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Utility-driven assessment of 
anonymized data via clustering
Maria Eugénia Ferrão   1, Paula Prata   2 ✉ & Paulo Fazendeiro   2

In this study, clustering is conceived as an auxiliary tool to identify groups of special interest. This 
approach was applied to a real dataset concerning an entire Portuguese cohort of higher education Law 
students. Several anonymized clustering scenarios were compared against the original cluster solution. 
The clustering techniques were explored as data utility models in the context of data anonymization, 
using k-anonymity and (ε, δ)-differential as privacy models. The purpose was to assess anonymized 
data utility by standard metrics, by the characteristics of the groups obtained, and the relative risk (a 
relevant metric in social sciences research). For a matter of self-containment, we present an overview 
of anonymization and clustering methods. We used a partitional clustering algorithm and analyzed 
several clustering validity indices to understand to what extent the data structure is preserved, or not, 
after data anonymization. The results suggest that for low dimensionality/cardinality datasets the 
anonymization procedure easily jeopardizes the clustering endeavor. In addition, there is evidence that 
relevant field-of-study estimates obtained from anonymized data are biased.

Introduction
The increasing digitization of data in all the domains of our society makes privacy protection a challenge for 
data analysis. Administrative data primarily collected for official statistics offer great potential for secondary 
analyses such as quantitative based scientific research. Whenever the data controller delivers the data and makes 
such analyses possible, it is assumed that the individual rights set by the European General Data Protection 
Regulation (GDPR) are met1. This represents a great deal of statistical and data science challenges for the gov-
ernment sector2,3. In fact, GDPR stipulates that the data controller is responsible for proceeding to data anony-
misation before delivering them to a third party4. There are two approaches for controlling the risk of statistical 
disclosure5. The first is based on data access control, e.g. restricting data access to “well-defined group of indi-
viduals […], under well-defined conditions […] in well-defined places”5; the second is based on statistical dis-
closure control (SDC) methods, meaning that the released data may have been changed or anonymized in order 
to reduce the risk of individual data disclosure. In a process of data anonymization the need to ensure the data 
usefulness is as important as ensuring the individual privacy.

Thus, data anonymization is an iterative process where after applying each privacy model and consequent 
assessment of the re-identification risk, the resultant anonymized data must be evaluated according to an utility 
model. The entire process should be repeated, until a reasonable balance is reached between minimizing the risk 
of re-identification and maintaining the maximum usefulness of the data6,7. Thus, the entire process consists of 
three main steps: (1) applying a privacy model; (2) quantifying the risk of disclosure or re-identification, and (3) 
assessing data utility.

Regarding privacy models, two main approaches have been followed: clustering algorithms based on the 
initial k-anonymity method8 and differential privacy (DP)9. Both privacy approaches have limitations since 
“privacy is a subjective concept, it varies from person to person, from time to time, even for the same person”10. 
The study presented in11 showed that it was possible to re-identify some individuals, by associating real names 
to their “k-anonymized” data records, from a previously de-identified publicly available dataset of applicants for 
the California Bar exam, who sat for the exam between 1977 and 2008. Their work draws attention to the fact 
that data controller does not usually convey any information on the protocols in use for data privacy. As demon-
strated by11 such practice does not prevent against data re-identification. In addition, not publishing minimal 
information on anonymization protocols makes it impossible to study the trade-off between data utility and 
disclosure risk. Consequently, it does not contribute to reduce the lack of consensus on the balance between 
minimizing the risk of re-identification and maintaining the maximum usefulness of the data. For example, 
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while12 refer that DP can require heavy data perturbation, leading to non-useful output13, refer that “one of the 
main advantages of this method regards managing the tradeoff between privacy and utility, finding the ideal 
value of which preserves data privacy and affects the model results at a controlled extent”13. In fact, the literature 
offers a promise that in many situations DP provides higher levels of privacy while allowing extremely accurate 
statistics about the original database14.

The privacy level in k-anonymity implementations is related to k setting, and in DP it is related to ε setting. 
In general, data controller is the entity which holds the control for such regulatory scheme, which in turn tends 
to degrade data accuracy and impact utility of the data. Metrics to assess data utility may be classified according 
to resulting data accuracy, completeness, and consistency12. Standard metrics promptly available, such as the 
sum of squared error (SSE)15, the number of suppressed records or the non-uniform entropy16 do not take into 
account the specific loss for the substantive field of study. Thus, utility models and respective metrics may also 
account for the multivariate correlational loss in the anonymized data set, and for the misclassification error.

