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Abstract

The importin/exportin transport system provides the machinery involved in nucleocytoplasmic transport. Alterations of the levels of importins
and exportins may play crucial roles in development, differentiation and transformation. Employing human leukaemia HL-60 cells, we and
others have revealed the differentiation-associated changes in the protein and gene expression of these factors. The recent finding that a
switch to the importin-� subtype triggers neural differentiation of embryonic stem cells underscores the importance of nucleocytoplasmic
transport factors in cellular events. This review focuses on current research into the roles of importins and exportins in cell differentiation. 
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Introduction

In eukaryotic cells, the nucleus is separated from the cytoplasm by a
double-layered membrane, the nuclear envelope. Macromolecules
such as RNA transcripts generated in the nucleus are exported to
the ribosomes in the cytoplasm and proteins synthesized in the
cytoplasm, such as histones, DNA and RNA polymerases and tran-
scription factors, are imported into the nucleus. The importin/
exportin transport system provides the machinery involved in
nucleocytoplasmic transport of cargo molecules larger than ~40 kD
[1–12]. In this system, proteins that shuttle between the cytoplasm
and the nucleus have generally a nuclear localization signal (NLS)
sequence or a nuclear export signal (NES) sequence.

Importin-� recognizes to the classical NLS (cNLS) within a pro-
tein cargo and forms a ternary complex with importin-�1 to enter
into the nucleus (Fig. 1). In another system, the cargo molecule with
the NLS directly binds to importin-� and is transported into the
nucleus. Exportin recognizes the NES in the cargo protein and the

complex is exported from the nucleus by binding with the
guanosine triphosphate (GTP)-bound form of the guanine
nucleotide-binding protein Ran (RanGTP) (Fig. 1). 

Alterations in the expression of the components of the nuclear
transport machinery would determine transport efficiency and
plays crucial roles in development, differentiation and transforma-
tion. This review focuses on current research into the roles of
importins and exportins in cellular differentiation.

Importins and exportins

The National Center for Biotechnology Information (NCBI) database
shows that there are at least 18 importin and 6 exportin genes in
human beings and 15 importin and 6 exportin genes in mice.
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Exportin-1 is frequently referred to as CRM1. Comparisons of these
nucleocytoplasmic transport factors in different species have been
hampered by the multiple names assigned. In this review, we use
the terms for the human genes. 

There have been a number of published comprehensive
reports reviewing structural, functional, evolutional, mechanistic
and regulational aspects of nucleocytoplasmic transport factors
including importins and exportins [1–12]. Figure 1 illustrates a
basic model for nuclear import/export pathways in which
importins and exportins are involved.

In the importin-�-mediated nuclear import system, cytoso-
lic importin-�1 forms a complex with importin-�, which binds
to the cNLS contained in a cargo protein. After entering the
nucleus through the nuclear pore complex (NPC), the ternary
complex dissociates. The energy required for this dissociation

is provided by GTP from RanGTP. Importin-� is recycled 
back to the cytoplasm in a complex with an importin-� re-
exporter, cellular apoptosis susceptibility gene (CAS), in the
presence of RanGTP [1, 9]. In some cases, importin-�1 recog-
nizes the cNLS within a cargo in the cytoplasm without the
importin-� adapter for entrance into the nucleus. Importin-�1

in the nucleus is recycled to the cytoplasm in a complex 
with RanGTP.

The nuclear export of proteins is mediated by exportins which
bind to NES-containing cargo and RanGTP in the nucleus. The
signal recognized by exportin-1 may be termed the classical NES.
Dissociation of the ternary complex in the cytoplasm is promoted
by Ran GTPase-activating protein to ensure the export of the
cargo. Exportin-1 is known to be recycled into the nucleus by
binding to an NPC component, Nup358 [6].

