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Abstract
Phosphorylation is catalyzed by protein kinases and is irreplaceable in regulating biological

processes. Identification of phosphorylation sites with their corresponding kinases contrib-

utes to the understanding of molecular mechanisms. Mass spectrometry analysis of phos-

phor-proteomes generates a large number of phosphorylated sites. However, experimental

methods are costly and time-consuming, and most phosphorylation sites determined by

experimental methods lack kinase information. Therefore, computational methods are

urgently needed to address the kinase identification problem. To this end, we propose a

new kernel-based machine learning method called Supervised Laplacian Regularized

Least Squares (SLapRLS), which adopts a new method to construct kernels based on the

similarity matrix and minimizes both structure risk and overall inconsistency between labels

and similarities. The results predicted using both Phospho.ELM and an additional indepen-

dent test dataset indicate that SLapRLS can more effectively identify kinases compared to

other existing algorithms.

Introduction
Protein phosphorylation is one of the most pervasive posttranslational modifications and plays
an important role in regulating nearly all types of cellular processes in organisms, including sig-
nal transduction, translation and transcription [1,2,3,4,5]. Phosphorylation is catalyzed by pro-
tein kinases [6], which regulate most cellular processes. More than one-third of proteins can be
phosphorylated, and half of the protein kinases have intimate relationships with cancer and
diseases [7]. Each protein kinase specifically catalyzes a certain subset of substrates, and defi-
ciencies in protein kinases often cause diseases and cancers [6]. In this regard, identifying
potential phosphorylation sites and their corresponding protein kinases is beneficial for eluci-
dating molecular mechanisms.

Conventional experimental methods such as high-throughput biological technique mass spec-
trometry [8] were developed to identify phosphorylation sites. Although these experimental
methods provide the foundation for understanding the mechanisms underlying phosphorylation,
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they are often costly and time-consuming. Additionally, although mass spectrometry methods
can generate a large number of phosphorylated sites, most of these sites lack kinase information
and the kinase that catalyzes the site is unknown. For example, Phospho.ELM, which is a verified
phosphorylation site database, contains 37,145 phosphorylation sites, but only a small number of
them (3,599 items) have corresponding kinase information. Due to the limitation of experimental
methods, computational methods are required to identify protein kinases for specific phosphory-
lation sites based on data verified by experimental methods.

Currently, many computational methods have been developed for protein phosphorylation
prediction. The first computational method proposed by Blom [9] was based on an artificial
neural network algorithm using peptide sequences. Since then, a large number of methods
have been developed, such as PPSP [10] and Musite [11]. PPSP adopts the Bayesian decision
theory (BDT), which is based on an assumption that all flanking residues are independent
of each other, to construct a classifier. Musite calculates the distance between two peptide
sequences using the distance calculator Blosum62, which is a matrix reflecting the relationship
between amino acids, and then constructs the classifier with support vector machine (SVM).
Due to the increasing demand for kinase identification, a few machine learning-based methods
have been developed in recent years. Among them, NetworKIN [12] uses consensus sequence
motifs and a probabilistic protein association network. IGPS [13] is based on peptide sequence
similarity and uses protein-protein interaction (PPI) information to control the false positive
rate.

Despite the success achieved by these computational approaches, most of them neglect
the geometry of the probability distribution [14], thereby hampering the improvement of pre-
diction accuracy. For example, SVM only focuses on structural risk minimization and the
quadrature encoder and thus ignores the intrinsic relationship between different amino acids.
Additionally, the distance of two peptide sequences defined in Musite may fail to fulfill the tri-
angle inequality [11]. To solve these problems, Belkin et al. [14] proposed a framework exploit-
ing the geometry of the probability distribution; the test results showed that the proposed
framework efficiently addressed the classification problems.

In this study, we propose a kernel-based supervised learning algorithm called Supervised
Laplacian Regularized Least Squares (SLapRLS), which incorporates a new kernel construction
method and brings together the spectral graph theory, regularization and the geometry of the
probability distribution for kinase identification. In SLapRLS, reasonable translations are per-
formed on a similarity matrix to force it to act as a kernel matrix [15]. Additionally, we intro-
duce the overall inconsistencies between sample similarities and labels for each class [16] and
minimize both the inconsistency and the structure risk. To compare the proposed algorithm
with existing algorithms, we perform a 10-fold cross-validation using data retrieved from Phos-
pho.ELM and compare SLapRLS with three classical algorithms: SVM, BDT and the k-nearest
neighbor (KNN). To confirm the effectiveness and superiority of SLapRLS, an additional inde-
pendent test dataset is used to compare SLapRLS and two other kinase identification tools:
iGPS and NetworKIN. The results show that SLapRLS is more effective than the competitive
algorithms and that the kernel matrix construction method is useful for the identification of
kinases corresponding to known phosphorylation sites.