Regarding the use of administrative data for research and SDC methods, the aim of this study is twofold: 
firstly, we propose to adjust the utility model to the research question in the applied field of study, e.g. clustering 
analysis, as complementary to data utility quantified by standard metrics, no matter the substantive applied field 
of study; secondly, we intend to provide insight into the differences between anonymized and original datasets 
and debate its relevance for research purposes. As example, the methodological approach is applied in the field 
of higher education (HE) research. This is a field where there is a critical need to quantify the rates of degree 
completion and to diagnose the risk factors of not earning the degree on time. By definition, risk assessment 
“attempts to identify those cases in which a subsequent negative event […] is most likely to occur”17. Specifically, 
clustering analysis is applied in order to timely identify and characterize groups of students at risk of not com-
pleting their degree on time within the scope of a programme for students’ success in HE18. For the purpose of 
assessing such risk, the relative risk19 is applied.

Methods
Privacy models.  Direct identifier, also known as formal identifier20, is any variable or set of variables that 
directly makes possible the identification of an individual without additional information. Its value is structurally 
unique. Those variable values that are not structurally unique in a dataset but may be empirically unique, that is, 
in combination with other attributes (within the dataset or from other datasets) allowing for individual re-iden-
tification, are known as quasi-identifiers20. In addition, those variables whose content belongs “to the private 
domain of respondents who would not like them to be disclosed” are known as sensitive variables20. For example, 
data relating to religion, politics, health, etc. are considered sensitive under the EU’s data protection law. Thus, the 
first step of anonymization is to classify the attributes of the dataset as direct identifiers, quasi-identifiers, and/or 
sensitive, according to their characteristics. After that, direct identifiers are removed and quasi-identifiers may be 
recoded to guarantee that the data fulfils the privacy criteria. This may be achieved by the quasi-identifiers’ gen-
eralization, that is, by joining categories or classes of variables by changing the scale or order of magnitude. After 
defining possible generalization hierarchies, an anonymization algorithm should be used to find the minimal 
generalization that satisfies the desired privacy model.

The privacy model of k-anonymity was first proposed by Sweeney and Samarati as follows: “Let T(A1, …, An)  
be a table and QI be the quasi-identifier associated with it. T is said to satisfy k-anonymity w.r.t. QI if and only 
if each sequence of values in T[QI] appears at least k occurrences in T[QI]”8. The set of k records is called an 
equivalence class. Several algorithms have been proposed for k-anonymity using suppression and generalization 
transformations11,12. Some variants of the k-anonymity model have been proposed to deal with sensitive attrib-
utes, that is, attributes that consist of sensitive person specific information which individuals are not willing to 
be linked with, and, if disclosed, could cause harm to data subjects. If a sensitive attribute has the same value 
in all the records of an equivalence class, it can lead to attribute disclosure. The ℓ-diversity21 and t-closeness22 
are examples of models that improve from k-anonymity, protecting data against attribute disclosure. Sensitive 
attributes are out of the scope of this study.

DP emerged in 2006 as a concept9,14. Currently, there are several probabilistic based anonymization tech-
niques, which change the data either by addition of random noise2,23–25 or by random sampling26,27. The latter is 
used for the purpose of this study.

The DP model was proposed in9 as follows: A randomized function R gives ε-DP if for all data sets D1 and 
D2 differing on at most one record, and all S ⊆ Range(R),

ε∈ ≤ ∗ ∈R D S R D SPr[ ( 1) ] exp( ) Pr[ ( 2) ] (1)

According to that definition, informally speaking, given the result of a transformation, one cannot tell if a 
specific record was in the dataset. The probability of producing a result is almost the same with or without that 
record. Most of the proposals to implement DP are based on adding noise to build an anonymized dataset25,28. 
A relaxed version of DP is (ε, δ)-DP, that states that a randomized function R provides (ε, δ)-DP if Eq. (1) holds 
with a probability of at least 1-δ29. The SafePub anonymization algorithm starts by randomly sampling the data-
set, and after that explores it using the generalizations hierarchies defined by the user. For each generalization 
scheme the algorithm suppresses the records that appear less than k times searching for an optimal solution. The 
value of k is derived from the parameters ε and δ. The final anonymized dataset satisfies k-anonymity and is (ε, 
δ)-DP as shown in27.

