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THEBIGGERPICTURE The ability to characterize, denominate, and group cells is crucial to our understand-
ing of biology. Flow cytometry allows thousands of cells to be assessed simultaneously by detecting the
presence of multiple specified molecules in each cell. This technology is in widespread use in basic
research, routine diagnostics, and clinical studies. Technological advances over several decades have
increased the number of molecules that can be assessed at the same time, allowing cells to be divided
into smaller subclasses with highly diversified phenotypes. While greatly enhancing resolution, these ad-
vances also make bioinformatical analysis increasingly complex. This is particularly evident in the context
of clinical studies, where there are often large numbers of samples and copious clinical information. Better
bioinformatical analysis strategies could help the implementation of advanced cytometry technologies for
biomarker discovery and treatment evaluation.
SUMMARY
Flow cytometry is a powerful technology for high-throughput protein quantification at the single-cell level.
Technical advances have substantially increased data complexity, but novel bioinformatical tools often
show limitations in statistical testing, data sharing, cross-experiment comparability, or clinical data integra-
tion. We developed MetaGate as a platform for interactive statistical analysis and visualization of manually
gated high-dimensional cytometry data with integration of metadata. MetaGate provides a data reduction al-
gorithm based on a combinatorial gating system that produces a small, portable, and standardized data file.
This is subsequently used to produce figures and statistical analyses through a fast web-based user inter-
face.We demonstrate the utility ofMetaGate through a comprehensivemass cytometry analysis of peripheral
blood immune cells from 28 patients with diffuse large B cell lymphoma along with 17 healthy controls.
Through MetaGate analysis, our study identifies key immune cell population changes associated with dis-
ease progression.
INTRODUCTION

Fluorescence-based flow cytometry was invented in the late

1960s and has since gained widespread popularity in basic

research, routine diagnostics, and clinical trials. Modern flow cy-

tometers allow simultaneous quantification of more than 40 anti-

gens with single-cell resolution, and the introduction of mass cy-

tometry has further increased this number.1 This has enabled
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detailed functional and phenotypic characterization of very com-

plex subsets of cells within highly heterogeneous sample mate-

rial, such as peripheral blood or tumor tissue.

In response to themassive advances in cytometry technology,

a vast collection of clustering and dimensionality reduction

algorithms has been implemented for data analysis and visuali-

zation, including t-distributed stochastic neighbor embedding

(t-SNE), PhenoGraph, spanning-tree progression analysis of
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density-normalized events (SPADE), and FlowSOM.2–6 Although

representing major advances in our ability to explore and under-

stand high-dimensional single-cell data, the output of these al-

gorithms can be unpredictable due to experiment-specific

marker selection, technical variation, or inherent properties of

different clustering methods.7 Therefore, cytometry data anal-

ysis is still usually carried out by manually defining biologically

relevant cell populations by setting cutoff values for multiple an-

tigen markers. This strategy, termed manual gating, allows

consideration of known biology, internal controls, and experi-

ment-specific technical issues in the data analysis. However,

stratification of samples, statistical analysis, and visualization

of summarized data typically involve multiple data-handling

steps in different software packages, potentially reducing

throughput and data traceability. To alleviate these problems,

we developed the MetaGate R package. Through its graphical

user interface, MetaGate provides a platform for statistical anal-

ysis and visualization of complex cytometry datasets from raw

data via feature selection to publication-ready figures, based

on manual gating performed in two of the most popular flow cy-

tometry analysis software packages: FlowJo and Cytobank.

Along with genomics, proteomics, and immunological imaging

techniques, cytometry remains a crucial tool for assessing the im-

mune system in cancer, both within the tumor microenvironment

and at the global level. Such understanding is important for cancer

prevention, diagnostics, prognostics, and development of novel

treatment strategies. To display the capabilities of MetaGate,

we performed a broadmass cytometry characterization of periph-

eral blood froma cohort of 28patientswith diffuse largeB cell lym-

phoma (DLBCL) alongside 17 healthy blood donors.