Materials and Methods

Data description
In this work, we extracted 37,145 experimentally verified phosphorylation sites from humans,
including 3,599 sites with corresponding kinase information, from the most recent version of
Phospho.ELM [17]. Among the sites with kinase information, 2,398 unique phosphorylation
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sites with kinase information in 934 proteins are obtained after removing the duplicated data.
To overcome the over-estimation aroused by homology bias and redundancy, we cluster the
protein sequences using Blastclust with a threshold of 70%; only one representation of each
cluster is reserved [18]. As a result, 2,289 sites in 889 proteins are employed for the analysis.
There are 1,823 serine (S)/ threonine (T) phosphorylation sites and 446 tyrosine (Y) phosphor-
ylation sites. For each kinase, the corresponding phosphorylation sites are treated as positive
data, whereas sites phosphorylated by other kinases are treated as negative data. Several kinases
that contain too few known phosphorylated substrates are excluded to achieve reliable results.
Finally, 23 types of kinases are obtained for investigation after removing the kinases that con-
tain less than 20 positive items.

Because iGPS and NetworKIN use data retrieved from the Phospho.ELM database for
model training, the test dataset in this study at least partially includes the training dataset of
these two methods. This factor would inevitably result in the overestimation of the prediction
performance for iGPS and NetworKIN. To obtain a fair comparison result, an independent
dataset is adopted in this work [19]. Similarly, protein kinases in the independent test dataset
that contain less than 20 items are also excluded to ensure the reliability of the results. Finally,
we select 6 kinases in the independent dataset: PKC alpha, Erk2, Erk1, P38a, SRC and SYK.

Algorithm
In this work, we propose that SLapRLS brings together spectral graph theory, regularization
and the geometry of the probability distribution based on the regularized least squares (RLS)
theory [14]. Similar to SVM, RLS is engaged in minimizing the structure risk [20]. SLapRLS is
proposed based on the manifold assumption that similar samples tend to have similar results,
and thus samples with the same label are predicted to have similar results. Therefore, the over-
all inconsistency between labels and pairwise similarities in the same class should be mini-
mized. SLapRLS aims to minimize both structure risk and the overall inconsistency between
labels and pairwise similarities.

Feature description
In this work, we take full advantage of sequence information in modeling. A 15 amino acid
local sequence is used to represent a candidate phosphorylation site that has 7 amino acids
upstream and downstream of the phosphorylation site (S, T or Y). Thus, a phosphorylation site
can be denoted as s = (s(1), s(2),. . ., s(8),. . ., s(15)), where s(i) represents the amino acid at the
ith position and s(8) is the phosphorylation site.

Structure risk minimization and RLS
Structure risk minimization aims to minimize VC confidence and the summation of the empir-
ical risk on each subset [21]. The square of the difference between the true label and the pre-
dicted result is often used as the loss function when calculating the empirical risk [22]. The
optimization problem of RLS is shown as:

min
1

l
Sl

i ¼ 1ðyi � f ðxiÞÞ2 þ gAjj f jj 2K ð1Þ

where yi and f(xi) represent the true label and the predicted result of the ith sample,
respectively.
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Inconsistency between labels and pairwise similarities
A good predictor should predict similar data with similar results, and thus the overall inconsis-
tency between labels and pairwise similarities should be minimized [16]. The inconsistency
contains two parts: the first is the inconsistency in the positive dataset and the second is the
inconsistency in the negative dataset. The overall inconsistency is minimized and shown as:

min
1

p2
Sp

i;j ¼ 1ðfðxiÞ � fðxjÞÞ2Wij þ
1

n2
Spþn

i;j ¼ pþ1ðfðxiÞ � fðxjÞÞ2Wij ð2Þ

where p and n represent the number of positive data and negative results, respectively, andWij

is the similarity between samples xi and xj.