Disclosure risk models.  As the number of sensitive or quasi-identifying variables increases, so does the risk 
of disclosure30. Measuring the risk of disclosure implies modelling the adversary’s background knowledge and 
not assuming that the attacker just knows the quasi-identifiers31. An adversary can learn background knowledge 
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about an individual, the target, from social networks, demographic statistics, and many other sources. Three 
common attacker profiles are usually considered to quantify the re-identification risk, leading to the prosecutor 
risk, the journalist risk, and the marketer risk. These three profiles are related to the attacker’s characteristics, like 
motivation, means, intent to cause harm, and background knowledge of the target. For instance, the knowledge 
about the inclusion of the target in the disclosed data is crucial. If the attacker knows whether the target is in 
the anonymized data, then the re-identification risk is called prosecutor risk32,33. The metric usually used is the 
proportion of unique records in the anonymized data. If the attacker does not or cannot know whether the target 
is in the anonymized data, then the risk is known as journalist risk32. In turn, the marketer risk is quantified by 
the average proportion of records in the anonymized file that would be correctly re-identified if the attacker tried 
to re-identify everyone in the data set34. The attacker tries to re-identify as many subjects as possible. Thus, the 
relationship between the three risks is as follows, prosecutor risk ≥ journalist risk ≥ marketer risk32.

As stated by35 “if we manage the risk of re-identifying an individual subject, then we also manage the risk of 
multiple subjects being re-identified”. The open source ARX, Data Anonymization Tool6, provides estimates for 
those three attack models32.

Utility models and metrics.  It is intuitively obvious that there is a loss of information when any anonymi-
zation mechanism is applied to a protected data set. The tradeoff between data privacy and data utility when 
applying privacy-preserving mechanisms has deserved vast developments at least since 19935,12,36–39. Data utility 
models and metrics aim at quantifying the quality of the anonymized data for further analysis and modelling 
purposes. For example40, present and discuss a selection of more than 80 privacy metrics. We broadly followed41 
whose review divides metrics into two groups: those more suitable for general analysis or those for specific anal-
ysis. The first group includes information loss metrics that are defined to measure the similarity between the 
original and the anonymized data. For the specific analysis purposes, the data utility is assessed by comparing 
the accuracy of a certain task using the original and the anonymized data. The key element for our choices was 
that from the point of view of the data analyst, a potentially preserved data quality for the subsequent analysis 
and respective inferences could be the output. Thus, we assess data utility using several metrics. The concept 
of entropy was proposed as an utility model for quantifying the loss of information5 and a variant known as 
Non-Uniform Entropy42 is commonly recommended for data anonymization in scientific works for categorical 
variables, and mean squared error (MSE) for continuous variables16. Furthermore, we used summary statistics 
such as records count that allow a certain number of queries43, the SSE15, and the relative risk in order to illustrate 
a relational data property relevant for the field of application.

Clustering as an utility indicator.  Clustering is the process of searching for a finite and discrete set of 
data structures (categories or clusters) within a finite, otherwise unlabelled, usually multivariate data set. Two 
distinct, but complementary, facets are enclosed in this unsupervised learning task44 the elicitation of a model 
of the overall structure of the data and the pursuit for a manageable representation of a collection of objects into 
homogeneous groups. A fundamental goal of clustering is to provide a meaningful insight on the structure of 
data, if such structure exists at all.

The partitional clustering algorithms attempt to directly decompose the data set into a collection of disjoint 
clusters. This partition is built during an iterative optimization process repeated until its associated cost function 
reaches a minimum (global or local). The cost function, also designed performance index or objective function, 
is a mathematical criterion expressing some desired features (emphasizing local or global structure of the data) 
of the resulting partition. Combining some heuristics with an adequate formulation of the objective function, it 
is possible to design an optimization process which can determine at least suboptimal partitions. The c-Means 
algorithm (also referred in the literature as k-Means or hard c-Means)45 is the best-known squared error-based 
example of such a process. For a given initialization of the c centroids the heuristic approach consists of two-step 
major iterations that follow from the first-order optimality conditions: first reassign all the points to their nearest 
cluster, thus updating the partition matrix, and then recompute the centroids of the newly assembled groups. 
This iterative procedure continues until a stopping criterion is achieved (usually until no reassignments happen).

