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Matrix stiffness, a critical physical property of the cellular environment, is implicated in
epidermal homeostasis. In particular, matrix stiffening during the pathological progression
of skin diseases appears to contribute to cellular responses of keratinocytes. However, it
has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated
signaling in coordination with chemical stimuli during inflammation and its effect on
proinflammatory cytokine production. In this study, we demonstrated that keratinocytes
adapt to matrix stiffening by increasing cell–matrix adhesion via actin cytoskeleton
remodeling. Specifically, mechanosensing and signal transduction are coupled with
chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is
elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene.
We demonstrated that b1 integrin and focal adhesion kinase (FAK) expression were
enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was
involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical
role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with
important clinical implications for skin diseases accompanied by pathological
matrix stiffening.

Keywords: skin, keratinocyte, inflammatory response, IL-6, matrix stiffening
INTRODUCTION

The skin is the interface between the environment and inner tissues and is constantly exposed to
diverse external stimuli such as mechanical stresses or toxic chemicals. Keratinocytes, a main
component of the epidermis, are known to form physical and immunological barriers against these
stimuli through the production of proinflammatory cytokines such as interleukin-6 (IL-6), IL-1a,
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tumor necrosis factor (TNF)-a, interferon (IFN) g, and CXC
motif ligand 8 (CXCL8) (1–3). These keratinocyte responses are
considered to trigger subsequent inflammatory events by
recruiting and activating other immune cells in the skin to
maintain skin homeostasis (4–6). Thus, keratinocyte-derived
proinflammatory cytokines are necessary for understanding the
immunological function of the skin barrier and epidermal
abnormalities, leading to the pathogenesis of skin diseases

Recently, it has been shown that cells form cell–matrix
adhesions within the three-dimensional (3D) extracellular
matrix (ECM); thus, external biophysical cues can be
mechanically transmitted into intracellular signaling cascades,
impacting cell behaviors accordingly (7–9). Keratinocytes, which
are mechanoresponsive cells, could adapt to increasing matrix
stiffness by altering their proliferation (10), migration (11),
differentiation (12), colony formation (13), and epithelial-to-
mesenchymal transition (14). To date, the clinical importance
of the keratinocyte mechanosensing is underscored by the
maintenance of normal skin homeostasis and wound-healing
process, in which granulation tissue with locally elevated stiffness
is formed (15, 16). However, in addition to normal physiological
tissue stiffening as a protective mechanism, pathological tissue
stiffening accompanies certain skin diseases, including keloid
scar and stiff skin syndrome (SSS) (17). During disease
progression, increased matrix stiffness induces a pathogenic
immune response. Consistent with this effect, previous studies
have demonstrated the enhanced secretion of cytokines such as
TNF-a, IL-6, and transforming growth factor-b2 (TGF-b2) in
mouse models or patients with these skin-hardening diseases (18,
19). Accordingly, matrix-stiffness-mediated mechanical cues are
considered essential for disease pathogenesis via the elaboration
of keratinocyte-derived cytokines; therefore, targeting the
mechanotransduction pathway is clinically highly effective for
the treatment of skin diseases with pathological matrix stiffening.
Nonetheless, it is not completely understood how matrix-
stiffness-mediated mechanical cues regulate inflammatory
cytokine production in keratinocytes in coordination with
chemical cues during inflammation.

Therefore, in this study, we investigated the effects of
altered matrix stiffness on keratinocyte production of
the proinflammatory cytokine IL-6, which was highly
induced by chemical stimuli in our previous studies
(20, 21). We demonstrated that increased matrix stiffness
s ignificant ly promotes IL-6 product ion in HaCaT
keratinocytes in response to the strong skin sensitizer 2,4-
dinitrochlorobenzene (DNCB) but not the non-sensitizer
lactic acid. Mechanistically, we found that keratinocytes
could sense matrix stiffness through b1 integrin and
integrin-mediated focal adhesion kinase (FAK) and
activation of ERK and the PI3K/Akt pathway, as possibly
downstream molecules of b1 integrin, was involved in DNCB-
induced IL-6 production. These findings provide previously
unidentified insights into keratinocyte mechanosensing and
signal transduction within the context of modulation of skin
immune responses via cytokine production and its potential
impact on pathological skin diseases with matrix stiffening.
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MATERIALS AND METHODS

