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Abstract Contact repulsion of growing axons is an essential mechanism for spinal nerve

patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable

barriers, forcing axon growth cones to traverse one half of each somite as they extend towards

their body targets. This study shows that protein disulphide isomerase provides a key component

of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is

reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is

critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that

regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar

activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat

cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate

aberrant nerve terminal growth.

Introduction
Peripheral spinal nerves have a striking anatomical periodicity, or segmentation, that reflects their

necessary isolation from the segments of developing bone that will form the vertebral column. This

study sets out to identify the molecular basis of this patterning. We find a critical role for the enzyme

protein disulphide isomerase in separating outgrowing axons from the somite cells that generate

the vertebrae, and provide evidence regarding the underlying mechanism (Cook et al., 2019).

In avian and mammalian embryos, both outgrowing motor and sensory axons, and migrating neu-

ral crest cells, encounter the periodic somites that flank both sides of the neural tube (future spinal

cord). Here they traverse preferentially the anterior (A, rostral/cranial) - rather than posterior (P, cau-

dal) - halves of each successive somite (Keynes and Stern, 1984; Rickmann et al., 1985; Bronner-
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Fraser, 1986; Fleming et al., 2015; Figure 1a). For neural crest cells this preference has been

shown to depend on repulsive signalling in the P-half-somite by members of the Semaphorin/Neuro-

pilin- and Ephrin/Eph protein families (Krull et al., 1997; Wang and Anderson, 1997; Koblar et al.,

2000; Gammill et al., 2006; Davy and Soriano, 2007; Schwarz et al., 2009). However the basis of

axonal segmental patterning has remained elusive.

We previously identified contact repulsion as the main cellular mechanism generating axonal pat-

terning (Davies et al., 1990; Keynes et al., 1997). Sequential repulsion of outgrowing motor and

sensory axons in successive P-half-sclerotomes (future vertebrae) forces axons to traverse the ante-

rior (A/cranial) halves. We showed that extracts of chick embryo somites cause growth cone collapse

of both motor and sensory axons in vitro (Davies et al., 1990), a phenomenon that is widely used as

a method for identifying molecules that regulate growth cone motility (Kapfhammer and Raper,

1987; Raper and Kapfhammer, 1990). Additionally we found that the lectins peanut agglutinin

(PNA) and jacalin bind selectively to the surface of P-half-sclerotome cells rather than A-half-sclero-

tome cells (Davies et al., 1990; Stern et al., 1986). Immobilized PNA can be used to deplete col-

lapse activity, and activity is recovered by lactose elution. Biochemical purification led to the

Figure 1. Identification of csPDI in somites. (a) Schematic diagram of two spinal nerve segments in the early

embryo of birds and mammals. The neural tube (future spinal cord) extends longitudinally, overlying the midline

notochord (future intervertebral discs); anterior/A (cranial/rostral) to the left and posterior/P (caudal) to the right.

Two somites are shown, each sub-divided into 2 main components - the dermomyotome (future dermis and

skeletal muscle) and sclerotome (future vertebral cartilage and bone). The sclerotome of each somite is further

subdivided longitudinally into A- and P-halves (dashed lines), and the early components of the peripheral nervous

system develop within the mesenchyme of each successive A-half-sclerotome. Here, motor axons (green) extend

from cell bodies in the ventral (V) neural tube, and sensory axons (red) extend from cell bodies that coalesce to

form the dorsal root ganglion (DRG). The DRGs derive from neural crest cells that earlier migrated into the A-half-

sclerotomes (thick arrows) from the dorsal neural tube (D). Each DRG cell body generates one axon that grows

dorsally to enter the neural tube and one that grows ventrally to join the motor axons; together with preganglionic

autonomic axons (not shown), these motor and sensory axons form the ’mixed’ spinal nerves that will innervate the

body at each segmental level. Scale bar 50 mM. Adapted from Kuan et al., 2004. (b) Silver-stained SDS-PAGE of

lactose eluate of chick somite proteins bound to PNA-agarose; arrow indicates the major band of 57 kDa. (c, d)

Somite strip live-stained with rhodamine-PNA (red, (c) and co-stained with fluorescein-conjugated anti-PDI;

preferential staining of three P-half-sclerotomes is shown; PNA staining and anti-PDI staining are co-localized

(yellow, (d); vertical white lines indicate half-somite boundaries; Scale bars 50 mM. (e-g), Higher magnification of

boxed regions in c and d showing ring staining at the cell periphery by rhodamine-PNA (e) and by fluorescein-

conjugated anti-PDI (f), and their co-localisation (yellow, (g). Scale bars 5 mM.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Further characterisation of csPDI in somites.
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identification of two PNA-binding glycoproteins shown by SDS-PAGE as two silver staining bands of

48 kDa and 55 kDa (Davies et al., 1990).

Results

Identification of cell surface PDI in somites
In the present work we combined PNA affinity purification with more effective inhibition of protease

activity in the somite extracts, and examined the lactose eluates by semi-preparative SDS PAGE.

This revealed a major silver-staining band of apparent molecular weight 57 kDa, closely matching

the 55 kDa band seen in the earlier study (Davies et al., 1990; Figure 1b). The band was excised

and submitted for tryptic digestion and mass spectrometry, revealing 57 peptides distributed

throughout the extent of the enzyme protein disulphide isomerase/PDIA1/P4HB (Figure 1—figure

supplement 1a).

PDIA1/P4HB is one of a PDI-family of proteins that share in common a thioredoxin-like structural

fold (Kozlov et al., 2010). It is known principally as an intracellular enzyme localized in the endoplas-

mic reticulum (ER), where it regulates protein folding by catalyzing the formation and breakage of

disulphide bonds (Goldberger et al., 1963; Ali Khan and Mutus, 2014; Parakh and Atkin, 2015).

A PDIA1-related molecule was also identified previously as a retina-specific candidate cell adhesion

molecule (Hausman and Moscona, 1975; Pariser et al., 2000). Our finding that somite cell surface

PDI (csPDI) binds PNA, and is lactose-elutable from immobilized PNA, indicates that this form of PDI

is O-glycosylated. This is supported by the observation that csPDI expressed by Jurkat T cells,

immortalized from human T cell leukaemia, also possesses PNA-binding O-glycans, the elongation

of which can be blocked experimentally (Bi et al., 2011; Schaefer et al., 2017). In addition, using a

sensitive fluorescent reductase assay (Raturi and Mutus, 2007) we found that commercially purified

(bovine liver) PDI does not bind to PNA-agarose, indicating that somite csPDI has an affinity for PNA

based on its glycosylation state (Figure 1—figure supplement 1b). The expression of PDI at the sur-

face of P-half-sclerotome cells was confirmed by live-staining of microdissected strips of chick

somites, using both polyclonal anti-PDI antibody and fluorescently labelled PNA, which showed co-

localization at the cell periphery in the P-half-sclerotome (Figure 1c–g). Also the onset of PNA stain-

ing in the P-half-sclerotome was found to precede the first emergence of motor and sensory axon

outgrowth in the A-half-sclerotome by ~1.5–3 hr (Figure 1—figure supplement 1c,d).

csPDI mediates spinal nerve patterning in vivo
A role for csPDI in mediating repulsion of outgrowing spinal axons in vivo was tested by siRNA

knockdown of csPDI expression in chick embryo somites in ovo, predicted to promote outgrowth of

motor and sensory axons into the P-half-sclerotomes. A construct was designed on the basis of the

study of Zai et al., 1999. They used an antisense oligodeoxynucleotide directed against a 24 base

pair target sequence in the 3’ UTR of PDIA1/P4HB to show that csPDI expression in human erythro-

leukaemia cells is markedly reduced (>70%) without significantly affecting cell viability. The efficacy

and specificity of this construct has also been shown by others (Sobierajska et al., 2014;

Janiszewski et al., 2005). We initially confirmed that the chick siRNA construct inhibits expression

of csPDI in primary cultures of chick retinal cells and P-half-sclerotome cells (Figure 2—figure sup-

plement 1a–d). PDI gene knockdown in ovo was then carried out by microinjection of the siRNA,

incorporated in a polyethylene glycol matrix, into at least 8 somites on one side of the embryo, ante-

rior to the most recently formed somite (stage 9–12 Hamburger and Hamilton, 1951; Figure 2a).

Confirmation of cs-PDI knockdown using Western blotting was not attempted due to the limiting

availability of sufficient quantities of somite tissue, combined with the high ratio of constitutive PDI

expression in the ER versus csPDI. As predicted however, PDI knockdown in ovo caused loss of

extracellular PNA-binding in P-half-sclerotomes (Figure 2—figure supplement 1e–g). After siRNA

injection and further incubation for 48 hr, spinal nerve outgrowth was assessed by immunohis-

tochemistry using a neuron-specific-b-III tubulin antibody (clone TUJ1), observer-blind to treatment

condition. Embryos treated with control/scrambled siRNA showed normal axon segmentation, with

growth restricted to the A-half-sclerotomes (Figure 2b). However PDI knockdown caused outgrow-

ing motor axons to project additionally into the P-half-sclerotomes adjacent to the neural tube/spinal

cord (Figure 2c,d), an abnormal trajectory not seen in untreated embryos or in those similarly
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Figure 2. csPDI mediates nerve patterning in vivo. (a) Image of a live embryo in ovo, viewed from above, taken 24

hr after injection of fluorescein-labelled siRNA into somites (arrows) on one side; label is distributed throughout

the A- and P-half-sclerotomes of each somite, and is visibly diminished, as expected, at 3 consecutive somite

boundaries. Scale bar 100 mM. (b) Representative image of normal motor axon segmentation following scrambled

siRNA delivery. Longitudinal section stained using fluorescein-conjugated TUJ1 antibody. Scale bar 100 mM. (c, d)

Loss of axon segmentation in two embryos after PDI siRNA knockdown. The siRNA-treated side of each embryo is

shown; axons are segmented normally (left) but this is disrupted (right) where axons grow into P-half-sclerotomes

(P). NT, neural tube. Scale bars 100 mM. (e, f) Loss of axon segmentation in embryos after in ovo implantation of

PACMA 31-impregnated bead (blue); embryos were stained using HRP-labelled TUJ1 antibody and viewed as

whole-mounts (e) or as implanted-side-only half-mounts (f); abnormal growth of sensory axons (arrow, e; upper

arrow, f) towards dorsal neural tube (dNT) in P-half-sclerotome (P’), compared with normal projections avoiding

two adjacent P-half-sclerotomes (P, P’’); lower arrow (f) indicates motor axons sprouting from ventral neural tube

(vNT) into P-half-sclerotome; asterisks, spinal axons on opposite side of whole-mount (e). Scale bars 150 mM. (g)

Normal segmentation of dorsal/sensory axons and ventral/motor axons after implantation of PACMA 56 bead; P,

P’, P’’, dorsal and ventral domains of 3 consecutive P-half-sclerotomes. Scale bar 150 mM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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treated with control/scrambled siRNA. Control experiments showed that expression of the A-half-

somite polarity determinant gene Tbx18 was unaffected by siRNA injection, whereas expression of

the P-half determinant gene Uncx4.1 was variably diminished in the treated region (Figure 2—figure

supplement 1h). Since Tbx18 expression did not alter correspondingly, this was unlikely to be due

to a P-to-A switch in cell identity, or to reflect a change in cell viability due to reduced PDI expres-

sion. It may be explained if csPDI knockdown in P-half-sclerotome cells at the A/P boundaries causes

some to mix with neighbouring A-half cells and down-regulate Uncx4.1 expression as a result. Injec-

tion of scrambled siRNA did not cause detectable sclerotome caspase-3 expression.