The output of a clustering algorithm is a hypothesis on the summarization or explanation of data. As such, 
knowledge from the application field becomes of paramount importance. Experts are in the best position to 
evaluate the results of clustering and to select the suitable level of granularity that is required for a given task cf.46. 
Exploratory analysis using clustering involves a number of steps including selection and application of clustering 
algorithm; validation according to some cluster validity index; and a final, crucial, interpretation step47. This 
interpretation depends on the application field and relies on the existence of domain experts. The number of 
clusters c is the most important parameter for the standard partitional clustering algorithms. If c is equal to the 
unknown number of subgroups present in the data, there is a higher chance that the clustering process effec-
tively reveals the underlying structure of the data. The effectiveness of this choice is verified by cluster validity 
analysis48. One possible way of performing a classical cluster validity analysis consists in running the clustering 
algorithm for different values of c, several times with different initializations. The validity of the obtained parti-
tions is assessed by validity measures: the number c which optimizes one of these measures (or a combination of 
some of them) is chosen as the optimal one. In general, the objective is to seek for groups in data so that data in 
one group are similar to each other and are as different as possible from data in other groups.

In the context of privacy and utility preserving, we propose the cluster validity analysis as a complementary 
way to assess the utility of the anonymization model for the problems requiring exploratory data analysis solu-
tions e.g.49. In this sense the anonymization can be seen as a denoising procedure that increases the probabil-
ity of discarding small clusters with consequent prejudice on the correct identification of the underlying data 
structure. Moreover, as is stressed in50, there are cases where accurately identifying small-cluster information is 
more important than identifying large clusters. We argue that, by performing the cluster validity analysis on the 
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anonymized dataset and the sequent comparison with the results obtained for the original dataset, the utility is 
only preserved whenever the underlying structure of the data does not change, hence allowing the correct iden-
tification of groups of interest for the study at hand.

Relative risk as a metric for policy purposes.  Consider the partition of individuals in the population 
into two disjoint groups: male and female students. For the thematic field of this work, relative risk, also known 
as risk ratio, is based upon the incidence rates of failing the degree on time in the group of male students and the 
group of female students. It is a metric of the association of failing the degree with the groups defined. In practice 
we estimate the relative risk (RR) via 2 × 2 contingency table (Table 1), such that

= +
+

RR a a b
c c d

/ ( )
/ ( )

Data safety and procedures.  We used microdata of the administrative data known as “Registo de Alunos 
Inscritos e Diplomados do Ensino Superior” [Register of students enrolled in and graduated from higher educa-
tion] (RAIDES) made available by the Directorate-General of Education and Science Statistics (DGEEC) under 
the protocol 5/2020 with the research centre CEMAPRE for data privacy protection. The protocol includes the 
identification of the research team and their research purpose for data access. One of the authors had access to 
two pseudonymized data files in the safe center in Lisbon, after having signed a data usage agreement. All files 
that came out of the safe center had been previously verified and authorized by the data protection officer. The 
procedure set for a research team to get access to RAIDES files is defined in concordance with the Portuguese 
law for personal data protection. To start the process, the principal researcher must send the electronic request 
through the form available at the following link https://www.dgeec.mec.pt/np4/pedido_dados.

The survey RAIDES is annually carried out within the scope of the National Statistical System which is man-
datory. Data were collected by higher education institutions and exported in XML format to the DGEEC twice a 
year (January and April; December 31 and March 31 as time reference, respectively), throughout the “Plataforma 
de Recolha de Informação do Ensino Superior” [Platform of Data Collection in Higher Education] (PRIES). 
Regarding the two aforementioned files, the first refers to enrolments in a given academic year and the second 
refers to graduates in a given academic year. Data processing and anonymization procedures were conducted in 
the safe center, applying the methodology developed by the authors of this work. For the purpose of the study, 
students’ data enrolled in law undergraduate courses in the academic year 2013–14 and graduates’ data in the 
academic year 2016–17 were paired. Records of students who were not enrolled in their 1st year for the first time 
or whose access to HE was different from the national competition were not considered in our analyses. The fol-
lowing students’ attributes were considered: Degree conclusion on due time (DC, Yes/No); University entrance 
score (UES) that was standardised by using the national mean and standard deviation; Gender (1: female; 0: 
male); and Age at enrolment (in years).