Supervised LapRLS
Supervised LapRLS is based on the principle that both inconsistency between labels and pair-
wise similarities and structural risk should be minimized. The optimization problem aims to
solve Eqs (1) and (2), which can be represented as Eq (3). This is a multiple objective optimiza-
tion problem, and thus a weight parameter γI is introduced to weight the two objects [23].

min
1

l
Sj

i ¼ 1ðyi � f ðxiÞÞ2 þ gA k f k2K þgI
1

p2
Sp

i;j ¼ 1ðf ðxiÞ � f ðxjÞÞ2Wij þ
1

n2
Spþn

i;j ¼ pþ1ðf ðxiÞ � f ðxjÞÞ2Wij

� �
ð3Þ

Data imbalance is a common problem in bioinformatics, in which negative data often have
larger numbers than positive data. However, few methods have been proposed to address this
problem. In this paper, we assign different penalty coefficients to different samples [24]. There-
fore, SLapRLS aims to solve the optimization problem as:

min
1

l
Sl

i ¼ 1ciðyi � f ðxiÞÞ2 þ gA k f k2
K þgI

1

P2
Sp

i;j ¼ 1ðf ðxiÞ � f ðxjÞÞ2Wij þ
1

N2
Spþn

i;j ¼ pþ1ðf ðxiÞ � f ðxjÞÞ2Wij

� �
ð4Þ

where parameter c = (c1, c2,. . . ci,. . .,cl) is the penalty coefficient and ci represents the misclassi-
fication cost of the ith data xi. The misclassification cost contains two parts: the cost of misclas-
sifying the positive samples as negative and the cost of misclassifying the negative samples as
positive. Assuming that the number of class A is larger than class B, the model tends to classify
the test data as class A. If the penalty of each class is equivalent, more samples in class B may be
predicted as the wrong class. To solve the problem of data imbalance, the class with a smaller
number is assigned a large penalty, while the class with a larger number is assigned a small pen-
alty. The penalty coefficients for positive and negative data are set to n/(p + n) and p/(p + n)
according to the numbers of positive and negative results. The two tuning parameters γA and γI
in Eq (4) were selected from grid research in the range of [10−5, 105] via ten-fold cross-valida-
tion [25] [26]; the values of the selected γA and γI for each kinase are listed in S1 Table. Belkin
et al. proved that optimization problems that share similar object functions to Eq (2) were all
convex optimization problems [14] and thus shared the same form as the solutions shown in
(5). By using K to represent the Kernel function, we can calculate f�(x) as follows:

f �ðxÞ ¼ Sl
i ¼ 1aiKðxi; xÞ ð5Þ

By solving the convex optimization problem shown in Eq (4), we can achieve a as follows:

α ¼ Kþ gAlIþ gI l
1

p2
C�1LPKP;P þ

1

n2
C�1LNKN;N

� �� ��1

Y ð6Þ
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Here, K is the kernel matrix with a size of (p + n)×(p + n) and can be denoted as

KP;P KP;N

KN;P KN;N

" #
, KA,B is a kernel matrix between two datasets A and B, and P and N represent

the positive dataset and negative dataset, respectively. LP is the graph Laplacian of all positive
data, which is given by

LP ¼ DP
�1
2ðDP �WP;PÞDP

�1
2 ð7Þ

where the diagonal matrix DP is given by:

DPi;i ¼ Sxj2PWi;j; xi 2 P ð8Þ

Similarly, LN is the graph Laplacian of all negative data, which is given by

LN ¼ DN
�1
2ðDN �WN;NÞDN

�1
2 ð9Þ

where the diagonal matrix DN is given by:

DNi;i ¼ Sxj2NWi;j; xi 2 N ð10Þ

In (6), C is a diagonal matrix given by C = diag(c1,c2. . .cl), Y = (y1,y2. . .yl),WP,P is the simi-
larity matrix between data in the positive dataset andWN,N is the similarity matrix between
samples in the negative datasets.

Similarity among samples
Because SLapRLS is based on sample similarities, the method used to calculate the similarity
can have a large impact. Blosum62 is a matrix that reflects the relationship among amino acids
and has been proven to be efficient for calculating pairwise similarity [11]. Here, we assume
Blosum62 as matrix B and use a and b to represent two amino acids. Then, the similarityWi, j

between two samples si and sj can be calculated as follows:

Wi; j ¼ Sw
t ¼ 1sim ðsiðtÞ; sjðtÞÞ ð11Þ

where w is the window size of a local peptide sequence and is set to 15 in this study. si(t) repre-
sents the amino acid located in the tth position of si. Because the similarity between samples
should be non-negative, we normalize B using:

simða; bÞ ¼ Bða; bÞ �minðBÞ
maxðBÞ �minðBÞ ð12Þ

simða; bÞ > 0;

Because sim(si, sj) is non-negative, it is easy to come to the conclusion thatWi, j is also non-
negative.