Substrate Preparation
Polydimethylsiloxane (PDMS) substrates (Sylgard 184, Dow
Corning Corp., USA) were prepared by mixing the PDMS base
with a crosslinker at a ratio of 50:1 to 10:1. PDMS mixtures were
degassed under vacuum, spread onto 13 mm diameter glass
coverslips or 6-well plates, and cured overnight at 70°C. To
functionalize the PDMS substrates with ECM, the surfaces were
covered with a solution of 50 mg/mL sulfo-SANPAH (Thermo
Fisher Scientific, USA) in water and exposed to 365 nm UV light
for 10 min. This process was repeated twice, followed by
incubation with 50 mg/mL human plasma fibronectin. The
samples were rinsed three times with PBS and sterilized with
UVB and 70% ethanol prior to cell seeding. All chemicals were
purchased from Sigma-Aldrich (St. Louis, MI) unless
otherwise noted.
Characterization of Mechanical Properties
of PDMS Substrate
The mechanical properties of the PDMS substrates were
measured using a custom-made indenter consisting of a load
cell and an automated stage (22–24). A spherical tip with a
diameter of 5 mm was used for the indentation. Young’s
modulus of PDMS at various crosslinker concentrations were
estimated by fitting an indentation force-depth curve to the
Hertz contact model.
Cell Culture
The human keratinocyte cell line HaCaT was provided by the
German Cancer Research Center (Heidelberg, Germany).
Normal human epidermal keratinocytes (NHEK) were
obtained from Thermo Fisher Scientific (Waltham, MA, USA).
HaCaT cells were cultured in Dulbecco’s modified Eagle
medium, which was supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA), 1%
penicillin–streptomycin (Invitrogen), and 1% non-essential
amino acids (Gibco, Thermo Fisher Scientific, USA). NHEK
cells were cultured in EpiLife serum-free medium containing
EpiLife undefined growth supplement (Thermo Fisher
Scientific). The cells were cultured at 37°C in a humidified
incubator containing 5% CO2.
Cell Proliferation Assay
Cell viability was detected using the cell counting-kit-8 assay
(Dojindo, Kumamoto, Japan). HaCaT cells were seeded in a 96-
well plate with varying elastic moduli (low, medium, and high
stiffness) at a density of 1.2 × 105 cells/mL (100 mL total volume/
well). At 24, 48, 72, and 96 h after incubation, 10 mL of CCK-8
solution was added to each well, and the cells were incubated for
another 4 h at 37°C, in accordance with the manufacturer’s
instructions. The OD at 450 nm was measured using a
VICTORTM X3 microplate reader (Perkin-Elmer, Waltham,
MA, USA).
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Chemical Treatment
Chemicals 2,4-dinitrochlorobenzene (DNCB, Sigma-Aldrich)
and lactic acid (Sigma-Aldrich) were dissolved in dimethyl
sulfoxide (the maximum concentration of DMSO in the
culture medium was 0.1%) and PBS respectively. For in vitro
treatment, the HaCaT cells cultured on PDMS substrates were
treated with 5 mg/mL DNCB or 1 mg/mL lactic acid (Sigma-
Aldrich) for 24 h. The culture medium supplemented with 0.1%
DMSO or PBS was used as a vehicle control. The concentrations
of DNCB and lactic acid used in this study were determined
based on prior tests of 75% cell viability (CV75), as described
previously (20).
Western Blotting
Cells were lysed in RIPA buffer containing a protease inhibitor
and phosphatase inhibitor (GenDepot, Houston, TX, USA). The
protein samples were separated on a 12% SDS-PAGE gel. After
electrophoresis, the proteins were transferred to nitrocellulose
membranes (Millipore, Bedford, MA, USA), washed with PBS
containing 0.05% Tween-20 (PBST), and blocked with PBS
containing 5% non-fat dry milk for 1 h at room temperature.
The membranes were then incubated overnight at 4°C with
primary antibodies against b1 integrin (#4706, 1:1000, Cell
Signaling Technology, Danvers, MA, USA), phospho-ERK1/2
(#5726, 1:1000, Cell Signaling Technology), total ERK1/2 (#4695,
1:1000, Cell Signaling Technology), phospho-PI3K (#3087,
1:1000, Cell Signaling Technology), total PI3K (#3087, 1:1000,
Cell Signaling Technology), phospho-Akt (#9271, 1:1000, Cell
Signaling Technology), total Akt (#9272, 1:1000, Cell Signaling
Technology), and b-actin (sc-47778, 1:3000, Santa Cruz
Biotechnology, USA). The following day, the membranes were
washed three times with PBST and further incubated for 1 h at
room temperature with the appropriate HRP-conjugated
secondary antibodies (1:5000, Santa Cruz Biotechnology).
Proteins were visualized using an enhanced chemiluminescence
light-detecting kit (34095, SuperSignal West Femto, Thermo
Fisher Scientific).
Immunofluorescence Cell Staining
and Imaging
For immunofluorescence staining, keratinocytes on PDMS
substrates were fixed in 4% paraformaldehyde (Electron
Microscopy Science) and permeabilized in 0.5% Triton X-100
(Sigma-Aldrich). For actin and nucleus staining, the cells were
incubated with Alexa-488-labeled phalloidin (Invitrogen) and
Hoechst 33342 (Sigma-Aldrich) in 1% BSA (Sigma-Aldrich)
blocking solution. For focal adhesion staining, the cells were
incubated with a focal adhesion kinase (Proteintech, Rosemont,
IL, USA) primary antibody for 1 h at room temperature. After
washing, the cells were incubated for 1 h with Alexa-568-labeled
goat anti-rabbit secondary antibody (Thermo Fisher Scientific).
All images were obtained using an upright microscope (Nikon)
with Plan Fluor 20× (NA 0.5) and S Plan Fluor 40× (NA
0.6) objectives.
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Enzyme-Linked Immunosorbent Assay
(ELISA)
After 24 h of incubation under chemical or mechanical
stimulation, as described previously (2, 21), ELISA for IL-6 was
performed on conditioned media from cells on PDMS substrates,
in accordance with the manufacturer’s protocol (R&D Systems,
Minneapolis, MN, USA).