© 2008 The Authors
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Fig.1 A basic model of importin/exportin-mediated nucleocytoplasmic transport of macromolecules. Importin-� (�) binds to the NLS within a protein
cargo in the cytoplasm and forms a ternary complex with importin-�1 (�1) to enter into the nucleus. Some cargo molecules with the NLS can directly
bind to importin-�1. In the nucleus, binding of RanGTP (the GTP-bound form of the small Ras family GTAse, Ran) to importin-�1 triggers the dissoci-
ation of the complex. For nuclear export, RanGTP stimulates binding of exportin (XPO) to an NES-containing cargo protein in the nucleus and the com-
plex is exported to the cytoplasm, where hydrolysis of RanGTP to RanGDP results in complex disassembly.
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NLS and NES 

NLSs are nuclear targeting sequences which are recognized by
importins. The best-characterized NLSs are cNLSs that have either
one (monopartite) stretch such as PKKKRKV in SV40 large T antigen
and EEKRKR in NF-�B p65 [5] or two (bipartite) stretches of basic
amino acids. Some cNLSs are recognized directly by importin-�1

as exemplified by the sequence RKKRRQRRR in Hiv-1 Tat [13]. In
the GenBankTM set of 5850 yeast proteins, 2639 (45%) proteins
contain either a predicted monopartite or bipartite cNLS, suggesting
the high prevalence of the classical nuclear import pathway [9].

Non-classical NLSs bind directly to the different importin-�
homologues [3]. For example, the NLS with no cluster of basic
amino acids in heterogeneous nuclear ribonucleoprotein A1 and
other proteins is directly recognized by importin-�2/transportin-
1/karyopherin-�2 [14]. In addition, importin-independent
nuclear entry systems are also known. These include viral 

protein R (Vpr) of immunodeficiency virus type 1 (HIV-1) and
�-catenin, which can pass through the NPC by binding directly
to NPC components [15, 16].

NESs recognized by exportins generally have short sequences
with a cluster of hydrophobic amino acids such as RFLSLEPL and
TPTDVRDVDI in cyclin D [5] and LQKKLEELEL in mitogen-activated
protein kinase kinase [6]. Although exportin-1 has low affinity for
regular NESs to achieve efficient release of export complexes from
the NPC, there is another signal recognized by exportin-1 with
high affinity [6]. One example is snurportin, which does not con-
tain a canonical NES sequence but binds to exportin-1 through a
larger domain [6]. 

Various types of intra- and inter-molecular masking of these
transport signals regulate the efficiency of nucleocytoplasmic
transport. Phosphorylation, changes in calcium concentrations
and conformational changes for self-inhibition are representative
events for such masking [5, 11].

Table 1 Examples of cargo molecules transported by importins and exportins 

Human
transport

factor

NCBI
official
symbol

Cargo molecule

Importin-�1 KPNA2 Type 1 parathyroid hormone receptor [51] IFN regulatory factor-1[39] Oct3/4 [20]

Importin-�3 KPNA4 NF-�B p50/p65 [18] RNA helicase A [52] Oct3/4 [20]

Importin-�4 KPNA3 NF-�B p50/p65 [18] Bovine papillomavirus type1 E1 protein [53]

Importin-�5 KPNA1 Stat3 [54] Ebola virus VP24 [55] Oct3/4 [20]

Importin-�1 KPNB1 Splicing factor PRPF31 [56] Sex-determining factor SRY [57]

Importin-�2 TNPO1 HPV16 E6 oncoprotein [58] HPV L1 major capsid proteins [59]

Importin-�3 RANBP5 c-Jun [19] Influenza A viral ribonucleoprotein [60] NFAT [61]

Importin-7 IPO7 c-Jun [19] Zinc finger protein EZI  [62] Histone H1 [63]

Importin-8 IPO8 Signal recognition particle protein 19 [64]

Importin-9 IPO9 c-Jun [19] Protein phosphatase 2A [65]

Importin-11 IPO11 Ribosomal protein L12 [66] Ubiquitin-conjugating enzyme UbcM2 [67]

Importin-13 IPO13 NF-YB/NF-YC heterodimer [68] c-Jun [19] Myopodin [69]

Transportin-2 TNPO2 mRNA [70] HuR [71] hnRNP A1 [72]

Exportin-1 XPO1 Cyclin D1 [73] p53 [5] Survivin [48]

Exportin-5 XPO5
Double-stranded RNA binding protein
Staufen2 [74]

Pre-miRNAs [75]

Exportin-6 XPO6 Profilin-actin complexes [76] Actin [32]

Exportin-7 XPO7 IFN-�1 mRNA [77] p50RhoGAP [78]

Exportin-t XPOT Mature tRNAs [79] tRNA-attached ribozymes [80]
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Cargo molecules

Table 1 lists examples of macromolecules transported by nucleo-
cytoplasmic transport factors. The importins and exportins selected
here are those for which information on differentiation-associated
changes in gene expression is available through our cDNA microar-
ray analysis in human promyelocytic leukaemia HL-60 cells [17]. In
many cases, an individual protein is carried by a specific importin
or exportin, but some proteins are recognized by multiple isoforms
as exemplified by NF-�B [18], c-Jun [19] and Oct3/4 [20] (Table 1).