Kernel matrix construction
Kernel-based algorithms embed the dataset into a Hilbert space, and the kernel matrix completely
reflects the relative positions of the samples in the embedding space. Several mathematically
defined kernel functions exist (i.e., Gaussian kernel and spline kernel); these functions have been
widely utilized in many research fields. However, these mathematically defined kernels often
require few parameters and cannot effectively reflect the relationship between objects in a certain
field. For example, in the field of kinase identification the Gaussian kernel needs the pairwise
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distance. A common way to calculate the distance is to encode the peptide sequence using quad-
rature encoding; then, the distance is calculated based on the Euclidean distance, which assumes
that each amino acid is independent of the others. However, close relationships exist between
amino acids, and thus calculating the similarity using the Gaussian kernel may miss important
information from the substrate sequence [11]. Because a kernel function can reflect pairwise simi-
larity, a more reliable way to calculate the similarity is to use expert knowledge and other infor-
mation rather than the kernel function [27]. A kernel matrix should be symmetric and positive
definite [28]. In this regard, we can perform translation on the similarity matrix to make it fulfill
these two properties (symmetric and positive definite). The similarity matrix calculated with Eq
(11) is symmetric, and thus we only need to add a small multiple to the diagonal elements of the
similarity matrix to force it to be positive definite; then, the translated similarity matrix can be
treated as the kernel matrix [15]. The summary of SLapRLS is shown in Fig 1, and the procedure
of this work is shown in Fig 2.

Performance evaluation
To evaluate the performance of the classifiers, we calculate the specificity (Sp), sensitivity (Sn),
accuracy (Acc), precision (Pre) and Matthews correlation coefficient (Mcc). Sp and Sn represent
the ratio of correctly predicted negative and positive sites, Acc indicates the percentage of truly
predicted sites, and Pre indicates the ratio of true positive sites over predicted positive sites.
Mcc reflects the balance quality between the true and predicted classes and illustrates the corre-
lation between the true and predicted class. The definitions of Sn, Sp, Acc, Pre andMcc are
shown in Eqs (13), (14), (15), (16) and (17), respectively. The receiver operating characteristic
(ROC) curve is widely used to evaluate the performance of a classifier in machine learning and
plots (1-Sp, Sn) using each predicted value as the threshold. The corresponding area under the
ROC curve (AUC) represents the overall accuracy of a classifier.

Sn ¼ TP
TPþ FN

ð13Þ

Sp ¼ TP
TNþ FP

ð14Þ

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

ð15Þ

Pre ¼ TP
TPþ FP

ð16Þ

Mcc ¼ TP� FP� TN� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞ � ðTPþ FPÞ � ðTNþ FNÞ � ðTNþ FPÞp ð17Þ

where TP, FP, TN and FN represent the number of true positives, false positives, true negatives
and false negatives, respectively.

AUC is used as an overall performance measurement for comparison with other algorithms,
and Acc, Pre andMcc are utilized to evaluate the performance when the Sp is extremely high.
Notably, we cannot use AUC as the evaluation for comparison with existing tools because the
prediction scores are not available for these tools. In this situation, we make the comparison
using the corresponding Sn value with a comparable Sp value by selecting a suitable threshold.

Supervised Laplacian Regularized Least Squares

PLOS ONE | DOI:10.1371/journal.pone.0139676 October 8, 2015 6 / 13



Results and Discussion

Comparison with other algorithms
We first compare our method with three existing algorithms (SVM, BDT and KNN) with a
10-fold cross validation using local peptide sequence information. When using SVM, peptide
sequences are coded into numeric features using a quadrature encoder. In this study, we adopt
the LIBSVM with an RBF kernel function [29], and parameters C andγin SVM are chosen by
cross-validation. For BDT, the method introduced in PPSP [10] is adopted in this work. In
KNN, the parameter K is set to 11 and the Blosum 62 matrix is employed to calculate the dis-
tance d among samples. Assuming Si+ is the total similarity between sample si and the top K
nearest positive samples and Si- is total similarity between sample si and the top K nearest nega-
tive samples, the final predicted score of sample si is denoted as the ratio of Si+ and Si- [11].

The ROC curve is utilized to compare these four algorithms. The ROC curves for the Erk2,
Erk1, CDC2 and PKC alpha kinases are shown in Fig 3, with the red line, blue line, yellow line
and cyan line representing SLapRLS, SVM, BDT and KNN, respectively. As shown in Fig 3, the
red line outperformed the other three lines, indicating that SLapRLS achieved better overall
performance than the other algorithms.

To illustrate the robustness of our proposed method, we repeat the 10-fold cross validation
five times and then compare the AUCs. Detailed results are listed in Table 1. As expected,

Fig 1. A summary of SLapRLS.

doi:10.1371/journal.pone.0139676.g001

Fig 2. Procedure of this work. Firstly, label dataset are derived from Phospho.ELM, and it is split into train
dataset and test dataset. Secondly, the model is developed using train dataset and its similarity matrix with
SLapRLS, with which the predicted result of test dataset is achieved. Additionally, an independent test
dataset is used. The model that predicts the independent dataset is developed with all the label dataset.

doi:10.1371/journal.pone.0139676.g002

Supervised Laplacian Regularized Least Squares

PLOS ONE | DOI:10.1371/journal.pone.0139676 October 8, 2015 7 / 13



SLapRLS achieves better performance than the other three algorithms on S/T/Y substrate
kinases. For example, the average AUCs achieved by SLapRLS on kinase PKC alpha are 7.7%,
5.7% and 14.2% higher than SVM, BDT and KNN, respectively.