DLBCL is the most common group of non-Hodgkin’s lym-

phoma, with an incidence in the United States of around 7 cases

per 100,000 persons per year.8 First-line treatment usually in-

cludes multi-agent chemotherapy in combination with the anti-

CD20 monoclonal antibody rituximab. Two main subtypes,

germinal center B cell (GCB) and activated B cell (ABC), have

been identified, correlating fairly well with histological features

and explaining some of the outcome variation.9 However, the

highly diverse presentation and outcomes, which cannot be fully

explained by existing clinical, histological, or biochemical

markers, remains a major clinical challenge.10 Therefore, to

improve diagnostics, prognostics, and treatment of this disease,

there is a need for a better understanding of the heterogeneity of

its presentation and immunological responses.

The mass cytometry data from this study, which, in part, has

been published previously,11 are analyzed using MetaGate and

describes a substantial impact on the immune system from

both the disease and its treatment. All data figures and statistical

analyses are generated in the MetaGate user interface. The

MetaGate R package and source code are made publicly avail-

able, along with all mass cytometry data and metadata, enabling

anyone to reproduce the analysis as well as further develop or

use MetaGate for other datasets.

RESULTS

Generating a MetaGate dataset
MetaGate is based onmanual gating, which can be performed in

either the FlowJo or Cytobank software packages. Blood sam-
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ples or other cell suspensions are analyzed using a mass or

flow cytometer (Figure 1A), which generates Flow Cytometry

Standard (FCS) files. These are imported in FlowJo or Cytobank.

After quality control, exclusion of unwanted events and adjust-

ment of compensation, biologically relevant gates are set. The

gate definitions are then exported as a FlowJo Workspace file

or GatingML file from FlowJo or Cytobank.

The FlowJo or GatingML file is then imported into MetaGate,

which parses the file and produces a list of defined gates (Fig-

ure 1B). In the MetaGate graphical user interface, the user can

then define populations by combining the gates; e.g., defining

‘‘CD8 T cells’’ as events inside the ‘‘CD3+’’ and ‘‘CD8+’’ gate

but outside the ‘‘CD19+’’ gate. The MetaGate data reduction al-

gorithm is then applied, using the definitions of gates and popu-

lations along with raw data from FCS files to calculate mean, me-

dian, and geometric intensity values and frequencies of all

populations in each population. Given P populations and M

markers, the algorithm will output (3 * M + P) * p values for

each sample. Assuming 100,000 events, 40 markers, 100 popu-

lations, and 4 bytes per value, MetaGate will generate 86 kB of

data from a 15-MB FCS file. These data are then stored as a

data file that is used for all subsequent data analyses (Figure 1C).
Data analysis in MetaGate
After loading the MetaGate data file in the MetaGate graphical

user interface, the user can upload sample metadata, such as

clinical features, experimental conditions, or sample time points

(Figure 1C). Sample groups are then defined interactively by se-

lecting features based on the metadata.

The metadata should include information about which panel is

used for each sample. By setting this as a panel variable,

MetaGate will automatically make sure that the same individual

is not included twice in a comparison in cases where both panels

would provide the same data. In projects that contain paired

samples, such asmultiple perturbations or time points, a variable

should be included that uniquely identifies each patient or

healthy donor. MetaGate will then use this variable to perform

paired statistical analyses. All metadata and group definitions

are stored in the MetaGate file but can be modified at any time

in downstream analysis.

To demonstrate the main features of MetaGate, a previously

partially reported dataset of immune cell characterization in

DLBCL was analyzed. Peripheral blood mononuclear cells

(PBMCs) from a total of 28 DLBCL patients and 17 age- and

sex-matched healthy controls (Table 1) were investigated using

two mass cytometry panels (Figure 2; Tables S1 and S2). To

evaluate the effect of therapy, patients were sampled both at

the time of diagnosis and after treatment with rituximab and

chemotherapy. For each of the two panels separately, gating

was performed in FlowJo. The two resulting MetaGate data files

were then merged. All plots and statistical calculations in Fig-

ures 3, 4, and 5 and the accompanying supplementary tables

were produced in MetaGate.
Large impact of DLBCL on peripheral blood immune cell
phenotypes
MetaGate allows creation of three main types of heatmaps. Us-

ing the first type, which shows marker expression for multiple
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Figure 1. MetaGate data analysis workflow

(A) A biological sample, such as patient blood, is analyzed using a mass or flow cytometer, which produces FCS data files. Manual gating is performed in FlowJo

or Cytobank, creating a data file with specifications of each gate.