Quantitative Real-Time PCR
For quantitative real-time PCR analysis, total RNA was
solubilized in TRIzol reagent (Invitrogen) and extracted
according to the manufacturer’s instructions. cDNA was
synthesized from 1 mg of total RNA using reverse transcription,
and the amount of mRNA was determined using real-time PCR
analysis with the SYBR Green qPCR premix (Enzynomics,
Daejeon, South Korea) on an ABI real-time PCR 7500 machine
(Applied Biosystems, CA, USA). The primer sequences were as
fol lows: human IL-6 forward, 5-AAATTCGGTACA
TCCTCGAC-3; human IL-6 reverse, 5-CAGGAACTG
GATCAGGACTT-3; human b-actin forward, 5-ATTG
CCGACAGGATGCAGAA-3; and human b-actin reverse, 5 -
GCTGATCCACATCTGCTGGAA-3.

Statistical Analysis
All statistical analyses were conducted using the GraphPad Prism
software (version 8.0) and displayed as the mean ± standard
error of the mean (SEM). A p-value less than 0.1 was considered
to indicate a significant difference (*p < 0.1; **p < 0.01; ***p <
0.001; and ****p < 0.0001).
RESULTS

Substrate Stiffness Alters Morphology and
Cytoskeletal Organization in Keratinocytes
To investigate the effect of matrix stiffness on keratinocytes, we
employed a cell culturing system using PDMS with low (20 kPa),
medium (500 kPa), or high (1200 kPa) elastic modulus
(Supplementary Figure S1). Although there is discrepancy in
the references, the elastic modulus of the normal skin is
20~140kPa and the modulus further increases during either
normal physiological formation of mature granulation tissue
after injury (200kPa~) or pathological excessive ECM
production in the skin with stiff keloid scar tissue (100~1000
kPa) (12, 25, 26). Thus, 20 kPa substrate mimicked the stiffness
of normal skin, and the substrates with 500 and 1200 kPa were
most similar to mature granulation tissues and pathological skin
diseases respectively.