Additionally, Sn, Acc, Pre andMcc are utilized to evaluate the performance of the four algo-
rithms at a high stringency level (Sp = 0.99). The phosphorylated S/T and Y site kinases are
divided into two groups (i.e., S/T substrate kinases and Y substrate kinases), and the perfor-
mance of the two kinase groups are plotted in Fig 4. The results show that SLapRLS achieves
higher Sn, Pre, Acc andMcc and a slightly higher Sp. For example, the average Sn and Pre
achieved by SLapRLS on Y substrate kinases are more than 2% and 9% higher than the other
algorithms. Table 1 and Fig 4 show that SLapRLS also achieves better performance in S/T sub-
strate kinases than Y substrate kinases.

Because SLapRLS relies on the similarity between samples, a good similarity calculator is
essential to achieve a satisfying performance. In this work, the similarity between samples is
represented by peptide similarity, which is calculated using sequence information. The conser-
vation is strong in the S/T substrate kinases but weak in the Y substrate kinases [30]. Fig 5
shows that the amino acid distributions of two S/T substrate kinases (ATM and ck2_alora2)
have stronger conservation than two Y substrate kinases (INSR and EGFR). As shown in Fig 5,

Fig 3. ROC curves of different algorithms.ROC curves of kinase Erk2, Erk1, CDC2 and PKC alpha achieved by four different algorithms are plotted. The
red line, blue line, yellow line and cyan line represent SLapRLS, SVM, BDT and KNN, respectively.

doi:10.1371/journal.pone.0139676.g003
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substrates of kinases with good performances tend to exhibit strong conservation, whereas the
conservation of kinases with bad performances is weak. Therefore, local peptide sequence simi-
larity may not effectively reflect the similarity between samples for kinases that have weak
sequence conservation, and thus all four algorithms tend to achieve better performance for the
S/T substrate kinases than the Y substrate kinases. It should also be noted that although only
sequence information is used as an input feature, SLapRLS could actually address any type of
data that can be used to calculate similarities between samples.

Comparison with existing tools
To evaluate the performance of SLapRLS, we compare it with two existing kinase identification
tools: iGPS and NetworKIN. Because cross validation is not available for iGPS and NetworKIN,
we adopt an independent test dataset. We also compare Sn at the same high stringency Sp level
using different algorithms. Comparison results are shown in Table 2. Although SLapRLS only
uses sequence information as a feature while both iGPS and NetworKIN use protein-protein
interaction information to filter the results, SLapRLS still achieves a satisfying performance (5
out of 6 kinases have a better performance compared with iGPS and NetworKIN). For instance,
iGPS achieves an Sp of 0.780 and Sn of 0.525 for PKC alpha. To make a reasonable comparison
with iGPS, we set the threshold to ensure that SLapRLS has a comparable Sp (0.782) and then
calculate the corresponding Sn (0.983). The results show that the Sn of SLapRLS is 46% higher
than iGPS. Thus, SLapRLS can effectively identify the corresponding kinase of the new site.

Table 1. Compared AUC values of the four algorithms: SLapRLS, SVM, BDT and KNN.