To rule out the possibility that these phenotypes resulted from an off-target effect of the siRNA,

control experiments confirmed that co-injection of siRNA with a FLAG-M1-epitope-tagged plasmid

expressing human PDIA1/P4HB (>90% homologous to chicken PDIA1 Everson and Kao, 1997) par-

tially rescued the normal segmented axon phenotype (Figure 2—figure supplement 1i–k). We also

found that inhibiting the enzyme activity of PDI caused a similar phenotype. PDI possesses two inde-

pendent active sites, and the small molecule PACMA 31 has been shown to form a covalent bond

with a cysteine residue of the second active site, thereby inhibiting its catalytic activity (Xu et al.,

2012). PACMA 31 was applied in ovo using two delivery methods. First, as described above for

siRNA delivery, PACMA 31 in solution (200 mM) was injected directly into somites in ovo and the

resulting axon phenotype assessed by immunohistochemistry. PACMA 56, an inactive substituted

alkynyl derivative of PACMA 31 that does not bind to PDI (Xu et al., 2012), acted as a control. Con-

sistent with the results of siRNA knockdown, PACMA 31 injection also caused abnormal axon projec-

tions into P-half-sclerotome whereas control/PACMA 56 injection did not (Figure 2—figure

supplement 1l–n). In addition the A-P width of ventral roots increased after PACMA 31 injection,

indicating axon defasciculation (Figure 2—figure supplement 1o).

The second PACMA delivery method involved impregnation of Affi-Gel Blue agarose beads (25–

50 mm diameter) with PACMA 31 or PACMA 56 (500mM), followed by microsurgical implantation of

single beads in ovo between the neural tube and newly-formed sclerotome in stage 12–14 chick

embryos. After further incubation for 24–36 hr, axon trajectories were assessed in the implant region

by whole-mount immunohistochemistry. As with siRNA knockdown, PACMA 31 caused abnormal

axon outgrowth into P-half-somite territory (Figure 2e,f; 14/29 embryos). Using PACMA 56 as con-

trol, only an occasional axon outgrowth abnormality (1/20 embryos) was observed; in 19/20

embryos, axons were confined to the A-half-sclerotomes as in normal embryos (Figure 2g).

csPDI mediates axon repulsion via nitric oxide signalling/S-nitrosylation
To elucidate the mechanism of action of csPDI we first tested whether PDI causes growth cone col-

lapse by direct interaction with the growth cone surface. The purified bovine enzyme incorporated

in liposomes was added at a range of concentrations (25–1000 ng/ml) to cultures of chick embryo

dorsal root ganglia (DRGs) extending sensory axons on laminin in the presence of nerve growth fac-

tor (NGF; typically between 50 to >100 growth cones were assayed per DRG). However this did not

increase collapse above the control levels (0–20% of growth cones) seen after addition of phos-

phate-buffered saline (PBS) or untreated liposomes (Figure 3a).

Nitric oxide (NO) has been shown to elicit growth cone collapse in vitro when released in solution

from NO donors [3-morpholino-sydononimine, SIN-1 (Hess et al., 1993); also 3-(2-hydroxy-1-

methyl-2-nitrosohydrazino)-N-methyl-1-propanamine, NOC-7 (Ernst et al., 2000; He et al., 2002).

Moreover Zai et al., 1999 have shown that NO entry into csPDI-expressing human erythroleukemia

cells involves a transnitrosation mechanism catalyzed by the enzyme. Physiological NO donor S-nitro-

sothiol (SNO) levels have been estimated in human cerebrospinal fluid and plasma at low micromolar

concentrations (respectively 0.86 ± 0.04 mM Bayir et al., 2003 and 1.77 ± 0.32 mM Massy et al.,

2003). We therefore tested whether application of PDI in combination with S-nitrosoglutathione

(GSNO, 1 mM) as NO donor causes growth cone collapse. Whereas application of GSNO alone in

solution did not elicit collapse above control levels, significant collapse was observed when GSNO

was first combined with PDI (125 ng/ml) and then added to DRG cultures (~60% growth cones

Figure 2 continued

Figure supplement 1. Phenotypic rescue of siRNA knockdown and effect of inhibiting csPDI using PACMA 31.
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Figure 3. csPDI mediates axon repulsion in vitro. (a) Collapse assays testing purified bovine PDI in liposomes at a range of concentrations; controls,

phosphate-buffered saline (PBS) and untreated liposomes; histogram shows mean + s.e.m. (b) Assays testing PDI and GSNO applied individually or

concomitantly. (c) Assays testing PACMA31 and PACMA56 on somite extracts (SE). (d) Assays testing reducing agents at the concentrations indicated

when applied either alone or together with PDI+GSNO. (e) Assays testing GSH and L-homocysteine on SE-induced collapse. (f) Assays testing

myoglobin (20 mM) on SE- and PDI+GSNO-induced collapse. (g) Assays testing carboxy (C)-PTIO (20 mM) on PDI+GSNO-induced collapse. (h) Assays

testing L-NAME and its control D-NAME on SE-induced collapse; calcimycin was used as a positive control. (i) S-nitrosylated protein (iodo-TMT-

labelled) in somites; protein samples (48 mg) from somite cell-free extracts were fractionated on NuPAGE 4–12% Bis Tris gels as described in the

Methods; lanes 1 and 2 are controls consisting of somite proteins only, with no detectable signal compared with lanes 3 and 4 where GSNO has been

added; lane 3 is a control (treated with water) showing negligible iodoTMT labelling, and lane 4 (reduced with ascorbate to generate a new free thiol

for labelling) shows increased label; lane 5 shows that addition of PDI (1 mg/0.1 ml reaction mixture) enhances labelling; lane 6 shows that 3 mM GSH in

Figure 3 continued on next page
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collapsed after 1 hr, Figure 3b, Figure 3—figure supplement 1a,b). To confirm that PDI+GSNO-

induced collapse in solution is reproduced in the liposome-based collapse assay, we found that the

PDI concentration dependence of collapse was similar in both cases. (Figure 3—figure supplement

1a,c). Also the time course of PDI+GSNO-induced collapse was similar to that induced by somite

extracts, and contrasted with the more rapid onset of collapse induced by the soluble repellent

Sema3A (Figure 3—figure supplement 1d–f).

We next tested the PDI inhibitors purified-bacitracin (Rogelj et al., 2000), anti-PDI neutralizing

antibody, phenylarsine oxide (PAO) (Bennett et al., 2000), acetylated triiodothyronine (T3)

(Primm and Gilbert, 2001) and 16F16 (Hoffstrom et al., 2010) on PDI+GSNO-induced collapse

when applied in solution. Of these, three inhibitors (bacitracin, neutralizing antibody and PAO) were

most effective in reducing collapse when incorporated in liposomes with PDI (Figure 3—figure sup-

plement 1g–l). Following the publication of the small molecule PDI-inhibitor PACMA 31 and its con-

trol PACMA 56 (Xu et al., 2012), the candidacy of csPDI in mediating somite extract (SE)-induced

collapse was further confirmed using PACMA 31 in liposomes, which inhibited collapse by >50%

whereas PACMA 56 was inactive (Figure 3c).

PDI has two active sites, each with the amino acid sequence WCGHCK. Sliskovic et al., 2005

have shown that PDI can be S-nitrosylated (PDI-SNO), and that the enzyme can also act as a denitro-

sylase resulting in .NO release as a free radical. They have proposed that PDI-SNO is denitrosylated

by a one-electron reduction mechanism at the second active site. Moreover they showed that gluta-

thione (GSH) is the most effective reducing agent, and that no significant denitrosylation is observed

using reducing agents dithiothreitol (DTT) or L-homocysteine (Sliskovic et al., 2005). Consistent

with their study, we found that when PDI+GSNO or somite extracts were incorporated in liposomes

and subsequently treated with GSH (3 mM), collapse activity was lost. However identical experi-

ments using 3 mM DTT or L-homocysteine did not affect collapse activity. Notably, GSH did not

block collapse when applied at 3 mM, within the extracellular concentration range typically present

in vivo and 3 orders of magnitude below the ambient intracellular concentration range (Owen and

Butterfield, 2010; Figure 3d; see Discussion). Also consistent with the observations of

Sliskovic et al., 2005., somite extract-induced collapse was inhibited by 3 mM GSH but not by 3

mM L-homocysteine (Figure 3e).

Further evidence that a NO-based mechanism elicits growth cone collapse was provided by the

finding that myoglobin, regarded as a pseudo-enzymatic NO scavenger (Ascenzi and Brunori,

2001; Rayner et al., 2009), inhibited collapse induced by PDI+GSNO and by somite extracts

(Figure 3f). PDI+GNSO-induced collapse was also inhibited by the membrane-impermeable NO-

scavenger carboxy-2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO; Figure 3g).

Somite extract-induced collapse was additionally prevented by pre-treatment of DRGs with the neu-

ronal nitric oxide synthase (nNOS) inhibitor L-NAME, but not by its control/chiral isomer D-NAME,

indicating a role for nNOS activity in the collapse process (Figure 3h).