(B) Gate data and FCS files are imported into MetaGate, where a graphical user interface allows defining populations based on combinations of gates. Through a

data reduction algorithm, a MetaGate data file is created, which contains marker expression and event frequencies of combinations of populations.

(C) The self-containing MetaGate data file is opened in the MetaGate graphical user interface for interactive production of statistics and plots, such as heatmaps,

volcano plots, and bar plots.
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populations in one group, the defining expression patterns of the

key included populations can be visualized (Figure 3A).

Volcano plots are useful for quickly identifying main differ-

ences between two groups, as they provide a graphical repre-

sentation of both statistical significance and magnitude of differ-

ence for multiple readouts in the same plot. In MetaGate,

volcano plots can be generated based on data from multiple

panels and explored interactively by holding the cursor over

each dot. Using a volcano plot to compare sizes of major cell
subsets between healthy donors and DLBCL patient samples

before therapy reveals multiple large differences (Figure 3B;

Table S5). Most significantly, HLA-DR� CD14+ CD19� CD3�

CD56� cells, indicative of monocytic myeloid-derived suppres-

sor cells,12 are greatly expanded in patients (Figure 3C).

Inversely, the T cell fraction of all CD45+ is lower in patients,

but T cells also constitute a smaller fraction of lymphocytes (Fig-

ure 3D). As mass cytometry, in contrast to flow cytometry, does

not allow distinction of lymphocytes by morphology, the
Patterns 5, 100989, July 12, 2024 3



Table 1. Patients and healthy controls

Healthy controls Patients

Number of individuals 17 28

Female 9 (53%) 12 (43%)

Median age 67 65

Subtype

GCB DLBCL – 13 (46.4%)

Non-GCB DLBCL – 11 (39.3%)

Other – 4 (14.3%)

Stage

Stage I – 3 (10.7%)

Stage II – 7 (25%)

Stage III – 3 (10.7%)

Stage IV – 15 (53.6%)
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lymphocyte population is here defined as the sum of T, B, and

natural killer (NK) cells. In patients, the CD56bright cells constitute

a smaller part of the NK cell compartment relative to the more

mature CD56dim cells (Figure 3E).

The second main type of heatmaps that MetaGate can pro-

duce enables two-group comparisons of multiple markers in

multiple populations (Figure 3F). Markers can represent both

marker intensities and percentages of positive cells, and data

from multiple panels can be displayed in the same plot. Using
A

B
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colors for displaying the p values from multiple non-parametric

tests and the direction of change, these plots give a fast overview

of potentially significant findings. MetaGate furthermore pro-

duces a complete table of all statistics and allows this to be ex-

ported as aMicrosoft Excel file. Most strikingly, T cells of DLBCL

patients display higher levels of CD38, Ki-67, PD-1, and TIM-3

(Figure 3G).

Immune cell subset dynamics through the course of
treatment
In addition to slightly varying chemotherapy regimens, the anti-

CD20 antibody rituximab was given to all patients. As expected,

peripheral blood B cells were virtually non-detectable in post-

treatment samples, while B cell numbers before treatment did

not differ significantly from those of healthy controls (Figure 4A).

As illustrated here, MetaGate automatically selects appropriate

statistical tests based on the number of groups compared.