First, we cultured HaCaT cells on PDMS substrates with
varying elastic moduli for 4 days and observed the influence of
matrix stiffness on long-term keratinocyte growth. Cell growth
tracking revealed a more rapid increase in the number of cells on
the stiff substrate from day 2, and the difference gradually
increased over the 4 days, which is consistent with the results
of previous studies (10, 12) (Supplementary Figure S2).
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To assess whether the alteration of matrix stiffness causes
cytoskeletal remodeling, cell morphology and cytoskeletal
organization were evaluated in keratinocytes cultured on substrates
with low (20 kPa) or high (1200 kPa) stiffness. Consistent with the
results presented in Supplementary Figure S2, there were no
detectable differences in the number of keratinocytes on day 1;
however, the cells cultured on the stiffer substrate (high) were well
spread with visible actin stress fibers compared to those on the soft
substrate (low) (Figure 1A). Additionally, quantification analysis
using Cell Profiler (21) showed that the adhesive contact area of cells
and nuclei increased dramatically with increasing substrate stiffness
(Figure 1B). A cell or nucleus was fitted to an ellipse. The aspect
ratio (AR) of cell or nucleus was estimated by dividing the long axis
by short one of the ellipse (27, 28). There were no significant
differences in terms of AR and orientation of cells and nuclei over
the range of matrix moduli (Figures 1C–E). Collectively, these
results indicate that the actin cytoskeleton and nucleus structurally
and biochemically adapt to changes in the matrix substrate, which is
responsible for transducing diverse mechanical signals into
cellular responses.

Matrix Stiffening Enhances IL-6 Production
in Response to DNCB in Keratinocytes
Considering the function of the actin cytoskeleton and nucleus in
cellular mechanotransduction to modulate gene expression (29–
32), we next investigated whether alteration of the substrate
matrix could concurrently influence pro-inflammatory cytokine
production. To address this question, we compared the stiffness-
mediated production of the proinflammatory cytokine IL-6,
which has been shown to be increased in keratinocytes by
mechanical stretching coupled with chemical stimulation in
Frontiers in Immunology | www.frontiersin.org 4
our previous study (21) (Figure 2A). Without no chemical
stimulation, we observed an indistinguishable difference in IL-6
mRNA expression (Figure 2B) between keratinocytes cultured
on substrates with varying stiffness. However, when DNCB with
strong sensitizing potential was added to the cells, IL-6
expression was significantly enhanced with increasing substrate
stiffness in keratinocytes. Notably, unlike keratinocytes treated
with DNCB, the observed stiffness-mediated IL-6 production
was not shown in response to the non-sensitizer lactic acid (LA),
suggesting that mechanical cues in concert with strong chemical
stimulation are required for IL-6 production. The results
showing that increased substrate stiffness stimulated IL-6 in
response to DNCB were consistent with those observed at the
protein level, as measured using ELISA (Figure 2C). A similar
higher increase in the level of IL-6 production was found in
NHEK cells cultured on the stiffer substrate (Supplementary
Figure S3). Collectively, we conclude that increased matrix
stiffness promotes IL-6 production in keratinocytes upon
treatment with chemicals with strong skin sensitizing potential
to evoke an inflammatory response.

Mechanical and Chemical Stimuli Are
Coupled to Coordinate FAK Activation
Focal adhesions play an essential role in integrating mechanical
properties of the extracellular matrix into biochemical and
transcriptional responses, thereby regulating cell behaviors,
including cell adhesion, migration, and differentiation (33, 34).
To gain insight into the mechanisms underlying matrix stiffness-
mediated IL-6 production in response to DNCB, we first
examined the focal adhesion detected by FAK, a central
signaling hub between integrin and multiple downstream
A B