Participants.  We considered students who entered undergraduate law programs by the general contingent 
in the 2013–14 academic year. The number of students involved was 1659, of which 43% earn their degree in 
due time. Distribution per gender was 65.8% female and 34.2% male; students’ age at enrolment had a mean of 
18.59 (SD = 1.47) and a median of 18. Conditional distribution of degree completion given gender is presented 
in Table 2. The percentage of graduates was 47.9 in the female group and 33.7 in the male. Thus, the relative risk 
of not earning the degree in due time is 1.27 for males, compared to females. This suggests male students are 27% 
more likely than female ones to fail the degree conclusion on time.

Design of the study.  Clustering was applied to the dataset described in the previous sections, and to four 
anonymized datasets. The first, DS1, was obtained by k-anonymization with k = 20; the remaining three were 
obtained by (ε, δ)-DP with fixed ε = 1, and δ = 0.01, δ = 0.001 and δ = 0.0001 for DS2, DS3 and DS4 respectively. 
The parameters k, ε, δ were chosen in such way that the re-identification risk is less than 5%.

Gender

Degree

Not on time On time

Male a b

Female c d

Table 1.  Contingency table for relative risk.

Gender Degree not on time Degree on time

Male 66.3 33.7

Female 52.1 47.9

Total 57.0 43.0

Table 2.  Conditional distribution 1st cycle degree completion given gender.
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The anonymization was performed with ARX (version 3.9.0). The parameters were defined as follows, sup-
pression limit: 100%; utility measure: loss; aggregate function: sum; population size: 5000. The attributes clas-
sified as quasi-identifiers were Age and UES and for each of them a generalization hierarchy, where the values 
of the attribute may be transformed into intervals with decreasing precision over increasing levels of general-
ization, was defined. For the attribute Age, two levels of generalization were defined, at the first level, Age is 
transformed into the intervals [17,19[and [19, 54[, at the second level, Age is suppressed. The attribute UES was 
generalized using the standard deviation as the standardised scale unit, and the mean point of every interval was 
used in posterior data processing. The second level of UES generalization was suppression. The set of all possible 
combinations of generalizations levels for both attributes is explored by the anonymization algorithm. For each 
scheme, all records that do not comply with the privacy requirements are suppressed and the utility of the result-
ing dataset is assessed. At the end, the optimal solution, that is, the dataset with less loss of records is returned.

Results
The main characteristics of the studied anonymized datasets, are presented in Table 3. The k value for DS1 was 
given by the user, but for datasets satisfying DP it was a result calculated by the SafePub algorithm. For these 
datasets, it can be seen that more restrictive values of δ lead to higher values of k. As expected, the number of 
records that remains after anonymization decreases when more restrictive privacy models are applied. It should 
be noted that in DP, the dataset is pre-processed by randomly sampling. That justifies the small number of 
records in DS2, although k = 19.

For each dataset it is presented the journalist and prosecutor risk estimated by ARX (the value is the same 
for both attacker models). As can be seen, DP reduces the risk, but the number of remaining records is much 
smaller. Table 4 presents the number of different values per variable. It emphasizes that the overall data diversity 
is severely harmed.

A deeper look at the anonymized datasets shows that the generalization hierarchy for the attribute Age was 
never used. In DS1 and DS2 age values greater than 20 were suppressed. In addition, in DS3 and DS4 age 
values greater than 19 were removed. For the attribute UES, the first level of generalization was applied in all 
cases. Beyond generalization, in DS1 all records with UES = −1.5 were removed, and with DP records with 
UES = −1.5 and records with UES = 3.5 were removed.

The ARX tool supports some general-purpose utility models that can be used when it is unknown how the 
output data will be used. Table 5 shows the values obtained for the non-uniform entropy and for the sum of 
square errors when applied to the quasi-identifiers of each anonymized dataset. The non-uniform entropy com-
pares the frequencies of attributes values in the transformed dataset with the according frequencies in the input 
dataset16. The sum of squared errors computes the sum of squares of attribute distances between records in the 
original data set and their versions in the anonymized data set15. According to ARX documentation, the values 
have been scaled and normalized into the range [0, 1] where 0 represents a dataset from which all information 

Dataset Privacy model K value
Number of 
records

Estimated 
risk

DS1 k-anonymity 20 1643 4.2%

DS2 (1, 0.01)-DP 19 892 3.8%

DS3 (1, 0.001)-DP 33 847 2.3%

DS4 (1, 0.0001)-DP 45 785 2.1%

Table 3.  Main characteristics of the studied datasets.