Importins and exportins in
cellular differentiation

HL-60 cell differentiation

Importin expression
HL-60 cells can be induced to differentiate into monocyte/
macrophage-like and neutrophil-/granulocyte like cells in
response to external stimuli such as 1�,25-dihydroxyvitamin D3,
12-O-tetradecanoyl-phorbol-13-acetate (TPA), all-trans-retinoic
acid (ATRA) and dimethylsulfoxide [21, 22]. 

The protein expression of importins-�1 (Table 2) and -�4 is
greatly repressed in differentiated HL-60 cells, while that of
importin-�7 is weakly down-regulated [23]. The protein expres-
sion of importin-�3 is down-regulated upon differentiation
towards macrophage-like cells in contrast to the stable expression
in cells differentiating into granulocyte-like cells [23] (Table 2). 

Consistent with the protein expression, the gene expression of
most importins is down-regulated upon differentiation as exam-
ined by a cDNA microarray analysis [17] and a Q-PCR [24, 25]
(Table 2). The result of Q-PCR indicates that the gene expression
of importin-�5 is up-regulated upon differentiation towards
macrophage-like cells [25] (Table 2).

The changes in the gene expression of importin-�3 are also
compatible with those in the protein expression associated with
the difference in differentiation of HL-60 cells. Thus, importin-�3

appears to have a very important role in directing cell lineages,
monocyte/macrophages versus neutrophil/granulocytes [23]. 

ATRA induces a reduction in the gene expression of importin-�1

in HL-60 cells upon granulocytic differentiation (Table 2) with a
transient up-regulation [25]. Similar observation has been made
for cultured rat aortic smooth muscle cells [26]. 

The down-regulation of the gene expression of proteins related
to nucleocytoplasmic transport may explain the differentiation-
associated suppression of the growth of HL-60 cells [27, 28].
Another example of the involvement of importins in cell growth is
the finding that RNAi-based down-regulation of the gene expression

Table 2 Selected studies on differentiation-associated changes in gene/protein expression of importins and exportins

Cells HL-60 HL-60 HL-60 HL-60 ESC‡ ESC Monocytes

Cell fate Macrophages Granulocytes Macrophages Granulocytes Cardiomyocytes Neural cells Macrophages

Method Q-PCR Q-PCR WB§ WB Q-PCR WB Q-PCR/WB

Importin-�1 Down Down Down Down Down Up

Importin-�3 Down NC¶ Down NC Up Up

Importin-�5 Up Up NC NC Down Up Up

Importin-�1 Down Down Down

Transportin-2 Down Down Up

Exportin-1 Down Down Down

Exportin-5 Down Down

Exportin-6 NC Down

Exportin-7 Down Down Down Down

Exportin-t Down Down

Ref. [25] [25] [23] [23] [38] [20] [33]

‡Embryonic stem cells.
§Western blotting.
¶No change.
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of importins-�3, -�5, -�7 and -�1 strongly inhibits the proliferation
of HeLa cells [29].

The down-regulated expression of importin-�1 accompanied
by the up-regulated expression of importin-�5 is seen in HL-60
cells both during TPA-mediated differentiation into macrophage-
like cells and ATRA-mediated differentiation into granulocyte-like
cells [25] (Table 2). The observation is in line with a recent finding
that this switching triggers neural differentiation of mouse embry-
onic stem (ES) cells [20] (Table 2). The possibility that this switch-
ing is a hallmark of cell differentiation should be studied further. 

Exportin expression
While the gene expression of five exportins (exportins-1, -5, -6, 
-7 and -t) is down-regulated in HL-60 cells differentiating towards
granulocyte-like cells, the level of exportin-6 is maintained in HL-60
cells differentiating into macrophage-like cells [17, 24, 25] (Table
2). The difference in the expression of exportin-6 in addition to
importin-�3 may be related to the differentiation of HL-60 cells
into different lineages [25]. 