D E

C

FIGURE 1 | Substrate stiffness alters morphology and cytoskeletal organization in keratinocytes. (A) Representative immunofluorescent images showing the nucleus
(DAPI, blue) (indicated by the white dotted line) and F-actin (green) in HaCaT cells cultured on substrates with low (20 kPa) and high (1200 kPa) stiffness at day 1.
Scale bar = 50 mm. The area (B), aspect ratio [AR, (C)], and orientation (D, E) of the cell and nucleus were quantified on HaCaT cells cultured on low- and high-
stiffness substrates. All images were analyzed using the Cell Profiler software. n = 350-1000 (B–E). Data represent the mean ± S.E.M. **p < 0.01; ***p < 0.001 by
Student’s t-test. N.S., nonsignificant.
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cellular signaling pathways (35, 36) in keratinocytes cultured on
substrates of different stiffness. FAK immunofluorescence
imaging revealed that the cells established more adhesive
interactions, as evidenced by both the area and length of FAK
at the cell periphery, along with more visible stress fibers on the
stiffer substrate (high) than on the soft substrate (low)
(Figures 3A, B). Importantly, the difference in FAK activation
between the substrates was more significant after DNCB
treatment, further supporting a possible role of FAK in
regulating stiffness-mediated IL-6 production (Figures 3C–F).

Matrix Stiffness Modulates IL-6 Production
Through Activation of ERK and
PI3K/Akt Pathways
Focal adhesion transduces mechanical cues from the altered
ECM to regulate cell behavior, in which integrins act as a
coupler of mechanotransducers to initiate biochemical
signaling (37, 38). In particular, recent studies have suggested
that increased matrix-stiffness-dependent b1 integrin expression
and clustering promote focal adhesions and subsequent
mechanotransduction pathways including FAK-ERK and FAK-
PI3K/Akt, which are involved in modulating the pathogenesis of
various diseases (38–41). Furthermore, it is notable that b1
integrin-PI3K/Akt signaling pathway is involved in the
upregulation of cytokine VEGF in cancer cells (41). Thus, we
focused on the b1 integrin and its downstream ERK and PI3K/
Akt signaling as possible mechanisms underlying matrix
stiffening-mediated IL-6 secretion in keratinocytes.
Frontiers in Immunology | www.frontiersin.org 5
Immunoblot analyses showed that b1 integrin was enhanced
with increasing substrate stiffness independent of chemical
stimuli (Figures 4A, B). Additionally, we observed that matrix
stiffening induced phosphorylation of ERK and PI3K, followed
by phosphorylation of Akt, as possibly subsequent downstream
pathways of b1 integrin activation (Figures 4C–E). When DNCB
was treated, the difference was more evident. These observations
indicate that b1 integrin, ERK and PI3K/Akt pathways, which
were activated with increasing matrix, were upregulated in
keratinocytes exposed to DNCB.

We next investigated whether blocking ERK and PI3K/Akt
pathways prevents matrix stiffness-dependent enhanced
production of IL-6. To this end, we inhibited the ERK or
PI3K/Akt pathway with PD98059 (ERK inhibitor) or
LY294002 (PI3K/Akt inhibitor) and observed an overall
decrease in IL-6 production in DNCB-treated keratinocytes
(Figure 4F). Moreover, upon treatment with PD98059 or
LY294002, IL-6 production in keratinocytes on the substrates
with the highest stiffness was reduced to levels comparable to
those on the least stiff substrate. Co-inhibition of ERK and PI3K/
Akt with combination treatment completely abolished matrix-
stiffening-enhanced IL-6 production in keratinocytes.
Collectively, these results demonstrate that matrix-stiffening-
mediated signal transduction through activation of ERK or
PI3K/Akt pathway cooperates with chemical stimuli to drive
IL-6 production.
DISCUSSION

Keratinocytes play important roles in the protective machinery
of the skin, and experimental evidence suggests that the
mechanical properties of the ECM can enable the regulation of
keratinocyte behavior and subsequent protective immune
response of the skin (10, 42). Thus, further elucidation of the
mechanism by which matrix stiffening regulates the
inflammatory response of keratinocytes in the context of
cytokine production is essential for understanding the role of
mechanical cues in the pathogenesis of skin diseases with matrix
stiffening and future therapeutic interventions for these diseases.

Here, we showed that increased matrix stiffness promoted
proinflammatory cytokine IL-6 production in keratinocytes in
response to chemical stimuli. In addition, we uncovered the first
detailed molecular mechanism through which keratinocytes
integrate chemical and mechanical inputs from the environment
to regulate IL-6 production. These findings emphasize biophysical
cues, particularly matrix stiffness, as a central regulator of cell
signaling in keratinocytes, consistent with previous observations in
other cell types (43–45), and highlight the role of the stiffness-
mediated mechanotransduction pathway in enhancing
proinflammatory cytokine production in response to external
stimuli, such as DNCB (Figure 4G).