These experiments implicate NO signalling in somite-induced growth cone repulsion. The in vitro

study of Stroissnigg et al., 2007 has likewise shown a role for S-nitrosylation of the microtubule-

associated protein MAP1B in mediating mouse DRG growth cone collapse caused by stimulation of

nNOS by the calcium ionophore calcimycin/A23187. They showed further that S-nitrosylation of Cys

Figure 3 continued

the absence of GSNO and PDI does not generate a signal; lane 7 shows that 3 mM GSH is insufficient to interfere with nitrosylation, concurring with the

findings of Sliskovic et al., 2005. The coloured molecular weight markers on the blot are shown on the left (BLUeye prestained protein ladder, 2.5 mL,

Geneflow). (j) Identification of LC1 in somite extract (25 mg protein); the blot was cut in half above the 41K marker and the top half of the membrane

was probed with rabbit anti-tubulin followed by goat anti-rabbit IgG; the bottom half was probed with mouse monoclonal antibody against amino

acids 2257–2357 of mouse MAP-1B (LC1) followed by goat anti-mouse IgG. The molecular weight markers on the blot are shown to the right (BLUeye

prestained protein ladder, 3 ml). (k) Identification of LC1 as a substrate for S-nitrosylation; cell-free somite extract (200 mg) was treated with D-NAME or

L-NAME, followed by further incubation in GSNO (200 mM), as described in the Methods. Samples were then processed for the presence of

S-nitrosylated proteins using iodo-TMT as described in the Methods. Protein samples (15 mg) were then fractionated and blotted, after which the blot

was cut as described for (j). The top half was treated with anti-tubulin and the bottom half with anti-iodoTMT. L-NAME treatment blocked

S-nitrosylation, as shown by the lack of iodoTMT labelling. The control D-NAME was without effect.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional characterisation of csPDI-mediated growth cone collapse.
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2457 in the MAP1B light chain sub-unit (LC1) is a critical event in the cytoskeletal dynamics underly-

ing collapse. To examine expression of S-nitrosylated proteins in somites, we therefore carried out

Western blotting of cell-free somite extracts using iodoTMT reagent, which gives lower background

labelling compared with biotin labelling. The assay was prepared from 650 dissected somite strips

homogenised in HENS buffer. Remarkably only one major band (molecular weight 38 kDa) was

detectably S-nitrosylated (Figure 3i). We additionally confirmed, by Western blotting using a mouse

monoclonal antibody against amino acids 2257–2357 in LC1 of mouse MAP-1B (see

Materials and methods), that this S-nitrosylated somite protein reacts strongly with the anti-LC1 anti-

body (Figure 3j). Also the nNOS inhibitor L-NAME inhibited both S-nitrosylation of the 38 kDa pro-

tein (Figure 3k) and somite extract-induced growth cone collapse (Figure 3h), while the control

stereoisomer D-NAME was without effect (Figure 3h,k). These findings indicate that a molecular

mechanism similar to that proposed by Stroissnigg et al., 2007 operates within the growth cone

during its repulsion by somites in vivo.

csPDI activity in mammalian forebrain grey matter
We previously found that, as for somites, extracts of adult mammalian and chicken forebrain grey

matter also cause sensory/DRG axon growth cone collapse that can be depleted by the use of

immobilized PNA. This suggested that a contact-repulsive system similar to that in somites may be

expressed in the mature CNS (Keynes et al., 1991). In confirmation we found that immobilized jaca-

lin, a lectin that binds the same O-linked disaccharide (Galb1-3GalNAc) as does PNA, but unlike

PNA is not selective for its de-sialylation, can be used to deplete collapse induced by rat forebrain

extracts (RFE; Figure 4—figure supplement 1a). Ghosh and David, 1997 have also described a

growth cone collapse-inducing activity in membrane preparations of rat cerebral cortical grey mat-

ter. We therefore tested whether, as for somite extracts, a range of inhibitors of PDI activity block

RFE-induced collapse, and found this was the case. Application of PACMA 31 (5mM) significantly

reduced collapse (by 50–60%) whereas PACMA 56 (5mM) did not (Figure 4a, Figure 4—figure sup-

plement 1b). Another small molecule PDI-inhibitor, quercetin-3-O-rutinoside (Jasuja et al., 2012)

inhibited RFE-induced collapse when used at both 1 mM and 50 mM (Figure 4b). RFE-induced col-

lapse activity was immunodepleted using polyclonal anti-PDI antibody but not using IgG or bovine

serum albumin (BSA) as sham protein controls (Figure 4c). Moreover, as for somite extracts, applica-

tion of 3 mM GSH reduced RFE-induced growth cone collapse, whereas 3 mM DTT, 3 mM L-homo-

cysteine (L-HC) or 3 mM GSH did not (Figure 4d). At GSH concentrations between 3 mM and 3 mM,

inhibition of collapse increased with concentration (Figure 4—figure supplement 1c). Last, and

again consistent with a NO-based mechanism, we confirmed that application of the NO scavengers

myoglobin and C-PTIO depleted RFE-induced collapse (Figure 4—figure supplement 1d,e).

One source of csPDI in the brain may be the astrocyte, which shares fate specification by the tran-

scription factor SOX9 with P-half-sclerotome cells (future vertebral cartilage) (Akiyama et al., 2002;

Stolt et al., 2003; Sun et al., 2017). In support of this, live-staining experiments showed that csPDI

is expressed on the surface of cultured human astrocytic cells, as for P-half-sclerotome cells

(Figure 4e). Moreover extracts of these cells caused growth cone collapse that was removed by the

use of immobilized PNA and jacalin (Figure 4—figure supplement 1f), and a cell surface prepara-

tion isolated from rat primary cortical astrocytes was found to contain csPDI (Figure 4—figure sup-

plement 1g).

Collectively these experiments indicate that csPDI is a major component of the growth cone col-

lapse-inducing activity detectable in the grey matter of the mature mammalian brain. The NGF-

dependent primary sensory neurons assessed here project axons in vivo in the CNS as well as PNS,

making synapses in the dorsal horn of the spinal cord and in the brainstem. We have shown previ-

ously that two populations of CNS-restricted neurons are also responsive to the somite contact-

repellent system. When explants of embryonic day-4 (E4) chick telencephalon or E7 retina are

grafted in ovo in place of chick spinal cord, their axons avoid P-half-somites (Keynes et al., 1991;

Vermeren et al., 2000). Moreover chick retinal axon growth cones collapse in response to somite

extracts in vitro (Vermeren et al., 2000), and in further confirmation we found that they collapse in

response to PDI+GSNO (Figure 4—figure supplement 1h).
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Figure 4. csPDI activity in mammalian forebrain. (a-d) Collapse assays using PACMA 31 and PACMA 56 (a), quercetin-3-O-rutinoside (b),

immunodepletion (c), and reducing agents (d). (e) Immunocytochemistry on live human astrocytic (1718) cells. Scale bars 20 mM. Row 1, anti-PDI (red)

shows PDI expression at the cell surface, DAPI-staining (blue) shows position of nucleus. Row 2, anti-PDI live staining at the cell surface (red) contrasts

Figure 4 continued on next page
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Discussion
The significance of PDI as an ER-based foldase/isomerase is well known, but the biological role of

csPDI is less clear-cut. It has been implicated in processes such as platelet aggregation and thrombo-

sis, and in animal cell infection by a variety of micro-organisms (Ali Khan and Mutus, 2014). Here

we have identified a key function for csPDI in contact repulsion using a biological system. Consistent

with its location at the cell surface, somite csPDI is an O-glycosylated protein, as shown by our lec-

tin-binding studies (Davies et al., 1990) and by Bi et al. for human Jurkat T cells (Bi et al., 2011). In

keeping with this, it has been shown that contact between a single DRG growth cone filopodium

and the surface of a P-half-somite cell in vitro is sufficient to initiate a rapid filopodial withdrawal/

repulsive response, followed by reorientation of the growth cone away from the cell (Steketee and

Tosney, 1999). The rapid nature of this response, combined with our finding that somite extract col-

lapse-inducing activity is depleted using the lectins PNA and jacalin (Davies et al., 1990), argue

strongly that repulsion is likely to arise from the activity of csPDI rather than ER-based PDI. These

lectins have specificity for O-glycans that are synthesised and linked to protein in the Golgi appara-

tus before the glycoprotein is transported to the cell surface. Also consistent with a repulsion mecha-

nism, inhibition of PDI activity in vivo, using either siRNA knockdown or PACMA 31 inhibition of

enzyme activity, causes axons to traverse the P-half-somites. Since PDI is a multifunctional enzyme

operating both within and outside cells, it is possible that this phenotype might arise for other rea-

sons. However we used the same target for gene knockdown experiments as used by Zai et al.,

1999., who showed that cell viability is unperturbed despite inhibition of csPDI expression. Addition-

ally we saw no change in somite morphology despite loss of lectin binding at the cell surface.

In chick somites the onset of csPDI expression in P-half-sclerotome immediately precedes the first

emergence of spinal axons in the A-half. This matches well the proposed function of csPDI in mediat-

ing contact repulsion of outgrowing motor and sensory axons. The selective migration of neural crest

cells in A-half-sclerotomes precedes by several hours the first axon outgrowth at each segmental

level in the chick embryo, and is likewise matched temporally by the onset of expression of the

secreted repellent Sema3F in newly-formed P-half-sclerotomes (Gammill et al., 2006). The secreted

axon repellent protein Sema3A is additionally expressed selectively in P-half-sclerotome

(Eickholt et al., 1999) (see also Shepherd et al., 1996). However no long-distance axon repulsion is

detected in collagen gel co-explants of DRGs with dissected P-half-sclerotomes (Keynes et al.,

1997). Moreover, segmented spinal nerve patterning persists in compound Neuropilin1/2 mutant

mice in which somite-based Semaphorin signalling is depleted (Schwarz et al., 2009; Huber et al.,

2005), presumably because csPDI expression in these mice compensates disrupted neural crest

migration.

Together these observations imply that the segmental patterning of neural crest cells and axons

is regulated predominantly by distinct molecular signals. Supporting this, the Eph-family receptor

tyrosine kinase EphB2 and its ligand ephrin-B1 have been additionally implicated in somite-based

repulsion of neural crest cells (Krull et al., 1997; Wang and Anderson, 1997; Davy and Soriano,

2007), but shown not to be necessary for motor axon segmentation (Koblar et al., 2000). Other

candidate axon-repellent molecules that are preferentially expressed in P-half-sclerotome have been

identified (Kuan et al., 2004) but their in vivo roles have remained uncertain. For T-cadherin

(Ranscht and Bronner-Fraser, 1991) and F-Spondin (Tzarfati-Majar et al., 2001), while each of

these proteins has been shown to inhibit motor axon growth in vitro, mouse gene knockout pheno-

types consistent with a role in spinal nerve segmentation in vivo have not been published to date

(Ciatto et al., 2010; Palmer et al., 2014). The chondroitin sulphate proteoglycans aggrecan and

versican provide further similar examples (Watanabe and Yamada, 2002; Perissinotto et al., 2000;

Dours-Zimmermann et al., 2009). Also the extracellular matrix glycoprotein Fibulin 2 was recently

found to have P-half-specific expression in a RNA-seq screen of dissected mouse A- and P-half-

Figure 4 continued

with selective staining of ER with ER-Tracker (green). Rows 3,4, fixation permits visualisation of ER-PDI using anti-calnexin (green), which is absent under

live staining conditions (Row 5).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Action of lectins and other reagents on collapse activity in brain/astrocyte extracts and responsivity of retinal neurons.
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somites (Schaeffer et al., 2018). While Fibulin 2 does not possess intrinsic growth cone collapse-

inducing activity, the evidence indicates that it promotes Sema3A signalling in the P-half-sclerotome,

and may contribute to spinal nerve fasciculation in vivo (Schaeffer et al., 2018). Last, the identifica-

tion by Pfaff and colleagues of the Columbus mouse mutation (Bai et al., 2011) provides a striking

example of loss of motor/sensory axon repulsion in mouse P-half-somites. Here, the loss of Preseni-

lin-1 (PS-1) function causes outgrowing axons to traverse both halves of the somite. This is explicable

by the consequent loss of Notch function required to generate P-half-somite polarity, upstream of

P-half-somite differentiation, as seen in two previous PS-1 mouse gene knockout studies

(Shen et al., 1997; Wong et al., 1997).