The down-regulation of exportins may be involved in the differ-
entiation-associated inhibition of cell growth [27, 28]. Leptomycin
B, an inhibitor of exportin-1, is known to prevent proliferation and
cause cell cycle arrest at both G1 and G2 in rat 3Y1 fibroblasts
[30]. Ratjadones inhibiting nuclear export by blocking exportin-1
also inhibit the growth of several types of eukaryotic cells [31].

Microinjected �-actin is accumulated in the nucleus of Xenopus
oocytes unless exportin-6 is coinjected [32]. Thus, exportin-6
specifically mediates the nuclear export of �-actin and actin iso-
forms, and its expression is developmentally regulated in embryo-
genesis. The nuclear accumulation of actin has been observed in
cells treated with dimethylsulfoxide, which is an inducer of the dif-
ferentiation of HL-60 cells toward granulocyte-like cells [32], and it
is worth examining its possible relationship with the down-regu-
lated gene expression of exportin-6 as observed in HL-60 cells dif-
ferentiating into granulocyte-like cells with ATRA [25] (Table 2).

Monocyte differentiation

Macrophages induced to differentiate by macrophage colony-
stimulating factor express higher levels of proteins and mRNAs for
importins-�1, -�3 and -�5 than undifferentiated monocytes from
human peripheral blood [33] (Table 2). Since HIV-1 Vpr is able to
use these importins for nuclear entry, the observation provides an
explanation of why monocytes are refractory to HIV-1-based vec-
tor transduction unlike mature macrophages [34]. The interaction
between Vpr and importins may be a potential target for an antivi-
ral agent by inhibiting nuclear entry.  

Terminal erythroid differentiation

Terminal erythroid differentiation is the process by which imma-
ture precursor cells become erythrocytes in mammals. Exportin-7

appears to be very important to this event, since its gene expression
is time-dependently up-regulated by erythropoietin treatment in
erythroblasts isolated from the spleens of mice infected with an
anaemia-inducing strain of the Friend leukaemia virus [35]. Its
precise role, however, is not clear at present. 

Neural differentiation

The expression of importin-� subtypes is strictly regulated during
the neural differentiation of mouse ES cells [20]. The level of
importin-�1 protein is high in undifferentiated ES cells, whereas the
levels of importins-�3 and -�5 are low and undetectable, respec-
tively (Table 2). The RNAi-based knockdown of importin-�1, the
overexpression of importin-�5 or a combination thereof leads to
neural differentiation. The transcription factors Oct3/4, SOX2 and
Brn2 which play important roles in neural differentiation contain a
single cNLS (Oct3/4 and Brn2) or two cNLSs (SOX2), and importin-
�1 is involved in the nuclear transport of Oct3/4, which has a criti-
cal role in the maintenance of an undifferentiated ES-cell state. A
decrease in importin-�1/Oct3/4 concomitant with the up-regulation
of importin-�5, which is involved in the nuclear transport of SOX
and Brn2 appears to lead to neural differentiation. Thus, the coordi-
nated regulation of importin subtypes and their transcription factors
appears to have a key role in cell-fate determination.

Surprisingly, transgenic Imp-�5
-/- mice do not exhibit any obvi-

ous morphological or behavioural abnormalities [36]. Since the
expression of importin-�4 is markedly increased in the brains of
these knockout mice, a compensative mechanism may cover the
lack of an importin subtype in mammals. Supporting this notion,
an in vitro transport assay has shown that both importin-�5 and -�4

can import Brn2, although with differences in efficiency [37].

Cardiac differentiation

In cardiomyocytes differentiated from mouse ES cells, the gene
expression of nuclear transport factors including importins,
exportins, transportins, nucleoporins and Ran-related factors is
globally down-regulated with a few exceptions as compared to ES
cells [38]. In contrast to that during the neural differentiation of ES
cells, the expression of importin-�5 is down-regulated (Table 2),
suggesting that the difference may be related to cell fate. The
up-regulated gene expression of transportin-2 and Ran-binding
protein 6 is noticeable and may be related to the nuclear entry of
cardiac transcription factors such as Mef2C, Nkx2.5 and Gata4. 