The observed B cell depletion highlights the importance of as-

sessing absolute cell counts, in contrast to the relative subset

sizes usually provided by cytometry assays. If absolute counts

of a population are available, then MetaGate automatically cal-

culates absolute counts of all subpopulations. By linking clinical

lymphocyte counts to the lymphocyte population in MetaGate,

absolute counts of key T, B, and NK cell subsets could be as-

sessed. Most significantly, patients displayed larger numbers

of the CD56bright NK cells after therapy, while several subsets

of the more mature CD56dim NK cells decreased in size
Figure 2. DLBCL immune characterization

workflow

(A) Peripheral blood was collected from healthy

blood donors (n = 17) and from patients diagnosed

with DLBCL (n = 28) before and after chemotherapy.

(B) Blood samples were split and analyzed using two

mass cytometry panels. Data from each panel were

imported separately in MetaGate and later merged.
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Figure 3. Peripheral blood immune cell composition in DLBCL

(A) Heatmap showing expression of key markers in subsets of analyzed cell types, visualizing how subsets were defined for downstream analysis.

(B) Volcano plot showing size differences of 36 key immune cell types between healthy donors and all patients before chemotherapy.

(legend continued on next page)
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(Figures 4B–4D). The NK cell subset dynamics can be further

investigated by utilizing the third type of heatmap available in

MetaGate, which allows visualization of multiple readouts across

more than two groups (Figure 4E). In addition to the expansion of

the CD56bright NK cells, the CD56dim compartment displays a

shift toward less mature cells with more NKG2A-expressing

and fewer CD57-expressing cells. Looking at changes in marker

expression after therapy, this is corroborated by the observed in-

crease in NKp30 and NKp46 expression (Figure 4F). Further-

more, a clear increase in CD38 expression is observed in NK

cells, consistent across all major subsets (Figure 4G).

Prediction of disease outcome
Using provided metadata, MetaGate allows simple and dynamic

creation of sample groups for visualization and statistical testing.

Looking at absolute cell counts of key lymphocyte populations in

patient samples taken at the time of diagnosis, no clear differ-

ences were seen based on major age and subtype groups

(Figures 5A and 5B). However, advanced disease (Ann Arbor

stage III or IV) was somewhat associated with lower numbers

of CD4+ T cells and CD56bright NK cells (Figures 5C–5E). Only

five patients experienced disease progression during the

follow-up time. Still, this group showed an association with lower

absolute counts of CD56dim NK cells and higher numbers of

immunoglobulin D (IgD)– memory B cells (Figures 5F–5H).

DISCUSSION

The continuously increasing complexity of cytometry data

warrants new strategies for data analysis. We developed

MetaGate, allowing interactive and fast statistical analysis and

visualization of complex cytometry datasets. In this paper, we

visualize the novel features of MetaGate through the analysis

of a previously partly published broad multi-panel mass cytom-

etry characterization of peripheral blood immune cells in a cohort

of 28 DLBCL patients.

All plots and statistical analyses throughout this paper were

generated in MetaGate, illustrating many of the most important

features of the software package. Modern cytometry datasets

often contain large numbers of readouts for comparison, and as-

sessing all of them manually can be very laborious, especially

when there is a need to stratify the data on multiple clinical vari-

ables. Volcano plots, which are routinely used in genomics and

proteomics, allow both statistical significance and the magni-

tude of change to be displayed in one graphical representation,

which in MetaGate can be explored interactively. Conversely,

heatmaps allow more than two groups to be compared or multi-

ple readouts to be assessed inmultiple populations. Importantly,

when comparing two groups, MetaGate heatmaps can also

display statistical significance and direction of change, which

can be particularly useful when assessing marker expression
(C–E) Bar plots showing median percentages of (C) M-MDSCs (defined as HLA-D

within various parent populations in healthy controls (n = 17) and all patients bef

(F) Heatmap showing differences in marker expression between healthy control

subsets, with colors indicating direction of difference and statistical significance f

values unless otherwise indicated.

(G) Boxplots showing selected readouts from (F).

All p values are calculated using the Mann–Whitney U test.
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across multiple cell subsets. Such large-scale statistical testing

introduces a considerable risk of type I errors. While MetaGate

offers several p value correction techniques that can partly alle-

viate this problem, the use of p values in heatmaps and volcano

plots in MetaGate should primarily be considered as a data

exploration method, useful for highlighting potential findings of

interest. Such findings can then be further explored using bar

plots, which also allow multi-group comparisons and visualiza-

tion of other metadata. In all plots, MetaGate automatically se-

lects appropriate non-parametric statistical tests.