Regarding the mechanism of csPDI, the models of Zai et al., 1999 (using human erythroleukae-

mia cells), Ramachandran et al., 2001 (using fibroblasts and endothelial cells) and Sliskovic et al.,

2005 have been proposed to explain how NO entry into these cells is regulated by a transnitrosation

mechanism facilitated by csPDI. These in vitro cellular models are directly applicable to the axon

growth cone/somite system in vivo. We suggest that csPDI acts as a de-nitrosylase, operating consti-

tutively at the P-half-somite cell surface to promote the transfer of NO. from extracellular S-nitroso-

thiols into the cytosol of contacting growth cone filopodia, thereby initiating repulsion/collapse

Figure 5. Schematic diagram of the proposed action of csPDI in mediating growth cone repulsion by NO. 1. A

filopodium (blue) contacts a sclerotome cell in the posterior/P-half-somite, where it encounters csPDI, leading to

the denitrosylation of a NO-donor molecule, for example GSNO. This reaction can be blocked by PACMA 31, so

preventing collapse. 2. NO (which is known to cross cell membranes) is transferred into the filopodium as a result,

where it may additionally regulate nNOS activity (Benhar et al., 2009). 3. As shown by Stroissnigg et al., 2007.,

nNOS activation causes nitrosylation of cysteine 2457 in the COOH terminus of the MAP1B light chain LC1. They

propose that the resulting conformational change in LC1 enhances MAP1B/microtubule binding, which in turn

blocks activity of the anchored motor protein dynein. Dynein normally provides a tubulin/minus-end-directed

motor activity via its motor domains (filled green circles) that drives axon extension through interaction with

microtubules. This is counteracted by a retraction force due to cortical actin/myosin, so that dynein blockade

converts filopodial extension to filopodial retraction/repulsion (large red arrow). MT, microtubule-binding domain

of MAP1B/LC1; C, COOH terminus of LC1. The lower part of this diagram is adapted from the scheme of

Stroissnigg et al., 2007.
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(Figure 5). Extracellular S-nitrosoglutathione (GSNO) may provide a ubiquitous source of NO donor,

as suggested for csPDI activity in the context of platelet aggregation (Shah et al., 2007). Critically

we have shown that its ambient extracellular concentration in vivo (~1 mM) is sufficient, in combina-

tion with purified PDI, to elicit growth cone collapse in vitro. Alternatively or additionally, other NO

donors may be involved.

The transnitrosation model is well supported by the finding that DRG/sensory axon growth cones

collapse when exposed in vitro to the NO donors 3-morpholino-syndoninime (SIN-1) (Hess et al.,

1993) and NOC-7 (Ernst et al., 2000; He et al., 2002). SIN-1-induced collapse is prevented by the

presence of haemoglobin, which binds released NO (Hess et al., 1993), and we have shown that

both myoglobin, which similarly binds released NO, and the membrane-impermeable NO-scavenger

PTIO (Flögel et al., 2001) deplete the collapse-inducing activity of somite extracts. Moreover nNOS

inhibition by L-NAME prevents such collapse, indicating that NO signalling may be further amplified

in the growth cone by nNOS activity (Benhar et al., 2009).

How might NO signalling in the growth cone influence the cytoskeleton? Our results accord well

with the proposal of Stroissnigg et al., 2007 that, in axons extending in vitro, growth cone retrac-

tion is counteracted by a microtubule/dynein-based system. S-nitrosylation of LC1 induces a confor-

mational change that enhances binding of the LC1-HC complex to microtubules, so blocking dynein

action and promoting retraction over extension. Correspondingly, in the somite system in vivo both

motor and sensory axon growth cones extending at the A/P-half-somite boundaries will make filopo-

dial contact with P-half-somite cells expressing csPDI, triggering NO-mediated repulsive signalling.

Consistent with this, using the iodo-TMT reagent we find that LC1 is the only S-nitrosylated protein

detected in cell free extracts of dissected somite strips, which necessarily include growth cone

proteins.

The observation that a repellent activity closely similar to the somite system is expressed in

mammalian forebrain grey matter is of particular interest, and extends the range of brain pro-

teins originally identified as developmental axon repellents (Raper and Kapfhammer, 1990;

Cox et al., 1990). Collapse-inducing activity is significantly reduced using the lectins PNA and

jacalin (this study and Keynes et al., 1991), and is also prevented using a variety of small mole-

cule inhibitors (PACMA 31, rutinoside, GSH) as well as myoglobin and anti-PDI antibody. Our

findings additionally implicate the astrocyte as a source of this activity, since human astrocytic

(1718) cells and rat cortical primary astrocytes express csPDI, and 1718-cell-derived growth cone

collapse activity is removed by immobilized PNA and jacalin. In view of the involvement of NO/

S-nitrosylation signalling in the csPDI-mediated repulsion mechanism, rather than a protein-based

ligand-receptor interaction, a broad range of CNS axon types may prove susceptible to it. And

consistent this, we have shown previously that chick CNS (retinal and telencephalic) axons

respond to the somite repellent in vivo (Keynes et al., 1991; Vermeren et al., 2000). It may

also be significant that csPDI expression by human malignant glioblastoma cells has been related

to their invasiveness within the brain (Goplen et al., 2006).

The neuron may be another source of brain-derived csPDI, since a recent proteomic analysis of

CNS synaptic cleft proteins identified csPDI/P4HB among the most enriched candidates at both

excitatory and inhibitory synapses in embryonic rat cortical neuronal cultures Loh et al., 2016; csPDI

has also been identified at the surface of both neuroblastoma cells (Xiao et al., 1999) and retinal

cells (Pariser et al., 2000). Together with the experiments reported in this study, these findings col-

lectively raise the possibility that csPDI is ’bifunctional’ in promoting both adhesive and repulsive

neuronal/glial interactions in the CNS. For example, NO signalling is implicated in synapse elimina-

tion during CNS development (Wu et al., 1994; Gibbs and Truman, 1998), and csPDI activity might

provide an extracellular source of NO alongside intracellular nNOS activity.

In sum, this study reveals a novel role for the multifunctional enzyme PDI in the periodic pat-

terning of peripheral spinal nerves, ensuring their separation in somites from developing carti-

lage and bone. The additional expression of csPDI at the astrocyte surface, and its function in

promoting NO-based repulsion of growing nerve terminals, suggest a promising candidate for

regulating axon growth and plasticity that may be widely distributed in the developing and

mature nervous system.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo-sapiens)

Human astrocytoma-
derived 1718 cells

ATCC RRID:CVCL_1118 authentication by
STR profiling
mycoplasma
contamination
not tested (used
directly from ATCC)

Transfected
construct
(Gallus gallus)

siRNA to 3’UTR of
chick P4HB/PDIA1

This paper siRNA TCGCCCTCAC
TTGTCTTTA

Transfected
construct
(Gallus gallus)

scrambled siRNA This paper siRNA GCTCTCTCG
TCTATCTACT

Biological
sample
(Gallus gallus)

somite extract This paper Freshly isolated
from Gallus gallus

Biological
sample (Rattus
norvegicus
domestica)

rat forebrain
extract

This paper Freshly isolated
from
Rattus norvegicus
domestica

Antibody Mouse IgG2a
anti-tubulin b3
(mouse
monoclonal)

BioLegend clone TUJ1
RRID:AB_2315519

(1:500)

Antibody anti-PDI (rabbit
polyclonal)

Sigma-Aldrich Cat# P7496 (1:250 live staining)
(1:500 post-fixation
staining)
(1:20,000 western blot)

Antibody anti-calnexin
mouse IgG2b
(mouse
monoclonal)

Abcam clone 6F12BE10
RRID:AB_10860712

(1:100 live staining)
(1:200 post-
fixation staining)

Antibody Alexa Fluor 488
Goat anti-
Mouse IgG1
(goat polyclonal)

Invitrogen A-21121
RRID:AB_2535764

1:500

Antibody Alexa Fluor 594
Goat anti-Mouse
IgG2a (goat
polyclonal)

Invitrogen A-21135 1:500

Antibody Peroxidase-
conjugated Goat
anti-mouse IgG
(goat polyclonal)

Jackson Immuno
Research

115-035-003 1:500

Recombinant
DNA reagent

plasmid encoding
human PDIA1
(18–508)

Addgene hPDI1_18–508_
WT_pFLAG-CMV1
RRID:Addgene_31382

Depositing lab:
Prof David Ron
University of
Cambridge, UK

Sequence-
based reagent

Uncx4.1 This paper primer synthesis (forward) ATCGATGGA
TTACTGAGCGG
(reverse) TAATACGA
CTCACTATA
GGGAGGTTTAAGC
AAACGGACGCTG

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

Tbx18 This paper primer synthesis (forward) GTAATGCT
GACTCCCCGGTA
(reverse)
TAATACGACTCAC
TATAGGGAGACTGG
TTTGGTTTGTGAGCC

Sequence-
based reagent

T7 promoter Sigma-Aldrich primer synthesis TAATACGACTCA
CTATAGGGAG

Commercial
assay or kit

In-Fusion HD
Cloning

Clontech 639647

Other ER-Tracker
Green
FL Glibenclamide

Thermo Fisher E34251

Chick embryo grafting procedure
Fertilized hens’ eggs (Gallus gallus, Bovans Brown variety; Winter Egg Farms, Fowlmere, Cambridge-

shire) were incubated at 38˚C to obtain embryos at stage 12–14 (Hamburger and Hamilton, 1951)

(16–22 somites). Eggs were windowed and 0.2–0.5 mL of a 1:10 mixture of India ink (Fount India,

Pelikan) and phosphate-buffered saline (PBS) was injected into the sub-blastodermal space. The win-

dow was lined with silicone grease, and the embryo raised to the level of the shell by pipetting PBS

into the egg through the window, creating a bubble of PBS held in place by the grease. An incision

was made between the neural tube and newly-formed sclerotome on one side of the embryo, and a

single Affi-Gel Blue agarose gel bead (BioRad, Cibacron blue coupled to agarose, 30–50 mm diame-

ter) impregnated with PACMA31 or PACMA56 (500 mM in PBS) was implanted into the resulting

space (adjacent to the neural tube medially and notochord ventrally). Embryos were then re-incu-

bated for 24–36 hr before fixing and processing for axon staining (see below) as whole-mounts or as

(left and right) half-embryo-mounts. PACMA31 or PACMA56 solution was made by adding 0.5 ml

dimethylsulfoxide to 2.2 mg PACMA to make a 10 mM stock solution. This was diluted x20 in PBS to

make a 500 mM working solution, in which the Affigel beads were then placed for 2–3 hr at 21˚C

prior to implantation.