Dataset Privacy model Age UES DC Gender

Original — 16 483 2 2

DS1 k-anonymity 3 5 2 2

DS2 (1, 0.01)-DP 3 4 2 2

DS3 (1, 0.001)-DP 2 4 2 2

DS4 (1, 0.0001)-DP 2 4 2 2

Table 4.  Number of different values per variable.

Dataset

N-u. entropy Squared error N-u. entropy Squared error

Age Age UES UES

DS1 86.04% 93.85% 22.60% 87.31%

DS2 81.11% 91.35% 22.65% 83.34%

DS3 72.57% 86.91% 19.88% 77.17%

DS4 72.93% 83.71% 20.01% 74.97%

Table 5.  Quality models (non-uniform entropy and square error) for the quasi-identifiers.
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has been removed and 1 represents the unmodified input dataset. Consequently, higher values returned for the 
quality models are always better6.

As can be seen from Table 5, the loss of information increases when more restrictive privacy models are 
applied. As expected, the loss of information in the generalized attribute, UES, is higher than in attribute Age.

Figure 1 shows the data distribution between pairs of variables after anonymization (for DS1) assuming the 
formation of 3 different clusters. The number of distinct points in the dataset is very small - being even lesser 
for the remaining anonymized datasets due to the reduction of the discrete number of values per variable, see 
Table 4.

Regarding the data utility for the clustering problem at hand, we performed twenty independent runs of 
the hard c-means algorithm, each one with c ranging from 2 to 40 clusters. For the assessment of the quality 
of each partition in this work we choose three indices commonly used in practical applications: Silhouette, 
Davis-Bouldin and Calinski-Harabasz, cf.51. Broadly speaking, these indices estimate the clusters’ cohesion and 
the clusters’ separation, combining them to produce a quality measure. For Silhouette and Calinski-Harabasz the 
best partitions correspond to higher values whereas for Davis-Bouldin lower values are better.

Figure 2 presents the mean values of the computed cluster validity indices for the original dataset. The cluster 
validity analysis seems to indicate that 3 clusters result in a good data partition (please notice a local maximum 
for Silhouette and Calinski-Harabasz metrics, and corresponding local minimum for Davis-Bouldin score). As 
a matter of fact, one of the resulting 3 clusters is very interesting in the sense that in the original data it allows 
to identify a particular Age range where the students are prone to take more time to finish the course than the 
strictly necessary.

Fig. 1  Anonymized dataset (k-anonymity) grouped in 3 clusters.
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Figure 3 depicts the cluster validity indices for the k-anonymity dataset (DS1). As can be seen in the graphs 
for Silhouette and Calinski-Harabasz, 3 is no longer suggested as a possible good choice for the right number of 
clusters. Moreover, the coherence between the indices behaviors is absent and the previous insight regarding the 
risk group is entirely lost when the anonymized data distribution is scrutinized (see also Fig. 1).

Figures 4–6 show the behavior of the mean values of the computed cluster validity indices for the datasets 
DS2, DS3 and DS4 respectively. Those were obtained by (ε, δ)-DP keeping ε = 1, and varying δ = 0.01 (DS2), 
δ = 0.001 (DS3) and δ = 0.0001 (DS4). From the clustering validity point of view, the overall structure of data 
does not find correspondence with the original data. Besides that, Figs. 5 and 6 show that for DS3 and DS4 it 
is not possible to form more than 28 clusters since this is the maximum number of distinct points in the corre-
sponding anonymized datasets. Once again, the right number of clusters that could be chosen with the support 
of the validity indices is different for different datasets which indicates that these are structurally diverse.

Figure 7 presents the misclassification error of the anonymized datasets considering as the ground truth the 
clustering on the original data. The overall absolute error is bigger for the (ε, δ)-DP than for the k-anonymity 
scheme. Applying the (ε, δ)-DP scheme the overall absolute error increases as δ decreases.