In cytometry experiments with clear groups of samples (for

example, perturbation and controls), cytometry data can be

managed relatively easily manually for statistics and visualiza-

tion. However, studies involving clinical data often include multi-

ple variables of metadata, such as age, sex, diagnosis, sampling

time point, and treatment response. In this case, appropriate

sample groups and comparisons may be numerous and not

necessarily obvious early in the data analysis workflow. This

can make manual data handling laborious and prone to errors.

MetaGate seeks to alleviate this by mapping metadata from

separate data files to samples and allowing groups to be created

through a point-and-click query system in which the user selects

features from the imported metadata. As both metadata and

group definitions can be modified at any time, data exploration

becomes simple and efficient. All data analyses in MetaGate

are based on manual gating of the data, meaning that cell types

are defined by manually setting presumed biologically relevant

cutoffs for marker expression in several one- or two-dimensional

data plots. Manual gating allows knowledge about biology and

technical aspects of specific experiments, sample batches, or

individual batches to be considered in the bioinformatical anal-

ysis. Furthermore, gating strategies can easily be standardized

across experiments or studies. However, this strategy also has

multiple drawbacks. The reliance on visual inspection of data

by a trained professional introduces potential operator bias

and confirmation bias.13,14 Furthermore, with the increasing

complexity of cytometry data, manual gating represents a labo-

rious analysis strategy.1,15,16 The majority of novel analysis algo-

rithms created to handle this complexity is based on unsuper-

vised clustering.2 This includes popular tools like t-SNE,

SPADE, Phenograph, and FlowSOM.3–6 These prove particularly

useful for exploring novel or complex cell subsets but may not

produce results that are easily compared between different

studies or experimental batches.7 DeepCyTOF and flowLearn

are examples of algorithms that address these obstacles by

automating the manual gating procedure through machine

learning, thereby attempting to reduce the laboriousness of

manual gating while preserving most of its benefits.17,18

While MetaGate relies on gating of cells, there is no intrinsic

requirement for these gates to be created manually by

humans. Therefore, MetaGate can be further developed to allow
R� CD14+ CD19� CD3� CD56� cells), (D) T cells, and (E) CD56bright NK cells

ore therapy (n = 28).

s (n = 17) and patients before therapy (n = 21–28) within multiple immune cell

rom nonparametric tests without p value adjustment. Values are mean intensity
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Figure 4. Effects of treatment on immune cell phenotypes
(A) B cell frequencies as percentage of all CD45+ in healthy controls (n = 17) and all patients (n = 28) before and after treatment. Bar height represents median.

(B) Volcano plot showing differences in absolute counts of 28 cell subsets before and after treatment (n = 28).

(C and D) Selected comparisons from (B). Bar height represents median.

(legend continued on next page)
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(semi-)automatic gating by any of these algorithms upstream of

the interactive statistical analysis in MetaGate.

The MetaGate data reduction algorithm works by calculating

mean intensity values and sizes of all defined populations for

each sample, producing a very condensed dataset that can be

used for downstream analysis without access to the raw data.

Consequently, MetaGate can only generate plots and statistics

based on predefined populations, limiting its usefulness for explo-

ration of novel cell subsets.However, there aremultiple benefits to

this strategy. Because cytometry data consist of single-cell mea-

surements of multiple parameters, datasets are typically large. A

theoretical set of 100 files with one million events and 40 param-

eters in eachwould create around 15 gigabytes of data, which ex-

ceeds the available memory of most common workstations.

Furthermore, the computational expensiveness of gating is

increasing with the number of events and parameters. By per-

forming all of the memory- and processor-consuming tasks in

the MetaGate data import procedure, the downstream analysis

in MetaGate becomes comparably very fast. Fixing gates, popu-

lation definitions, and sample selections at one point and making

these visible to the user also enhances the traceability of the anal-

ysis. The intuitive data processing steps and the small size of the

data file simplifies data sharing, making data analysis possible

without in-depth experimental knowledge, powerful computers,

or access to other specialized software.