Preparation of tissue extracts
Stage 16–18 chick embryo trunks (comprising ectoderm, somites with DRG neurons, and motor

axons, neural tube and notochord) or somite strips (ectoderm, somites with DRG neurons and motor

axons) were dissected and immediately placed on solid CO2 and transferred to �80˚C for longer

storage. Trunks from ~60 embryos were homogenised in 1 ml solubilisation medium [2% w/v CHAPS

in PBS made 1 mM with sodium orthovanadate and 1 tablet cØmplete protease inhibitor cocktail

(Roche) per 50 ml of solution] on wet ice by shearing through a 20G then 26G needle. Further

homogenisation was carried out with grinding resin (GE Healthcare) and electrically-driven dispos-

able pestles (GE Healthcare). Following centrifugation at 14,000 g for 5 min at 4˚C to remove the

grinding resin, the supernatant fluid was centrifuged at 100,000 g for 1 hr at 4˚C in a Beckman

Optima TL ultracentrifuge using a TLS-55 rotor. Supernatant fluid was incorporated into liposomes

as described by Davies et al., 1990. Pellets of 1718 cells were similarly extracted. Dissected rat (typ-

ically 3 months old) forebrain grey matter was stored at �80˚C and allowed to thaw on wet ice in the

above solubilisation medium, ratio 0.5 g wet weight tissue to 2 ml medium. Following homogenisa-

tion in a Dounce Tissue Grinder (loose and tight fitting glass pestles were used in succession) and

centrifugation at 14,000 g for 5 min at 4˚C, the supernatant fluid was centrifuged at 100,000 g for 1

hr at 4˚C as described above. The clear supernatant fluid [14.9 ± 0.5 mg protein/ml (s.e.m.)] from the

latter centrifugation was used for incorporation into liposomes.

Growth cone collapse assays
These were carried out using whole- or half-DRGs dissected from embryonic day 7 (E7) chick

embryos (stage 30–32) or (for retinal axons) from dissected pieces (~50 mM diameter) of E7 chick
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retina. DRG explants were grown for 24 hr on glass coverslips coated with poly-L-lysine (Sigma-

Aldrich) and laminin (Sigma-Aldrich), in the presence of nerve growth factor (NGF, 40 ng/ml, Sigma-

Aldrich); full details of the assay method used in our laboratory have been published (Cook et al.,

2014). Retinal explants were grown as for DRGs but without NGF and with medium supplemented

with N-2 (Sigma-Aldrich, 100x concentrate) and bovine pituitary extract (200 mg/ml, Life Technolo-

gies). Cultures were fixed 1 hr after addition of each treatment, and growth cones were assessed by

phase-contrast microscopy, observer-blind to treatment condition. Between 50 and >100 growth

cones were assayed in each DRG culture. They were classified as spread or collapsed according to

published morphological criteria (growth cones with two or fewer filopodia were scored as col-

lapsed, see Figure 3—figure supplement 1b; Cook et al., 2014). We have previously shown the

validity of this method using phase contrast-microscopy when compared to equivalent results using

phalloidin staining (Manns et al., 2012). Results are presented as the mean percentage collapse of

growth cones extended from individual DRG explants.

Assessment of PDI inhibitors using collapse assay
Conditions of controls and reagents were assigned randomly to each culture and all experiments

were blind-coded. Unless otherwise specified all components were added simultaneously and incu-

bated for 1 hr (37˚C/5% CO2) before fixation. In experiments with antibody preparations, controls

using the same concentration of non-immune rabbit IgG (Sigma-Aldrich G2018, Lot#051K7670), BSA

and sodium azide were included. Immunodepletion experiments were performed using Magnetic

Dyna Protein A beads (Invitrogen, 70 ml packed beads) washed twice in 0.1M phosphate buffer (pH

8) with 0.01% Tween 20 (1ml) by end-over-end mixing for 2.5 hr at 4˚C. Washed beads were added

to rat forebrain extracts (RFE) containing either anti-PDI (Sigma-Aldrich P7496 Lot#054K4801), non-

immune rabbit IgG or bovine serum albumin (BSA) and mixed end-over-end for 1 hr at 4˚C. Beads

were removed on a magnetic separator and the extract subjected to a repeated extraction with fresh

beads. Treated extracts were incorporated into liposomes.

Live-staining of csPDI in whole-mounted somite-strips
Stage 22–24 chick embryos were removed from the egg and washed in Leibovitz’s L-15 medium

(Thermo Fisher Scientific) supplemented with 1% L-Glutamine-Penicillin-Streptomycin solution

(Sigma-Aldrich). Embryos were pinned out along the A-P axis, ventral-up, in a Sylgard (Dow Corning)

coated dish containing medium. After removal of the endoderm, embryos were re-pinned dorsal-up

and the neural tube, intermediate mesoderm and lateral plate mesoderm were separated from the

paraxial/somite mesoderm. Strips of somite mesoderm were dissected and collected in 4-cham-

bered cell culture slides (BD Falcon) containing L-15 medium and sheep serum (Sigma-Aldrich, 10%

v/v) as blocking solution, and slides incubated for 15 min. Primary anti-PDI antibody (Sigma-Aldrich

P7496) or rhodamine-conjugated PNA (Vector labs) was added (1:500 v/v) to 3 chambers per slide

and incubated for 1 hr at 38˚C. Strips were fixed with 4% formaldehyde for 30 min, washed x3 with

PBS, 5 min per wash, then incubated with secondary antibody (anti-rabbit IgG, Invitrogen) for 2 hr at

21˚C. Controls for anti-PDI binding, each in the 4th chamber per slide, were: absence of primary anti-

body, primary antibody pre-absorbed with purified bovine PDI (Sigma-Aldrich, P3818, concentration

5x molarity of anti-PDI antibody), and rabbit IgG (1:500). Slides were mounted with Fluoromount G

(SouthernBiotech) and viewed using a Zeiss Axioskop fluorescence microscope. Each staining proce-

dure was repeated at least x3.

Sclerotome and retinal cell staining and transfection
Dissected somite strips were collected in a 2 ml LoBind tube (Eppendorf) containing L15 medium,

and sclerotome cells were dissociated with a 25G needle, after which 20 ml of cells were transferred

into each chamber of a 4-chambered cell culture slide (BD Falcon) containing 490 ml medium per

chamber pre-warmed at 37˚C. To maintain sclerotome differentiation a notochord fragment was

added to each well. Slides were cultured in a humidified box at 37˚C for 16 hr, after which csPDI was

assessed by anti-PDI- and PNA-staining as described above for somite strips. For retinal cells, eyes

were removed from stage 22–24 embryos using a microscalpel, and retinal cells dissociated and

stained as for sclerotome cells. For siRNA transfection, cells were incubated at 38˚C for 16 hr. 10 ml

of transfection mix [12.5 mg siRNA in 100 ml 5% glucose and 1.5 ml TurbofectTM (Thermo Fisher
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Scientific)] in 490 ml of DMEM (Sigma-Aldrich) supplemented with B-27 (Life Technologies) and NGF

(Sigma-Aldrich) was then added to cultures. After overnight incubation at 38 ˚C cells were washed

x3 in DMEM and incubated for 3 hr with B-27/NGF-supplemented DMEM.

Human astrocytic (1718) cell staining
Human astrocytoma-derived 1718 cells [CCF-STTG1 (ATCC CRL-1718TM)] were cultured in RPMI

1640 medium (ATCC modification, Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco)

and penicillin-streptomycin (Gibco). Cells were maintained at 37˚C in 5% CO2. At each passage, cells

were detached using Trypsin-EDTA (0.05%, Gibco), centrifuged at 1000 g for 5 min and plated in

cell culture flasks (Nunc). After removing culture medium, cells were scraped in PBS or diethyl pyro-

carbonate (DEPC) PBS and collected in an Eppendorf tube, then centrifuged at 2,000 g for 10 min at

4˚C. Re-suspended cells were washed once with RPMI 1640 and blocked with RPMI 1640/10% goat

serum (Sigma-Aldrich) for 10 min at room temperature. They were plated in 4-well Millicell EZ slides

(Millipore) coated with poly-L-lysine (0.01%, Sigma-Aldrich), at a concentration of 50,000 cells per

well (1.7cm2). Cells were incubated with primary antibody in RPMI 1640/1% goat serum for 30 min

at 4˚C, washed x3 with RPMI 1640, then incubated with secondary antibody in RPMI 1640/1% goat

serum for 1 hr at 4˚C and washed x3 with RPMI. Cells were fixed with 4% w/v formaldehyde and

15% w/v sucrose in PBS, pH 7.4, for 10 min at 21˚C, then washed for 5 min x3 with PBS. For live-cell

imaging of the ER, cells were washed once with HBSS and incubated with ER-TrackerTM Green

(BODIPY FL Glibenclamide, Life Technologies) for 20 min at 37˚C. Cells were then washed x3 with

HBSS and slides were mounted using Fluoromount-G (Southern Biotech). For intracellular immunos-

taining cells were washed x1 with PBS, fixed with 4% w/v formaldehyde/15% w/v sucrose in PBS for

10 min at 21˚C, then washed for 5 min x3 with PBS. Cells were blocked with PBS with or without

0.1% Triton X-100 (PBS-T) and 10% v/v goat serum for 1 hr at 21˚C. They were then incubated in pri-

mary antibody in PBS-T/1% goat serum overnight at 4˚C, washed x3 with PBS, incubated for 1 hr in

secondary antibody in PBS-T at room temperature, then washed x3 with PBS. Nuclear staining was

performed with 4’,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) diluted 1:4000 in PBS, or with

Hoechst diluted 1:5000 in PBS. Primary antibodies were: rabbit anti-PDI (IgG polyclonal, Sigma-

Aldrich) used at 1:250 (live-staining) or 1:500 (post-fixation staining); anti-calnexin (Abcam, clone

6F12BE10, mouse IgG2b) used at 1:100X (live-staining) and 1:200 (post-fixation staining). Secondary

antibodies were goat anti-rabbit IgG and goat anti-mouse IgG (Alexa Fluor 594) used at 1:500.

Embryo fixation and dehydration
Stage 19–22 embryos were washed x2 in PBS before removing the extra-embryonic tissues. Embryos

were fixed in 4% w/v formaldehyde for 2 hr at 21˚C, or overnight at 4˚C, then rinsed in PBS on a

mechanical shaker for 5 min and dehydrated through a series of 10 min washes x1 with 25, 50, 75%

v/v methanol/PBS and 100% methanol. After one further 30 min wash in 100% methanol, embryos

were stored in methanol at �20˚C until required.