Keratinocyte differentiation

Normal human epidermal keratinocytes (NHEKs) express the genes
for importins-�1, -�3, -�4 and -�5, but not importin-�6 [39].
Stimulation with interferon (IFN)-�, a modulator of epidermal prolif-
eration and differentiation, up-regulates the protein expression of
importin-�1 after 24 hrs, but down-regulates it by 48 hrs in NHEKs,
corresponding to the mRNA expression. IFN-� does not affect 
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the gene expression of other importins. Since IFN-� induces the
expression of marker genes of keratinocyte differentiation, an
increased nuclear entry of importin-�1-mediated signals at an early
stage of IFN-� treatment may facilitate the differentiation. 

These observations may be related to the finding that importin-�1 is
involved in the nuclear transport of IFN regulatory factor-1, a media-
tor of epidermal differentiation induced by IFN-�. Overexpression
and RNAi-based knockdown experiments have identified 54 genes
modulated putatively by importin-�1 in NHEKs, including the genes
for involucrin, keratin-1 and -10 [39]. However, overexpression of
importin-�1 appears to induce no morphological changes as seen in
differentiated keratinocytes, suggesting that importin-�1 by itself
may not be sufficient to induce the full differentiation.

Germ cell maturation

Proteomic profiling of differentially expressed proteins in germinal
vesicles and metaphase II arrested mouse oocytes has identified 
12 proteins including importin-�1 that migrated differently on elec-
trophoresis in a two-dimensional gel [40]. Thus, post-translational
modification appears to take place during the maturation of oocytes.

In spermatogenesis, the mRNA expression of individual
importin-� isoforms is differentially regulated [41]. Importin-�5 is
expressed in differentiated spermatogonia through to the round
spermatids in the adult mouse testis, suggesting its importance in
mitotic and meiotic germ cells. The expression of importin-�1 is
very limited, as its mRNA is present in spermatocytes but absent
once the spermatids begins to elongate. Importin-�4 is expressed
specifically in the mitotic germ cell populations, and importin-�3

in pachytene spermatocytes. Thus, mammalian spermatogenesis
appears to be a model useful for further examination of the roles
and regulation of nucleocytoplasmic transport factors in cellular
differentiation and development, and information derived there-
from may have relevance to reproductive medicine. 

The cellular and subcellular distribution of importins in sper-
matogenesis has been demonstrated comprehensively [42–44].

Muscle cell differentiation

The mouse muscle myoblast cell line C2C12 provides an excel-
lent model for studying myogenesis in vitro and cell differentiation.

The RNA-binding protein HuR is critically involved in the forma-
tion of muscle fibres through its association with MyoD and
myogenin mRNAs and is transported into the nucleus through a
transportin-2-mediated pathway [45]. Transportin-2 is
expressed in undifferentiated and differentiated C2C12 cells and
transportin 1 appears to be expressed weakly only in mature
myotubes. The involvement of transportin-2 in muscle cell dif-
ferentiation has been demonstrated by an experiment in which
RNAi-mediated depletion of transportin-2 expression lead to the
expression of the myogenic transcription factors MyoD and
myogenin. The disruption of the association between HuR and
transportin-2 appears to be an important event leading to muscle
cell differentiation.

Concluding remarks

Significant progress has been achieved in our understanding of
the structure and function of nucleocytoplasmic transport factors
including importins and exportins. Yet, information on which spe-
cific transport factors are expressed in which tissues and cells is
still limited. Such information will be crucial to investigations aim-
ing at human therapeutic applications. In addition, further studies
should be done to see whether the results obtained from in vitro
culture models will hold true in vivo as well.

Many trials are in progress as exemplified by the coupling of
NLS peptides to DNA for gene therapy [11] and disruption of the
interaction of NF-�B with importins-�1 and -�5 by NLS peptides
[46]. Importin-�1 may have prognostic value in cancer [47], and
inhibitors selectively targeting the survivin–exportin-1 interaction
may be of therapeutic relevance [48].

Recently, the genes for transcription factors Oct4 and SOX2
have been identified as the minimum requirement for the repro-
gramming of human somatic cells to pluripotency [49]. Oct4 can
be transported into the nucleus in a complex with either
importin-�1/-�1, importin-�3/-�1 or importin-�5/-�1 [20]. SOX2
may be imported with either of importin-�3/importin-�1,
importin-�5/-�1 or importin-�1 [20]. The importin-�1 gene is
one of the genes downstream of Oct4 [50]. Thus, nucleocyto-
plasmic transport factors are a potential target also in the field of
regenerative medicine.
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