MetaGate is fully written in the R programming language, uti-

lizing the shiny19 package to provide a web browser-based

user interface. This strategy allows MetaGate to take advantage

of the large selection of available R packages, including the

OpenCyto framework,20 which provides a wide range of func-

tionalities for cytometry data analysis. As a shiny-based applica-

tion, MetaGate can either run locally on the user’s computer or

be run on a remote server and accessed through the internet.

As internet connection is not required, and all source code is

open and without need of compilation, MetaGate can also be

used in secure data environments where custom software instal-

lation is prohibited, as long as R is available.

BCyto, CYANUS, and CytoPipelineGUI are examples of shiny-

based R packages that focus on various aspects of cytometry

data analysis.21–23 MetaGate is mainly distinguished from these

by its data reduction algorithm and tight integration with meta-

data. However, these features also give rise to the main limita-

tions of MetaGate. All gates and populations must be defined

during data import, and observations made during statistical

analysis and visualization cannot easily be verified in the raw

data. Furthermore, the easy integration of metadata allows

high-throughput statistical testing, which can give rise to type I

statistical errors. In conclusion, the complexity of cytometry

data may, in many cases, demand data analysis using multiple

tools with different features and limitations.

While demonstrating some of the most important features of

MetaGate, the mass cytometry analysis of 28 DLBCL patients
(E) Heatmap showing median frequencies of key NK cell subsets as percentage o

therapy.

(F) Heatmap showing differences in marker expression within multiple immune ce

indicating direction of difference and statistical significance from paired nonpara

(G) Boxplots showing mean CD38 expression in multiple NK cell subsets of heal

p values are calculated using the Dunn test (A and G) or Wilcoxon signed-rank te
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and matched controls reveals marked effects on the peripheral

blood immune system of DLBCL patients. Although current ther-

apy induces remission in a large majority of DLBCL patients,

incomplete remission or relapses are seen in around one-third

of the patients, and a better understanding of the immune re-

sponses could potentially lead to improved prognostics and

treatment customization.10 Monocytic myeloid-derived sup-

pressor cells (M-MDSCs) are pathologically activated mono-

cytes that have been associated with immunosuppression and

poor outcome in multiple cancer settings.24 Our data show

high numbers of M-MDSCs among DLBCL patients, which has

been reported previously and linked to immunosuppression,25,26

potentially explaining whymonocytosis was identified as a nega-

tive prognostic marker in DLBCL.27 Furthermore, the increased

expression of Ki-67, CD38, PD-1, and TIM-3 on T cells repre-

sents a phenotype consistent with exhaustion and potential

dysfunctional activation.28,29

Apart from the expected near-total depletion of B cells, the

most marked effect of chemotherapy on peripheral blood im-

mune cell phenotypes was seen for NK cells. After chemo-

therapy, NK cells displayed lower expression of the maturation

marker CD57, while higher expression was seen for the inhibitory

receptor NKG2A and activating receptors NKp30 and NKp46,

which is in line with observations of reconstitution of NK cell sub-

sets after hematological stem cell transplantation.30 The broad

upregulation of CD38 expression across all NK cell subsets sug-

gests a systemic immune activation following chemo-immuno-

therapy, possibly reflecting homeostatic recovery. Corrobo-

rating previous DLBCL studies, our data showed a positive

correlation between NK cell counts before initiation of therapy

and beneficial outcome.31,32

In conclusion, we present a new bioinformatical tool for high-

throughput statistical analysis and visualization of cytometry

data. The features of this software are displayed through the anal-

ysis of amass cytometry characterization of peripheral blood from

28 DLBCL patients and matched controls, highlighting large im-

munophenotypic effects of both the disease and chemoimmuno-

therapy treatment, corroborating previously published reports.

The initial manual gating of data, data reduction algorithm, and dy-

namic integration with metadata, simplify feature selection, data

sharing, and generation of publication-ready statistics and plots.