Axon staining
After rehydration into PBS-T, embryos were blocked in PBS-T/10% goat serum for 3 hr at 21˚C, then

incubated in fluorescein-conjugated PNA (Vector Labs) for sclerotome csPDI, or in anti-tubulin bIII

(clone TUJ1, Mouse IgG2a, BioLegend) for axon staining, both at 1:500 in PBS-T/10% v/v goat serum

for 12–18 hr at 4˚C. Embryos were then washed x4 for 20 min with PBS-T. Secondary antibody (per-

oxidase goat anti-mouse IgG, Jackson ImmunoResearch) was used at 1:500 in PBS-T/10% goat

serum for 2 hr at 21˚C, followed by 20 min washes x4 in PBS-T. Embryos were then incubated with

500 mg/ml diaminobenzidine (DAB) substrate and 0.006% H2O2 in PBS/0.5% Triton, and the colour

reaction was developed for 5–10 min at 21˚C.

Vibratome sectioning
Formaldehyde-fixed embryos were embedded in 10% gelatin (bloom 300, Sigma-Aldrich) in PBS at

38˚C for 30 min. Cryomolds (Tissue-Tek) with gelatin were set at 21˚C for 15 min, after which

embryos were transferred to them and the gelatin flattened and set at 4˚C for 30 min. Blocks were

cut and fixed with 4% formaldehyde at 4˚C for at least 72 hr, then washed for 10 min x3 in PBS,
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trimmed and mounted in a Leica VT1000 S vibratome. Sections were cut at 70 mM using a steel

blade and mounted on glass slides (VWR International) using Fluoromount G.

Primary cultures of rat cortical astrocytes
Cortical hemispheres from neonatal rat pups (P1-P3) were isolated and dissected in ice-cold DMEM

containing penicillin-streptomycin (Gibco). Care was taken to remove meninges and white matter.

Cortices from up to 12 pups were pooled and sub-divided in a Petri dish using a razor blade. The tis-

sue was transferred to a 15 ml Falcon tube and spun briefly, then resuspended in 2 ml papain solu-

tion [0.75% v/v of papain (25 mg/ml, 17 U/mg protein, Sigma-Aldrich), 40 mg/ml DNase I type IV, 2

mM L-Cysteine in DMEM with penicillin-streptomycin] and incubated for 1 hr at 37˚C with occasional

resuspension. The enzymatic digestion was quenched by adding 2 ml trypsin-inhibitor solution [500

ug/ml BSA, 40 mg/ml DNase I type IV, 1 mg/ml Trypsin inhibitor (Sigma-Aldrich)]. Cells were then

dissociated by mechanical resuspension in 1 ml ovomucoid solution and collected by centrifugation

in a 10 ml trypsin-inhibitor solution. They were resuspended in culture medium and plated in poly-D-

lysine-coated flasks (cells from 1 to 1.5 brains in one 75 cm2 culture flask). Cells were cultured at 37˚

C/5% CO2 in DMEM (Gibco) supplemented with 10% FBS (Gibco) and penicillin-streptomycin. After

7-10d culture cells were shaken in an orbital shaker at 350–400 rpm (1.9 cm orbital radius, MaxQ

4450, ThermoFisher Scientific) at 37˚C to obtain a culture of cortical astrocytes. Microglia, neurons

and oligodendrocytes were detached after an overnight shaking, and medium was then replaced.

Cultures consisted in >90% GFAP-positive cells.

siRNA knockdown of csPDI
The fluorescein-labelled siRNA used to knock down csPDI in the chick embryo was designed accord-

ing to the sequence of an antisense phosphorothioate (S-oligo; nuclease-resistant oligonucleotide)

successfully used by Zai et al., 1999 to knock down csPDI/PDIA1/P4HB in a human erythroleukemia

(HEL) cell line. These authors designed three antisense S-oligos against human PDIA1/P4HB mRNA,

and one of these reduced the cell surface expression of P4HB significantly (by 74 ± 9.2% compared

to the scrambled S-oligo control). The sequence for the successful oligo was 50-GCAGCGAGAC

TCCGAACACGGTA-30, found in the 3’ UTR of the human PDIA1/P4HB mRNA. This sequence was

used to find an appropriate target sequence in the 3’ UTR of chicken PDIA1/P4HB (see Key Resour-

ces Table), and was selected using BLAST NCBI anSfold (Wadsworth Center) to ensure maximum

binding. A FITC-labelled control scrambled siRNA was designed using InvivoGen siRNA Wizard soft-

ware http://www.sirnawizard.com/scrambled.php (see Key Resources Table). All sequences were

subjected to NCBI BLAST to ensure gene-specificity and to avoid mis-targeting. Rescue experiments

used a plasmid encoding a fusion protein of mature human PDIA1 (18–508), tagged at its N-terminus

with a bovine pre-pro-trypsinogen signal peptide (bPPTSP) and a FLAG-M1 epitope that is exposed

after cleavage of the signal peptide (kind gift of Prof David Ron, Department of Clinical Biochemis-

try, University of Cambridge) (Zito et al., 2010).

Primer design
Transcript sequences for selected genes were obtained via the National Center for Biotechnology

Information (NCBI) GenBank and Ensembl. Primer pairs for each transcript were designed using the

Primer-Blast tool available from the NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers

were selected according to the following rules: (i) primer length 17–30 base pairs; (ii) CG content

50–60%; (iii) melting temperature 55–80˚C; (iv) resulting amplification product 400–1200 base pairs.

All potential primers were checked against the G. gallus (taxid:9031) genomic database using the

Basic Local Alignment Search Tool (BLAST) from NCBI. The outputs from this last step were used to

exclude all primers giving more than one significant region of identity (80% cut-off) against the

whole chicken genome, or sharing more than 70% similarity with other genes. Selected primers were

synthesized (Sigma-Aldrich) with the T7 promoter primer sequence (TAATACGACTCACTATAGG-

GAG) appended to the 5’ end of the reverse primer, to allow direct generation of digoxigenin-

labelled antisense RNA probe by in vitro transcription using T7 RNA polymerase.

Polymerase chain reaction (PCR) to prepare template for riboprobe synthesis cDNA samples (2

ml) were pipetted into a 200 ml thin-wall centrifuge tube and 36 ml of DEPC-treated water, 6 ml of

primer and 50 ml of Reddy Mix PCR Master Mix (AB Gene) was added to each. The contents of the
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tube were briefly mixed and spun down. Tubes were then placed on a heating block of a hot-lid

thermal cycler pre-heated to 95˚C. Cycling commenced with an initial 2 min denaturation step at 95˚

C followed by 34 cycles of 95˚C for 25 s, annealing at 50˚C for 45 s and elongation at 72˚C for 1 min;

cycling finished with an extension step of 72˚C for 5 min. The PCR product length was checked by

agarose gel electrophoresis, and the products stored at �20˚C until needed for riboprobe synthesis.

Riboprobe synthesis
20 ml in vitro transcription reactions were prepared by adding to a 200 ml thin-wall PCR tube in the

following order: 9 ml DEPC-treated water, 4 ml nucleoside triphosphate (NTP) mix (2.5 mM ATP, 2.5

mM CTP, 2.5 mM GTP, 1.67 mM UTP, 0.833 mM digoxigenin-11-UTP), 2 ml T7 transcription buffer

(Ambion), 2 ml T7 RNA polymerase, 1 ml RNase inhibitor (Invitrogen), and 2 ml PCR product. The

tube contents were mixed by pipetting and briefly spun in a microfuge (�1000 g) to settle them.

The tube was further incubated at 37˚C in a thermal cycler for 2 hr, after which 1 ml DNase I was

added and the tube further incubated in a thermal cycler for 15 min at 37˚C. To stop the reaction, 1

ml of 0.5M EDTA was added and mixed by pipetting, and the tube contents spun down. The probe

was then analysed using a Picodrop spectrophotometer.

Isolation of RNA for antisense RNA probes and cDNA synthesis
Embryos were rinsed with cold diethyl pyrocarbonate (DEPC)-PBS and transferred to a methanol-

washed Petri dish coated with Sylgard. The extra-embryonic membranes were removed using

Watchmaker’s forceps pre-cleaned with RNAse Zap (Ambion). Embryos were placed in RNAlater

(Ambion) and stored overnight at 4˚C. Total RNA was extracted using silica-membrane RNeasy spin

columns (Qiagen) according to manufacturer’s instructions. cDNA was synthesized using the iScript

cDNA synthesis kit (Bio-Rad) according to manufacturer’s instructions and stored at �20˚C.

Whole-mount in situ hybridization (WMISH)
Our procedure was based on Wilkinson, 1998. Embryos were rehydrated into PBS-T through a

series of 75% v/v methanol/ultra-pure water, 50% v/v methanol/ultra-pure water, 25% v/v methanol/

PBST. Embryos were transferred into 18-well plates (Nunc). Unless otherwise specified, all reagents

were diluted in PBS-T and washes were for 10 min in PBS-T on a rocking platform at 21˚C. To

increase probe permeability embryos were incubated at 21˚C in 10 mg/ml proteinase K (Roche) for

the following durations: embryos to stage 15 for 5 min, stage 16–18 for 10 min and stage 19–24 for

15 min. Embryos were rinsed x1, post-fixed for 20 min in 4% formaldehyde and washed x2 to

remove fixative. They were equilibrated with hybridization mix [50% v/v formamide, 5X SSC (Sigma-

Aldrich), 2% blocking powder (Boehringer, 1096176), 0.1% Triton X-100, 0.1% CHAPS (Sigma-