Contingency tables obtained with DS1, DS2, DS3, and DS4 are presented in Table 6. As above mentioned, 
the true relative risk of male students not earning the degree on time is 1.27. Its point estimate computed from 
the anonymized data is 1.29, 1.29, 1.34, 1.32 for DS1, DS2, DS3, DS4, respectively, suggesting an upward bias.

Fig. 2  Cluster validity indices for the original dataset. The putative number of clusters range from 2 to 40. The 
depicted validity indices are (a) Silhouette, (b) Davis-Bouldin and (c) Calinski-Harabasz scores.

Fig. 3  Cluster validity indices for the k-anonymity dataset (DS1). The putative number of clusters range from 2 
to 40. The depicted validity indices are (a) Silhouette, (b) Davis-Bouldin and (c) Calinski-Harabasz scores.

Fig. 4  Cluster validity indices for the (1, 0.01)-DP dataset (DS2). The putative number of clusters range from 2 
to 40. The depicted validity indices are (a) Silhouette, (b) Davis-Bouldin and (c) Calinski-Harabasz scores.
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Discussion
It is well-known that standard data utility metrics often fail to properly quantify the accuracy and utility of 
anonymized data. This study compares the utility of a real dataset with the utility of four anonymized datasets 
obtained by different privacy models. Besides of providing a clear understanding of how anonymization may 
impact data usefulness, we argue for the relevance of taking into account the specific purpose of anonymization, 

Fig. 6  Cluster validity indices for the (1, 0.0001)-DP dataset (DS4). The putative number of clusters range from 
2 to 40. The depicted validity indices are (a) Silhouette, (b) Davis-Bouldin and (c) Calinski-Harabasz scores.

Fig. 5  Cluster validity indices for the (1, 0.001)-DP dataset (DS3). The putative number of clusters range from 2 
to 40. The depicted validity indices are (a) Silhouette, (b) Davis-Bouldin and (c) Calinski-Harabasz scores.

Fig. 7  Misclassification Error per number of clusters. The putative number of clusters range from 2 to 28. Graph 
(a) shows the mean values for DS1, (b) presents the mean values for DS2 whereas (c) and (d) depict the same 
metric for DS3 and DS4 respectively.
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and a novel purpose-oriented data utility model was applied. It is based on the application of an unsupervised 
clustering method (that can be tailored to the specificities of the available data) complemented with a clustering 
validity analysis - making use of indices that seek to accurately represent the desirable characteristics of the 
groups being formed (Silhouette, Davis-Bouldin and Calinski-Harabasz scores are just some of the possibili-
ties). The model was applied to real and anonymized data collected from the field of HE survey and research. 
The anonymization process was based on k-anonymity and (ε,δ)-DP models. Our results show how powerful 
the tool of cluster validity analysis can be for timely identifying and characterizing groups of students at risk 
of not earning the degree on time. However, the results also suggest that, when applied to anonymized data, 
its power vanishes due to the loss of multivariate structure and diversity in the resulting dataset. Moreover, 
our findings suggest that relevant field-of-study estimates, such as the relative risk, obtained from anonymized 
data are biased. In a nutshell, when working with low dimensionality datasets, as the one used in this work (less 
than two thousand records and a small number of quasi-identifiers), no matter the method of anonymization, 
k-anonymity or DP, the results obtained suggest that the replacement of original data by their anonymized ver-
sions may jeopardize the proper data analysis, the data-based inferences or deductions and even the conclusions 
of the scientific research. Future work to understand the impact of anonymization when working with larger 
datasets should be done. It is hypothesized that having more records may result in greater data structure resil-
ience, but, on the other hand, having more quasi-identifiers increases complexity and raises performance issues.

Data availability
The original data, RAIDES files, are protected by the GDPR. The consent for their use in the data safe center 
in Lisbon may be obtained by accredited researchers (https://www.dgeec.mec.pt/np4/pedido_dados). The 
anonymized datasets are publicly available in the Open Science Framework repository52.

Code availability
The source code of the anonymization tasks is publicly available as open source software6. The clustering and 
cluster validity methods were based on the open source scikit-learn Python library implementation53. The 
clustering & validity pipeline source code is publicly available at https://github.com/Farmerinpt/clustering-
anonymization-utility.
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