.4 mg/mL), and dipep-
tidyl peptidase-4 (IC90 = 0.1 mg/mL). In addition, the antihypertensive activity was tested
against angiotensin-converting enzyme-I, showing an IC90 value of 0.2 mg/mL. Further-
more, these studies concluded that this compound was safe for consumption [92,93].

Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling plays
an essential role in various biological processes, including tumor growth and angiogenesis,
regulation of cell chemotactic response process, cell proliferation, and differentiation [137,138].
Recently, it has been demonstrated that an LMW (10.9 kDa) galactofucan from S. japonica
can regulate the FGFR-mediated MAPK signal pathway after incubation of BaF3 cells
with 100 µg/mL, in comparison with heparin (2 µg/mL) [101]. Sulfated galactofucans
might also represent a good regulator of FGF-1 when compared to the natural ligand, i.e.,
heparin [106].

In addition, a galactofucan from Sargassum fusiforme has shown promising activity on
AD in vivo. During pharmacological experiments, this compound increased the cognitive
abilities of scopolamine-, ethanol-, and sodium nitrite-treated mice against memory [80].
Furthermore, the radioprotective effect is a property recently attributed to fucoidans,
including galactofucans from S. feldmannii. This species is the most promising source of
radiosensitizing compounds among other Sargassum species at a concentration of 40 µg/mL,
especially against human colon HT-29 and breast MDA-MB-231 cancer cells. It showed a
significant, more than 30%, reduction in colony number of cancerous cells compared to
irradiated cells [79,139].

Other properties reported for G-fucoidans, such as elastase inhibition and neuron pro-
tection activities, might be correlated to other well-studied activities (e.g., antitumor, antiox-
idant, or anti-inflammatory) [103,108]. Moreover, Pozharitskaya et al. used a G-fucoidan
ioslated from F. vesiculosus, revealing its anti-hyperglycemic activity based on its inhibition
of dipeptidyl peptidase-IV (DPP-IV) at IC50 1.11 µg/mL [49].

4. Pharmacokinetic Studies

Despite the limited number of studies discussing the pharmacokinetics of galactofu-
cans, including absorption, tissue distribution, metabolism, and excretion (ADME) behavior,
pharmacokinetic study is an essential step for drug development, particularly after oral,
topical, and intravenous administration. Such investigations have been included in recent
studies and demonstrated highly promising results that qualified fucoidans to be potential
candidates for further clinical trials in their pharmaceutical dosage forms [140–142].

G-fucoidan-based topical formulations, especially that derived from F. vesiculosus,
have recently been employed in animal models such as rats. Following the administration
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of ointment containing 15% fucoidan at a dose of 50–150 mg/g, fucoidan was reported to be
distributed into skin, striated muscle, and plasma with the highest concentration in striated
muscle (AUC0–48= 2.2 µg·h/g) and without accumulation in plasma during five days of
administration [142]. However, there was a literature conflict regarding fucoidan absorption
from the digestive tract after oral intake due to its high molecular weight and subsequent
mechanism of action, either via a systematic or modulation of gut microbiota composition
effect [105,143]. The ELISA competitive antibody assay for sulfated polysaccharide showed
low human plasma concentration of G-fucoidans following oral ingestion of 3 g/day for
12 days, where only 4.0 and 12.9 mg/L were resulted from oral ingestion of U. pinnatifida,
equivalent to 10% and 75% pure fucoidan, respectively [143]. In addition, it was reported
that fucoidan from F. vesiculosus following intragastric administration to the rats was found
to be distributed to different organs such as the kidney, spleen, and liver. Interestingly, the
kidney showed the maximum concentration, represented by AUC0–t= 10.7 µg·h/g and
Cmax = 1.2 µg/g after 5 h. In addition, it demonstrated a long absorption time and half-life
time with a mean residence time of 6.8 h [140].

5. Conclusions and Future Perspectives

It has been well documented that fucoidans’ bioactivities are affected by four major
factors, namely monomeric composition, glycosidic linkages, sulfate ester content, and
sulfation pattern. Nevertheless, G-fucoidans or sulfated galactofucans are a unique class
of fucoidans chemically and pharmacologically. Several brown seaweed species are rec-
ognized as good biogenic resources. They have attracted great attention in the last few
years, especially following the great advances in marine biotechnology, chromatography,
and spectroscopic techniques. Such advances could allow investigating the heterogeneous
chemical composition of fucoidans and confirming the purity of isolated fucoidans. In
comparison with other chemical classes of fucoidans, G-fucoidans’ chemical diversity has
been reported mostly to be accompanied by various and potential pharmacological bioac-
tivities, including antitumor, antiviral, and anticoagulant effects, especially those derived
from U. pinnatifida. Previous literature has related some bioactivities with high fucose and
sulfate contents or low molecular weight. Yet, the structure–activity relationships and
the presence of galactose in higher percentages in the G-fucoidan chemical skeleton have
not been revealed clearly. Nevertheless, the authors can assume that the superior bioac-
tivities of G-fucoidans may be attributed to the branched chemical bones since galactose
is always found in side chains, which is in agreement with previous literature showing
that branched-chain fucoidans always exhibited more promising pharmacological effects.
Hence, future studies should address these dark areas of G-fucoidans which can explain the
secrets behind their outstanding biological effects. In addition, the seasonal variation and
structural differences regarding G-fucoidans should be addressed in relation to bioactivities.
The previous investigations on G-fucoidans have also proved their safety for consumption;
therefore, G-fucoidans could be developed as a novel functional ingredient in the pharma-
ceutical and food industries. Furthermore, pharmacokinetic investigations for G-fucoidans
should be further specified using different sources and formulations. Such research may
help further clinical trials of this outstanding class of fucoidans in different pharmaceutical
dosage forms.
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