Aldrich), 1 mg/ml tRNA (Sigma-Aldrich), 5 mM EDTA, 50 mg/ml heparin] by rinsing x1 in a 1:1 mix-

ture of PBST/hybridization mix and then x2 in hybridization mix. Plates were then placed at 67˚C in a

hybridization rocking oven for a minimum pre-hybridization of 2 hr to 12 hr maximum, after which

the solution was changed to pre-warmed hybridization solution containing 1 mg/ml RNA probe, and

incubated for at least 12 hr to 72 hr maximum. In order to avoid cross contamination, WMISH probes

were well separated when the hybridization was being done; vials were leak-proof, and each probe

was used no more than x3. After incubation embryos were rinsed x2 and washed x1 with pre-

warmed hybridization mix, washed x2 for 30 min with hybridization mix, and then x2 with a 1:1 mix-

ture of hybridization mix/PBS-T at 60˚C. Embryos were then rinsed x3 with PBS-T. Hybridization solu-

tion was eliminated by 30 min washes x7 in PBST at 21˚C in a rocking shaker. To block non-specific

binding, embryos were incubated for 1–3 hr in blocking solution (10% v/v Sigma-Aldrich sheep

serum in PBS-T) at 21˚C. This was replaced with blocking solution containing alkaline phosphatase-

conjugated anti-digoxigenin Fab fragments (Roche) at 1:2000 dilution, and embryos were incubated

further for 12–18 hr at 4˚C. The antibody was removed by rinsing the embryos x3 in PBST with 1 mM

levamisol, followed by 4 hr of washes with buffer changes every 30 min; in some cases embryos

were left overnight at 4˚C. Alkaline phosphatase was detected using a mixture of 4-nitro blue tetra-

zolium chloride (NBT) and 5-bromo-4-chloro-3’-indolyphosphate (BCIP). Embryos were first washed

x2 in NTMT (100 mM NaCl, 100 mM Tris-HCl pH 9.5, 50 mM MgCl2, 0.1% Triton X-100), followed

by addition of the reaction mixture (4.5 ml/ml NBT and 3.5 ml/ml BCIP in NTMT). Reactions were left

in the dark until a deep purple colour had developed; this could take 3 hr to 5d, and in the latter
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case the stain solution was replaced daily. Embryos were then washed x3 in PBS-T and fixed in 4%

w/v formaldehyde for 12–18 hr at 4˚C. The fixative was removed by several PBS washes. Embryos

were imaged using a Leica dissecting microscope and prepared for vibratome sectioning.

siRNA preparation
Lyophilized FITC-labelled RNA duplexes (Dharmacon Thermo Scientific) were obtained in 2’ depro-

tected, annealed and desalted form, dissolved in PCR grade water (Roche) at 3 mg/ml and stored in

aliquots at �80˚C. The transfection solution was 1 mg/ml siRNA, 10% polyethylene glycol (PEG) (Car-

bowax 6000, Union Carbide) and 20% TurbofectTM (Thermo Fisher Scientific, Catalog # R0541). For

2.8 ml of siRNA preparation, 1 ml of siRNA, 1.2 ml of 20% PEG stock and 0.6 ml of TurbofectTM were

incubated at 21˚C for 30 min before application. This technique was also tested using pCAb-

EGFPm5-mU6 (Bron et al., 2007), a kind gift of Dr. Matthieu Vermeren (Department of Physiology,

Development and Neuroscience, University of Cambridge, UK). The final transfection solution con-

tained 2 mg/ml plasmid, 10% PEG and 40% TurbofectTM. For a final 5 ml of solution, 1 ml of plasmid,

2 ml of 20% PEG stock and 2 ml of TurbofectTM were used; this solution was only used once. For

siRNA delivery in ovo, borosilicate glass capillaries (WPI, outside diameter 1.5 mm, inside diameter

1.12 mm) were pulled on a Narishige Puller PC-10 at 62˚C. Tips were broken to obtain a suitably nar-

row internal diameter and capillaries attached to a rubber tube/mouth-pipette.

In ovo transfection
Eggs were cleaned with methanol and 3–4 ml of ovalbumin removed using a 19G needle and

syringe. The upper side of the egg was reinforced with adhesive tape and a window ~1 cm diameter

cut through shell and tape using curved scissors. The embryo was raised to the level of the window

by re-pipetting the ovalbumin, and visualized by injection into the yolk of ~0.2 ml black ink (Pelikan

Fount India, 5% in PBS). A small incision was made in the vitelline membrane overlying the posterior

part of the embryo using a microscalpel. The glass capillary containing siRNA/plasmid transfection

solution was inserted into the most posterior and newly formed somite of stage 10–14 embryos, and

carefully advanced anteriorly within or immediately ventral to the somite mesoderm on one side of

the embryo, parallel to the neural tube and dorsal to the endoderm, until the most anterior accessi-

ble somite was reached. The capillary was then slowly withdrawn and siRNA was injected into 8–12

successive sclerotomes, each over 5–10 s (~0.05 ml total volume injected per embryo). Care was

taken to avoid the upper two cervical segments where the avian spinal accessory nerve exits and

ascends immediately adjacent to the neural tube. After pipette withdrawal the embryo was returned

to the egg by removing 5 ml of ovalbumin, and the window closed with adhesive tape. Each egg

was re-incubated for 24 hr, when siRNA delivery in somites on the injected side was confirmed by

the presence of fluorescence in >8 consecutive somites in ovo viewed by epifluorescence micros-

copy. Eggs were then incubated for 24 hr further to stages 22–24, when embryos were processed

for somite strip or sclerotome cell culture and staining, or immunohistochemistry or in situ hybridiza-

tion, all as described above.

Antibodies
Polyclonal rabbit anti-PDI (Sigma-Aldrich P7496) was prepared using PDI purified from bovine liver

as immunogen. The whole serum was fractionated and further purified by ion-exchange chromatog-

raphy to provide the IgG fraction essentially free of other rabbit serum proteins. In this study

Lot#054K4801 (protein content 7.1 mg/ml in 0.1M phosphate buffered saline pH 7.4 containing 15

mM sodium azide) was used. Polyclonal anti-PDI antibody Abcam ab31811 (0.4 mg/ml PDI Ab, 1%

BSA, 2% Sodium Azide) was raised in rabbit against a synthetic peptide corresponding to human

PDI amino acids 400–500 conjugated to keyhole limpet haemocyanin and immunogen affinity-puri-

fied; this contained IgG at 0.4 mg/ml in 1% BSA, and PBS pH 7.4 containing 0.02% sodium azide as

preservative.

PDI inhibitors
Bacitracin (Fluka Lot#13Z3372) was examined for protease activity using azocasein (Sigma-Aldrich

Lot#039K7002) as a substrate and protease from Bacillis liceniformis (Sigma-Aldrich Lot#040M1970V)

as a standard (Rogelj et al., 2000). A trace (<0.05%) of enzyme was detected and enzyme-free

Cook et al. eLife 2020;9:e54612. DOI: https://doi.org/10.7554/eLife.54612 19 of 27

Research article Developmental Biology Neuroscience

https://doi.org/10.7554/eLife.54612


bacitracin reagent was prepared by gel filtration through Sephadex G100 (Rogelj et al., 2000).

16F16 (Lot#051M4613V), phenylarsine oxide (Lot#056K1654) and Rutin hydrate (quercetin-3-

rutinoside:�94%[HPLC] Lot#BCBH6323V) were purchased from Sigma-Aldrich. T3 (3,3’,5’ triiodo-L-

thyonine: Sigma-Aldrich � 95%[HPLC] Lot#016K1628V) was acetylated with acetic acid N-hydroxy-

succinimide ester (Apollo Scientific) as described (Gallina et al., 2002) and the product shown to be

homogeneous by thin layer chromatography. The propynoic acid carbamoyl methyl amines

PACMA31 and PACMA56 were synthesised as described (Xu et al., 2012).

Other reagents
S-Nitrosoglutathione (Lot#055M403V), L-glutathione reduced (G4251 Lot#SLBH7927V), L-glutathi-

one oxidised (G4626 Lot#100K727625), DL-dithiothreitol (43819, Lot#BCBG3415V) and eosin 5-iso-

thiocyanate (Lot#BCBK9368V) were obtained from Sigma-Aldrich, and L-homocysteine (Lot#B1612)

from Santa Cruz Biotechnology. Sema 3A/Fc chimera was from R and D Systems (Lot#1250–53).

Agarose bound Peanut Agglutinin (Lot#ZA0611; binding capacity >4.5 mg asialofetuin/ml of gel)

and Agarose bound Jacalin (Lot#ZA1021) were from Vector Laboratories. Cyanogen bromide-acti-

vated Sepharose 4B beads (Sigma C9142) were used to couple purified bovine serum albumin

(BSA). After coupling the gel was blocked with 1 mM ethanolamine. Beads used in these experi-

ments contained 9.48 mg BSA per ml of settled gel.

Protein assay
Protein assays were performed with bicinchoninic acid reagent [Pierce BCA protein assay kit

(Lot#QA214075); Sigma Bicinchoninic acid solution (Lot#SHBH4613V) and copper(II) sulphate

(Lot#SLBJ6167V) with bovine serum albumin (Pierce Lot#BB42996, 2.0 mg/ml in 0.9% NaCl)] as stan-

dard, and using the enhanced protocol (60˚C for 30 min). A separate standard curve was constructed

for each assay and the sample was subject to at least 3 separate dilutions which were each deter-

mined in duplicate.

Purification of csPDI from somites
A total of 400 chick embryo trunks were fractionated by affinity chromatography on agarose-bound-

PNA (Vector Labs), following procedures used previously in the laboratory (Davies et al., 1990).

Care was taken to elute the affinity column with 0.5M NaCl 1% CHAPS (w/v) and 100 mM Tris-HCl

(pH7.5), followed by elution with 0.4M lactose/2% CHAPS (w/v) in PBS. Eluates (20 mL) were concen-

trated using StrataClean Resin (Agilent Technologies) (Bonn et al., 2014; Otto et al., 2017). Protein

bound to the resin was eluted using SDS reducing sample buffer with heating for five minutes at 95˚

C, followed by centrifugation (10000 g for 1 min). The supernatant containing the proteins was frac-

tionated on slab gels (7.5% acrylamide separating gel; 5% stacking gel). Samples were examined

under reducing conditions and electrophoresis was performed in 25 mM Tris (pH 8.3), 192 mM gly-

cine, 0.1% SDS. Molecular weight markers (BenchMark Protein Ladder, Invitrogen) were also run.

The gel was developed with MS-compatible silver stain using the protocol of Blum et al., 1987. The

band was excised in a laminar flow hood and submitted for mass spectrometry analysis (Alta Biosci-

ence, UK).

Identifying somite proteins that act as a substrate for S-nitrosylation
The Pierce S-Nitrosylation Western Blot Kit (ThermoFisher Scientific) was used, in which a lower

background is obtained with iodoTMTzero reagent (Lot# PA19543) compared with biotin labelling.

A cell free assay was prepared in which 650 somite strips were homogenized in HENS buffer [1 ml +

10 ml protease inhibitor cocktail (Sigma Lot# 033M4023V)] using an electrically-driven disposable

pestle and grinding resin (GE Healthcare). Following centrifugation at 1000 g for 1 min at 10˚C to

remove the resin, the homogenate was centrifuged at 10,000 g for 20 min. Aliquots of homogenate

containing 200 mg protein in 200 ml of HENS buffer made 200 mM with GSNO. Reduced glutathione

was used as a negative control. After incubation at room temperature in the dark for 45 min,

unreacted GSNO was removed using P6 microcolumns (BioRad) and the samples blocked with

methyl methanethiosulfonate. Labelling with iodoTMT reagent was performed in the presence of

sodium ascorbate and controls in the presence of water. Protein samples (48 mg) were fractionated

on NuPAGE 4–12% Bis Tris gels in MOPS buffer and blotted onto Hybond C-extra nitrocellulose
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membrane using NuPAGE transfer buffer (Thermo Fisher Scientific) containing antioxidant. Blots

were probed with anti-TMT antibody (1:1000, Lot#OH190916) purified from mouse ascites fluid with

Pierce Goat Anti-Mouse IgG (H+L) HRP conjugate (Lot#OI192080).