Methods SLapRLS SVM BDT KNN

S/T

PKC alpha 0.833LSBDT 0.756LSBDT 0.776LSBDT 0.691LSBDT

ATM 0.964LSBDT 0.964LSBDT 0.905LSBDT 0.876L0.006

CDC2 0.918L0.006 0.714L0.006 0.894L0.006 0.880L0.006

Erk2 0.882L0.006 0.733L0.006 0.825L0.006 0.816L0.006

Erk1 0.888L0.006 0.760L0.006 0.831L0.006 0.815L0.006

AurA 0.782L0.006 0.652L0.006 0.724L0.006 0.718L0.006

BARK1 0.747L0.006 0.659L0.006 0.566±0.023 0.644±0.023

CaMK2a 0.862a0.023 0.682a0.023 0.688a0.023 0.757a0.023

CDK2 0.887a0.023 0.783a0.023 0.780a0.023 0.833a0.023

GSK3B 0.806a0.023 0.694a0.023 0.758a0.023 0.704a0.023

Ck2 a1ora2 0.95420.023 0.93220.023 0.93820.023 0.93020.023

MAPKAPK2 0.651PK2023 0.502PK2023 0.500PK2023 0.716PK2023

PDK1 0.854PK2023 0.787PK2023 0.811PK2023 0.842PK2023

P38a 0.838PK2023 0.708PK2023 0.781PK2023 0.732PK2023

PLK1 0.734PK2023 0.655PK2023 0.606PK2023 0.594PK2023

Y

ABL1 0.560PK2023 0.609PK2023 0.467PK2023 0.519±0.018

EGFR 0.559±0.018 0.460±0.018 0.594±0.018 0.530±0.018

FYN 0.730±0.018 0.629±0.018 0.650±0.018 0.683±0.018

INSR 0.547±0.018 0.537±0.018 0.427±0.018 0.506±0.018

LCK 0.638±0.018 0.573±0.018 0.589±0.018 0.634±0.018

LYN 0.619±0.027 0.641 0.046 0.560±0.022 0.672±0.022

SRC 0.564±0.022 0.570±0.022 0.509±0.022 0.548±0.022

SYK 0.718±0.022 0.726±0.022 0.677±0.022 0.658±0.022

doi:10.1371/journal.pone.0139676.t001
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A case study
To illustrate the usefulness of SLapRLS and to better elucidate the biological mechanism under-
lying phosphorylation, we perform an enrichment analysis on phosphorylation sites and their
corresponding kinases. We adopt the kinase PKC alpha to illustrate the capability of SLapRLS
to discover new phosphorylation sites. A total of 110 sites on 66 proteins phosphorylated by
PKC alpha are extracted from the Phospho.ELM database. Additionally, we perform cross-vali-
dation on PKC alpha with SLapRLS and predict 56 candidate sites with the top 100 predicted

Fig 4. Comparison of the four algorithms at high stringency level (sp = 0.99). The Sn, Sp, Acc andMcc values at high stringency level (sp = 0.99) of four
algorithms on the S/T and Y kinases.

doi:10.1371/journal.pone.0139676.g004

Fig 5. Weblogos of S/T substrate kinases and Y substrate kinases. A and C are theWeblogos of kinase
ATM and ck2 alora2 and B and D are the Weblogos of kinase EGFR and INSR.

doi:10.1371/journal.pone.0139676.g005
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scores. Enrichment analysis of the combined known and predicted proteins is performed using
DAVID [31] to identify enriched pathways. As shown in Table 3, 6 KEGG pathways are highly
enriched, with the most significant pathway related to the regulation of phosphorylation, and
the corresponding Benjamin P-value is 9.2E-5. Additionally, 6 proteins in this pathway are pre-
dicted as substrates of PKC alpha by SLapRLS but are not included in Phospho.ELM, indicating
that SLapRLS is able to identify potential corresponding kinases for known phosphorylation
sites.

Conclusion
Phosphorylation plays an important role in multiple biological processes, and protein kinases
have a tight relationship with many kinds of diseases. Thus, identifying the corresponding
kinases for known phosphorylation sites is important. To overcome shortcomings such as costly
and time-consuming experimental methods, the development of computational methods for
kinase identification is urgently needed. At present, existing phosphorylation prediction-related
computational methods neglect the geometry of the data distribution, and most kernel-based
methods are based on distance. These distance-based methods often assume that the amino
acids are independent when using local protein sequence information to calculate distances,
while the connections between amino acids, which are also very important in expressing the
relationships among samples, are neglected.

In this work, we propose the kernel-based algorithm SLapRLS that relies on similarity rather
than distance and introduce the inconsistency between label and pairwise similarity to reflect
the geometric distribution of the data. Instead of optimizing a single objective function,
SLapRLS optimizes two functions: minimizing structure risk and the overall inconsistency
between label and pairwise similarity. Because the kernel function reflects the closeness of two
samples, we translate the kernel matrix from the similarity matrix instead of any famous kernel
functions. The results show that SLapRLS outperforms three other algorithms (SVM, BDT and
KNN) and two existing kinase identification tools (iGPS and NetworKIN).

Table 2. Comparison among SLapRLS, iGPS and NetworKIN on independent test data.

Methods iGPS SLapRLS NetworKIN SLapRLS

Sp Sn Sp Sn Sp Sn Sp Sn

PKC alpha 0.780 0.525 0.782 0.983 0.997 0.475 0.997 0.559

Erk2 0.466 0.709 0.471 0.993 0.865 0.278 0.870 0.329

Erk1 0.508 0.709 0.510 0.974 0.939 0.222 0.942 0.247

P38a 0.367 0.703 0.369 0.865 1.000 0.027 0.933 0.054

SRC 0.300 0.875 0.310 0.867 0.300 0.100 0.310 0.867

SYK 0.283 0.850 0.301 0.850 0.830 0.300 0.849 0.400

doi:10.1371/journal.pone.0139676.t002

Table 3. Pathway enrichment analysis of PKC alpha.