Published as an open-source R package, MetaGate can be

improved, customized, and integrated in existing workflows,

potentially allowing researchers to more easily tackle the continu-

ously increasing complexity of cytometry data.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Karl-Johan Malmberg (k.j.malmberg@medisin.

uio.no).
f bulk NK cells in healthy controls (n = 17) and patients (n = 28) before and after

ll subsets between patients before and after treatment (n = 20–28), with colors

metric tests without p value adjustment.

thy controls (n = 15–17) and patients (n = 25–28) before and after treatment.

st (B–D and F).

mailto:k.j.malmberg@medisin.uio.no
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Materials availability

There are restrictions to the availability of the patient material described in this

manuscript due to ethics and patient consent. Requests directed to the lead

contact will be considered on an individual basis.

Data and code availability

The full MetaGate source code is published and available under an open-

source GNU GPLv3 license at https://github.com/malmberglab/metagate

and Zenodo (https://doi.org/10.5281/zenodo.10871021).33 Documentation

and installation instructions are available at https://metagate.malmberglab.

com. Raw data for the included dataset are available at Figshare (https://doi.

org/10.6084/m9.figshare.24542173.v1).34 The MetaGate file used to generate

all statistics and figures can be downloaded from https://metagate.

malmberglab.com.

Methods

Development of MetaGate

MetaGate is developed as an R35 package with a web browser-based graph-

ical user interface implemented using the shiny package.19 Interaction with

FlowJo workspaces, GatingML files, and FCS files is implemented with the

use of the flowWorkspace, CytoML, flowCore, and flowUtils packages.36–39

Plots are generated using the ggplot2 package.40

Patient samples and clinical data

The use of patient and healthy donor blood samples and clinical data was

approved by the regional ethics board in Norway (refs. 2012/1143, 2015/

2142, 2018/2482, and 2018/2485). Patients were selected from a lymphoma

patient biobank established in January 2015 at Oslo University Hospital. Fully

informed written consent was obtained from all healthy donors and patients.

The study included 17 healthy donors and 28 patients. Median age was 65

for healthy donors and 67 for patients, while the percentages of female sub-

jects were 53% and 43%, respectively. PBMCs were collected from patients

directly before initiation and after completion of first-line chemotherapy, while

healthy donor samples were collected at one time point. Inclusion diagnoses

were DLBCL, high-grade B cell lymphoma (HGBCL) with MYC and BCL2

and/or BCL6 rearrangements (or based on the 2008World Health Organization

[WHO] classification of lymphoid neoplasms, ‘‘B-cell lymphoma, unclassifi-

able, with features intermediate between diffuse large B-cell lymphoma and

Burkitt lymphoma’’), and T cell/histiocyte-rich large B cell lymphoma

(THRLBCL). All patients were treated with a combination of rituximab and

chemotherapy regimens containing cyclophosphamide, doxorubicin, vincris-

tine, etoposide, and prednisolone (CHOP/EPOCH/CHOEP). The Hans algo-

rithm was used for subtype classification of GCB and non-GCB DLBCL. For

patients, absolute numbers of lymphocytes were retrieved from diagnostic

white blood cell differential counts, while such data were not available for

healthy donors.

Mass cytometry

PBMCs from patients and healthy blood donors were isolated by density

gradient centrifugation using Lymphoprep (Axis-Shield, Oslo, Norway). Cells

were subsequently aliquoted and cryopreserved in 10% DMSO, 70% fetal

calf serum (Sigma-Aldrich, St. Louis, MO, USA) and 20% RPMI 1640 (Thermo

Fisher Scientific, Waltham, MA, USA). Upon experiments, PBMCs were

thawed and rested overnight in RPMI 1640 with 10% fetal calf serum.