Identification of LC1 in somite extracts
An extract of stage 19/20 chick embryo trunks was prepared in HENS buffer containing protease

inhibitor (as above for somite strips) and the protein content quantified. An aliquot containing 25 mg

protein was fractionated on a 4–12% Bis-Tris gel and blotted onto Hybond C-extra nitrocellulose

membrane using NuPAGE transfer buffer (Thermo Fisher Scientific) containing antioxidant. The blot

was cut in half just above the 41K marker and the top half of the membrane was probed with rabbit

anti-tubulin (Sigma, Lot#50K4813) followed by goat anti-rabbit IgG (HRP, Abcam Lot#GR3231028-7,

1:20,000). The bottom half was probed with MAP-1B (LC1) mouse monoclonal antibody against

amino acids 2257–2357 of MAP-1B of mouse origin (Santa Cruz Biotechnology, Inc, sc-136472) fol-

lowed by goat anti-mouse IgG (HRP, Pierce Lot#TE262980, 1:20,000). Blots were blocked in 5% non-

fat dried milk (BioRad) in TBST and thoroughly washed x5, each for 5 min, in TBST. In both above

experiments blots were treated with Millipore Immobilon Western Reagent (Lot#1710401) and

exposed to film.

Action of D-NAME and L-NAME on S-nitrosylation of LC1
Somite extract (200 mg protein for each condition) was incubated at 37˚C for 1 hr in the presence of

300 mM D-NAME (Sigma, Lot#BCBM7105V) or L-NAME (Sigma, Lot#BCBT1028). A control experi-

ment with somite extract and buffer alone was included. Subsequently extracts were made 200 mM

in S-nitrosoglutathione and left at room temperature for 45 min before being processed as above

and subjected to fractionation on a Nu-PAGE 4–12% Bis-Tris gel in MOPS buffer followed by blot-

ting on Hybond C-extra. Care was taken to load equal amounts of protein (15 mg per lane). Proc-

essed samples were assayed for protein levels with a Qubit Fluorometer 2.0 (Thermo Fisher

Scientific) using the Qubit protein assay (quantitation range 0.25–5 mg) to achieve the same quantity

of sample in each lane. The blot was cut in half below the 53K molecular weight marker and the top

half probed with rabbit anti-tubulin (Sigma, Lot#50K4813, 1:20,000) and goat anti-rabbit IgG (HRP,

Abcam Lot#GR3231028-7) followed by Millipore Immobilon Western Reagent. The damp membrane

was examined using an iBright FL1500 imaging system (Thermo Fisher Scientific) and the digital

image caught directly by the instrument to authenticate that somite extract was loaded in every

lane. The bottom half of the blot was probed with anti-iodoTMT (Lot#PH204668, 1:1000) and goat

anti-mouse IgG (H+L) HRP, 1:20,000, followed by Clarity Western ECL substrate (mid-femtogram-

level sensitivity, BioRad). The damp membrane was examined in the iBright FL1500 imaging system

and the digital image captured.

Western blot of rat cortical astrocyte cell surface proteins
Two month-old wild-type rats (Rattus norvegicus) were used as a source of neonatal rat cerebral cor-

tical astrocytes. Four flasks of cortical astrocytes (in DMEM with 10% FBS and penicillin/streptomy-

cin) at 95% confluence were subjected to biotinylation using a commercial ‘Cell Surface Protein

Isolation Kit’ (ThermoScientific, Prod#89881, Lot#RD234938). Following labelling of the cell surface

proteins with EZ-link-Sulfo-NHS-SS-Biotin reagent, the biotinylated proteins were captured on Neu-

trAvidin resin, washed thoroughly and the bound proteins released by cleavage of the S-S bond by

treatment with freshly prepared SDS-PAGE sample buffer made 50 mM with respect to DTT. One-

third of this eluate was fractionated by SDS-PAGE on a 7.5% polyacrylamide resolving gel (120 �

80mmx3mm; 5% stacking gel) and blotted onto Hybond C-extra nitrocellulose membrane (Amer-

sham Biosciences Batch No. 319063) using 25 mM Tris (pH8.3), 192 mM glycine and 0.1% SDS elec-

trophoresis buffer. The blot was blocked with 5% Blotting Grade Non Fat Dry Milk (BioRad) and

developed with 1:20,000 anti-PDI (Sigma P7496) followed by 1:2000 Tidy Blot Western Blot Detec-

tion Reagent-HRP (BioRad, Batch#160129) and the use of Immobilon Western Chemiluminescent

HRP substrate (Millipore).
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Assessment of reductase activity in purified PDI
Di-E-GSSG was prepared by the reaction of eosin isothiocyanate (Sigma-Aldrich) with L-glutathione

oxidised (Sigma-Aldrich Lot#100K72765) as described in detail by Raturi and Mutus, 2007. Four

samples of PDI (4 mg) were incubated in 20 ml 100 mM potassium phosphate (pH7), made 1.5 mM

with respect to calcium and magnesium chloride, with 20 ml packed PNA-agarose beads (Vector lot

ZC0504) with a capacity to bind >90 mg asialofetuin to 20 ml beads. The beads were kept at 5˚C over

18 hr with intermittent mixing. Following centrifugation at 14,000 g for 5 min at 4˚C and a further

wash with 30 ml of buffer, the combined supernatant fluids were added to the reaction mixture to

give a maximum concentration 128 nM PDI. Reductase activity was monitored as above (Raturi and

Mutus, 2007). Fluorescence was measured in a Biotronix Fluorometer (Electronics and Instrumenta-

tion Services for Biological Science, University of Cambridge).

Statistics
A non-parametric Kruskal-Wallis one-way ANOVA was used for comparison of data sets. The Mann-

Whitney U test was used for comparison between treatment conditions in collapse assays. For com-

parison between three or more data points a two-way ANOVA was performed, followed by a post-

hoc Bonferroni correction. No statistical methods were used to predetermine sample size. Graphs

and figures were produced with GraphPad Prism 7.0 and Adobe Photoshop CS6. Histograms show

mean +/- s.e.m.; see Supplementary file 1 for statistical data.
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Bonn F, Bartel J, Büttner K, Hecker M, Otto A, Becher D. 2014. Picking vanished proteins from the void: how to
collect and ship/share extremely dilute proteins in a reproducible and highly efficient manner. Analytical
Chemistry 86:7421–7427. DOI: https://doi.org/10.1021/ac501189j, PMID: 24987932

Bron R, Vermeren M, Kokot N, Andrews W, Little GE, Mitchell KJ, Cohen J. 2007. Boundary cap cells constrain
spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism. Neural
Development 2:21. DOI: https://doi.org/10.1186/1749-8104-2-21, PMID: 17971221

Bronner-Fraser M. 1986. Analysis of the early stages of trunk neural crest migration in avian embryos using
monoclonal antibody HNK-1. Developmental Biology 115:44–55. DOI: https://doi.org/10.1016/0012-1606(86)
90226-5, PMID: 3516760

Carmichael DF, Morin JE, Dixon JE. 1977. Purification and characterization of a thiol:protein disulfide
oxidoreductase from bovine liver. The Journal of Biological Chemistry 252:7163–7167. PMID: 903355

Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S,
Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L. 2010. T-cadherin structures reveal a novel adhesive
binding mechanism. Nature Structural & Molecular Biology 17:339–347. DOI: https://doi.org/10.1038/nsmb.
1781, PMID: 20190755

Cook GM, Jareonsettasin P, Keynes RJ. 2014. Growth cone collapse assay. Methods in Molecular Biology 1162:
73–83. DOI: https://doi.org/10.1007/978-1-4939-0777-9_6, PMID: 24838959

Cook GMW, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, Walder E, Casper C, Patel S,
Chua PW, Riboni-Verri G, Raza M, Swaddiwudhipong N, Hui A, Abdullah A, Wajed S, Keynes RJ. 2019.
Regulation of nerve growth and patterning by cell surface protein disulphide isomerase. bioRxiv. DOI: https://
doi.org/10.1101/838771

Cox EC, Müller B, Bonhoeffer F. 1990. Axonal guidance in the chick visual system: posterior tectal membranes
induce collapse of growth cones from the temporal retina. Neuron 4:31–37. DOI: https://doi.org/10.1016/0896-
6273(90)90441-H, PMID: 2310573

Davies JA, Cook GM, Stern CD, Keynes RJ. 1990. Isolation from chick somites of a glycoprotein fraction that
causes collapse of dorsal root ganglion growth cones. Neuron 4:11–20. DOI: https://doi.org/10.1016/0896-
6273(90)90439-M, PMID: 2155629

Davy A, Soriano P. 2007. Ephrin-B2 forward signaling regulates somite patterning and neural crest cell
development. Developmental Biology 304:182–193. DOI: https://doi.org/10.1016/j.ydbio.2006.12.028,
PMID: 17223098

Dours-Zimmermann MT, Maurer K, Rauch U, Stoffel W, Fässler R, Zimmermann DR. 2009. Versican V2 assembles
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Kozlov G, Määttänen P, Thomas DY, Gehring K. 2010. A structural overview of the PDI family of proteins. FEBS
Journal 277:3924–3936. DOI: https://doi.org/10.1111/j.1742-4658.2010.07793.x, PMID: 20796029

Krull CE, Lansford R, Gale NW, Collazo A, Marcelle C, Yancopoulos GD, Fraser SE, Bronner-Fraser M. 1997.
Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration.
Current Biology 7:571–580. DOI: https://doi.org/10.1016/S0960-9822(06)00256-9, PMID: 9259560

Kuan CY, Tannahill D, Cook GM, Keynes RJ. 2004. Somite polarity and segmental patterning of the peripheral
nervous system. Mechanisms of Development 121:1055–1068. DOI: https://doi.org/10.1016/j.mod.2004.05.
001, PMID: 15296971

Loh KH, Stawski PS, Draycott AS, Udeshi ND, Lehrman EK, Wilton DK, Svinkina T, Deerinck TJ, Ellisman MH,
Stevens B, Carr SA, Ting AY. 2016. Proteomic analysis of unbounded cellular compartments: synaptic clefts.
Cell 166:1295–1307. DOI: https://doi.org/10.1016/j.cell.2016.07.041, PMID: 27565350

Manns RP, Cook GM, Holt CE, Keynes RJ. 2012. Differing semaphorin 3A concentrations trigger distinct
signaling mechanisms in growth cone collapse. Journal of Neuroscience 32:8554–8559. DOI: https://doi.org/10.
1523/JNEUROSCI.5964-11.2012, PMID: 22723695
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