Terms Count P-value Benjamini P-values

Regulation of phosphorylation 14(6) 1.4e-7 9.2e-5

Cell migration 10(3) 4.2e-6 7.7e-4

Learning or memory 5(2) 1.7e-3 1.8e-2

Regulation of heart contraction 3(2) 2.4e-3 3.6e-2

doi:10.1371/journal.pone.0139676.t003
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It should to be noted that SLapRLS is based on a similarity matrix. Although only local
sequence information is used as a feature in this work, SLapRLS is able to address any type of
data as a feature, including characteristic types and numerical types. Although SLapRLS can
solve kinase identification problems efficiently, there is also room for further improvement.
For example, we only focus on local sequence information and disregard all other biological
information. However, it has been proven that protein function and structural information is
also useful for phosphorylation predictions [30, 32]. Therefore, such information could be uti-
lized for kinase identification in a future work. To this end, a combination regulation should be
introduced to incorporate different types of features.

Supporting Information
S1 Table. The selected parameters γA and γI for each kinase.
(XLSX)

Acknowledgments
This work was supported by grants from National Natural Science Foundation of China
(61471331,61101061).

Author Contributions
Conceived and designed the experiments: AL MW. Performed the experiments: AL XX HZ.
Analyzed the data: XX HZ. Contributed reagents/materials/analysis tools: XX HZ. Wrote the
paper: ZH XX AL.

References
1. Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, et al. (2004) NEK2A interacts with MAD1 and pos-

sibly functions as a novel integrator of the spindle checksample signaling. J Biol Chem 279
(19):20049–20057. PMID: 14978040

2. Schafmeier T, Haase A, Kaldi K, Scholz J, Fuchs M, Brunner M (2005) Transcriptional feedback of neu-
rospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell
122(2):235–246. PMID: 16051148

3. Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, et al. (2005) Eukaryotic translation initia-
tion factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4
translation. Mol Cell Biol 25(13):5480–5491. PMID: 15964804

4. Pawson T (2004) Specificity in signal transduction: from phospho-tyrosine-SH2 domain interactions to
complex cellular systems. Cell 116(2):191–203 PMID: 14744431

5. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M (2009) Nuclear localization of p38 MAPK in
response to DNA damage. Int J Biol Sci 5(5):428. PMID: 19564926

6. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional
inactivation of TSC2 by Erk: implications for tuberous sclerosisand cancer pathogenesis. Cell 121:
179–193. PMID: 15851026

7. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of
the human genome. Science. 298(5600):1912–1934. PMID: 12471243

8. Beausoleil SA, Ville´ n J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-
throughput protein phos-phorylation analysis and site localization. Nat Biotechnol 24(10): 1285–1292.
PMID: 16964243

9. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein
phosphorylation sites. J Mol Biol 294(5):1351–1362. PMID: 10600390

10. Xue Y, Li A, Wang L, Feng H, Yao X (2006) PPSP: Prediction of PK-specific phosphorylation site with
Bayesian decision theory. BMC Bioinform 7(1):163.

11. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-
specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600. doi: 10.1074/mcp.M110.001388
PMID: 20702892

Supervised Laplacian Regularized Least Squares

PLOS ONE | DOI:10.1371/journal.pone.0139676 October 8, 2015 12 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139676.s001
http://www.ncbi.nlm.nih.gov/pubmed/14978040
http://www.ncbi.nlm.nih.gov/pubmed/16051148
http://www.ncbi.nlm.nih.gov/pubmed/15964804
http://www.ncbi.nlm.nih.gov/pubmed/14744431
http://www.ncbi.nlm.nih.gov/pubmed/19564926
http://www.ncbi.nlm.nih.gov/pubmed/15851026
http://www.ncbi.nlm.nih.gov/pubmed/12471243
http://www.ncbi.nlm.nih.gov/pubmed/16964243
http://www.ncbi.nlm.nih.gov/pubmed/10600390
http://dx.doi.org/10.1074/mcp.M110.001388
http://www.ncbi.nlm.nih.gov/pubmed/20702892


12. Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P (2008) NetworKIN: a resource for
exploring cellular phosphorylation networks. Nucleic acids research 36: D695–D699. PMID: 17981841

13. Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G (2012) Systematic analysis of protein phosphorylation
networks from phosphoproteomic data. Molecular & Cellular Proteomics 11: 1070–1083. doi: 10.1016/
j.theriogenology.2015.08.009

14. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: A geometric framework for learning
from labeled and unlabeled examples. The Journal of Machine Learning Research 7: 2399–2434.

15. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting
drug–target interaction. Bioinformatics 27: 3036–3043. doi: 10.1093/bioinformatics/btr500 PMID:
21893517

16. Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: Boosting for semi-supervised learning. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on 31: 2000–2014.

17. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ (2011) Phospho. ELM: a database of phos-
phorylation sites—update 2011. Nucleic acids research 39: D261–D267. doi: 10.1093/nar/gkq1104
PMID: 21062810

18. Kim JH, Lee J, Oh B, Kimm K, Koh I (2004) Prediction of phosphorylation sites using SVMs. Bioinfor-
matics 20: 3179–3184. PMID: 15231530

19. Newman RH, Hu J, Rho HS, Xie Z, Woodard C, Neiswinger J (2013) Construction of human activity‐
based phosphorylation networks. Molecular systems biology 9: 655. doi: 10.1038/msb.2013.12 PMID:
23549483

20. Zhang P, Peng J. SVM vs regularized least squares classification; 2004. IEEE. pp. 176–179.

21. Sewell Martin, Structural Risk Minimization, 2008.

22. Kadri H, Rabaoui A, Preux P, Duflos E, Rakotomamonjy A (2013) Functional Regularized Least
Squares Classi cation with Operator-valued Kernels. arXiv preprint arXiv:13012655.

23. Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive
approaches. Multiobjective Optimization: Springer. pp. 27–57.

24. Wu J-S, Zhou Z-H (2013) Sequence-Based Prediction of microRNA-Binding Residues in Proteins
Using Cost-Sensitive Laplacian Support Vector Machines. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on 10: 752–759.

25. Gómez-Chova L, Camps-Valls G, Munoz-Mari J, Calpe J (2008) Semisupervised image classification
with Laplacian support vector machines. Geoscience and Remote Sensing Letters, IEEE 5: 336–340.

26. Yang L, Yang S, Jin P, Zhang R (2014) Semi-supervised hyperspectral image classification using spa-
tio-spectral laplacian support vector machine. Geoscience and Remote Sensing Letters, IEEE 11:
651–655.

27. Lu F, Keleş S, Wright SJ, Wahba G (2005) Framework for kernel regularization with application to pro-
tein clustering. Proceedings of the National Academy of Sciences of the United States of America 102:
12332–12337. PMID: 16109767

28. Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with
semidefinite programming. The Journal of Machine Learning Research 5: 27–72.

29. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Transactions on Intelli-
gent Systems and Technology (TIST) 2: 27.

30. Xu X, Li A, Zou L, Shen Y, FanW, Wang M (2014) Improving the performance of protein kinase identifi-
cation via high dimensional protein–protein interactions and substrate structure data. Molecular Bio-
Systems 10: 694–702. doi: 10.1039/c3mb70462a PMID: 24448631

31. Dennis G Jr, Sherman BT, Hosack DA, Yang J, GaoW, Lane H.C (2003) DAVID: database for annota-
tion, visualization, and integrated discovery. Genome biol 4: P3. PMID: 12734009

32. FanW, Xu X, Shen Y, Feng H, Li A, Wang M (2014) Prediction of protein kinase-specific phosphoryla-
tion sites in hierarchical structure using functional information and random forest. Amino acids 46:
1069–1078. doi: 10.1007/s00726-014-1669-3 PMID: 24452754

Supervised Laplacian Regularized Least Squares

PLOS ONE | DOI:10.1371/journal.pone.0139676 October 8, 2015 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/17981841
http://dx.doi.org/10.1016/j.theriogenology.2015.08.009
http://dx.doi.org/10.1016/j.theriogenology.2015.08.009
http://dx.doi.org/10.1093/bioinformatics/btr500
http://www.ncbi.nlm.nih.gov/pubmed/21893517
http://dx.doi.org/10.1093/nar/gkq1104
http://www.ncbi.nlm.nih.gov/pubmed/21062810
http://www.ncbi.nlm.nih.gov/pubmed/15231530
http://dx.doi.org/10.1038/msb.2013.12
http://www.ncbi.nlm.nih.gov/pubmed/23549483
http://www.ncbi.nlm.nih.gov/pubmed/16109767
http://dx.doi.org/10.1039/c3mb70462a
http://www.ncbi.nlm.nih.gov/pubmed/24448631
http://www.ncbi.nlm.nih.gov/pubmed/12734009
http://dx.doi.org/10.1007/s00726-014-1669-3
http://www.ncbi.nlm.nih.gov/pubmed/24452754