Cells were stainedwith Cell-ID Intercalator-Rh (Fluidigm, San Francisco, CA,

USA) and GLUT1.RBD.GFP (Metafora Biosystems, Evry Cedex, France) ac-

cording to the manufacturer’s instructions to allow for viability testing and

GLUT-1 detection, respectively. Samples were then incubated with an Fc re-

ceptor binding inhibitor polyclonal antibody (Thermo Fisher Scientific) before

staining with a surface antibody cocktail (Table S1 and S2). Antibodies were

either obtained pre-labeled from Fluidigm or in house conjugated using Max-

par X8 antibody labeling kits (Fluidigm). After staining, the cells were fixed us-

ing 2% paraformaldehyde in PBS without Ca and Mg and then permeabilized
Figure 5. Immune cell repertoires stratified on patient characteristics

(A–C and F) Volcano plots showing differences in 33 absolute cell counts in periph

below or equal to 65 (n= 13), (B) GCB (n = 13) or non-GCB (n= 11) subtype, (C) stag

23) within the follow-up time.

(D, E, G, and H) Selected readouts from (C) and (F). Bar height represents media

All p values are calculated using the Mann–Whitney U test.
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and barcoded using the Cell-ID 20-Plex Barcoding Kit (Fluidigm) according to

the manufacturer’s instructions. Samples were then pooled, resuspended in

pure methanol, and stored at �20�C. On the day of mass cytometry acquisi-

tion, samples were thawed, stained with an intracellular antibody cocktail,

and labeled with Cell-ID Intercalator-Ir (Fluidigm) according to the manufac-

turer’s instructions. Immediately before acquisition, samples were supple-

mented with EQ Four Element Calibration Beads (Fluidigm) and acquired on

a CyTOF 2 (Fluidigm) equipped with a SuperSampler (Victorian Airship, Alamo,

CA, USA). The event rate was kept below 400 events per second. Samples

were analyzed in 8 batches, with healthy donors and patients distributed

evenly across batches and patient samples from different timepoints always

included in the same batch. Due to lack of sufficient cell numbers, PBMCs

from 3 of the healthy donors were not analyzed using mass cytometry panel 2.

Data preparation

FCS files were normalized using the Fluidigm Helios software and debarcoded

either by manual gating or using the Helios software. The files were then im-

ported in Cytobank (Cytobank, Santa Clara, CA, USA), where debris, doublets,

and dead cells were excluded. Data were then gated on CD45+ events and ex-

ported as FCS files. Files from the two panels were imported into separate

FlowJo workspaces and gated according to Figures S1 and S2. In each

FlowJo workspace, all samples shared identical gating hierarchies, but gates

were adjusted manually for each sample. Each FlowJo workspace was then

imported in MetaGate. In MetaGate, populations were defined according to

Tables S3 and S4. Channels that were empty or represented intercalators or

non-relevant markers were excluded (Tables S1 and S2). Furthermore, the

markers GLUT-1, CD71, CD137, and NKG2D were removed due to problem-

atic performance or batch effects. The event limit was kept at 50, meaning that

populations with fewer than 50 events were excluded from calculation of

marker intensities or child population sizes. No data transformation was

applied in MetaGate. Gating strategy plots were generated using the

CytoML and ggcyto R packages.

Statistical analysis

All statistical plots and statistical analyses were generated in MetaGate v.1.0

on macOS 13.1 running R v.4.2.2. Minor typographical changes and insertion

of p value annotation were subsequently performed in Adobe Illustrator v.27.2.

The Mann-Whitney U test was used for unpaired comparison of two groups

(Figures 3B–3G and 5A–5F). Paired two-group comparisons were tested using

theWilcoxon signed-rank test (Figures 4B–4D and 4F). Comparison of multiple

groups was done using the Kruskal-WallisH test and, in the case of p values%

0.05, subsequent pairwise group comparisons using the Dunn test (Figures 4A

and 4G). Adjustment of p values was not performed.

p values above 0.05 were defined as not significant (ns.), while *, **, *** and

**** were used to indicate p values below or equal to 0.05, 0.01, 0.001, and

0.0001, respectively. Bar plot height represents the median. In boxplots,

hinges correspond to the 25th and 75th percentiles, while whiskers range to

the most extreme values but no longer than 1.5 times the interquartile range,

and data points outside that range were plotted individually.
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