Mechanistically, we found that increase in matrix stiffness
enhanced the levels of b1 integrin, FAK and phosphorylation of
ERK and PI3K/Akt. The functional link between ERK/PI3K/Akt
signaling pathways and IL-6 production was illustrated by the
A

B C 

FIGURE 2 | Matrix stiffening enhances IL-6 production in response to DNCB
in keratinocytes. (A) The experimental design for chemical and mechanical
stimulation of proinflammatory response. (B) mRNA expression of IL-6 in
HaCaT cells cultured on substrates with low (20 kPa), medium (500 kPa) and
high (1200 kPa) stiffness in response to 0.1% DMSO (control, Ctrl), DNCB,
and lactic acid (LA). Data are normalized to 0.1% DMSO-treated cells (Ctrl) on
substrates with low stiffness. (C) ELISA for IL-6 in the culture supernatants
from HaCaT cells cultured on substrates with low, medium, and high stiffness
in response to 0.1% DMSO (Ctrl), DNCB, and LA. n = 4~6/group. Data
represent the mean ± S.E.M. **p < 0.01; ****p < 0.0001 by two-way ANOVA.
N.S., nonsignificant.
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result that stiffness-dependent IL-6 production was abolished
through inhibition of either the ERK or PI3K pathway
individually or combined inhibition of both. Given the well-
described b1 integrin-dependent ERK and PI3K/Akt pathways
(38–41) and stiffness-mediated b1 integrin expression observed
in this study (Figure 4), it is plausible that b1 integrin was
involved in IL-6 production. Nonetheless, these data are
insufficient to conclude that b1 integrin directly contributes to
IL-6 regulation. Furthermore, we could not exclude the
possibility that the enhanced several growth factor receptors
with increasing matrix stiffness (46, 47) activated ERK/PI3K/Akt
pathway. In particular, EGFR activation and downstream
phosphorylation of ERK and PI3K have been previously
reported in keratinocytes (10). Thus, further studies are
required to elucidate the involvement of b1 integrin or EGFR
as upstream signaling molecules of ERK and PI3K/Akt pathways
and their contribution to the observed stiffness-mediated
behaviors in keratinocytes.

This cell–matrix interaction and its effect on cytokine
production may be especially significant in light of in vitro
alternative assays that use keratinocytes as a replacement for
animal experiments. Various skin sensitizers stimulate
keratinocytes to produce proinflammatory cytokines including
Frontiers in Immunology | www.frontiersin.org 6
IL-6, and these keratinocyte-derived cytokines have been
evaluated as biomarkers for discriminating sensitizers from
non-sensitizers (20, 48). Several previous studies on in vitro
irritation and/or sensitization tests using keratinocytes have been
based on the culture of cells on plastic surfaces; they have
analyzed cytokine production upon chemical treatment.
However, plastic culture plates exhibit an elastic modulus of
magnitude considerably higher than normal physiological skin
tissues and thus could exert excessive forces on keratinocytes.
Considering the importance of mechanical cues on IL-6
production, as exemplified in this study, it is suggested that to
test the skin sensitizing potential of chemicals under
physiological conditions, substrate stiffness should be
fully considered.

In summary, our data demonstrate the regulation of IL-6
production in keratinocytes by matrix stiffening and indicate that
stiffness-mediated mechanoregulation is a potential contributing
factor to the pathogenesis of skin diseases. Consistent with this
result, clinical evidence suggests that pathological matrix
stiffening is often accompanied by enhanced IL-6 production
(19, 49). Therefore, our results could be translated into a novel
therapeutic approach for skin-hardening diseases that targets
mechanically regulated b1 integrin or ERK/PI3K/Akt pathway,
A B

DC

E F

FIGURE 3 | Mechanical and chemical stimuli are coupled to coordinate FAK activation. (A, B) Representative immunofluorescent images showing the nucleus
(DAPI, blue), F-actin (green), and focal adhesion kinase (FAK, red) in HaCaT cells cultured on substrates with low (20 kPa) (A) and high (1200 kPa) stiffness (B).
Yellow arrowheads indicate FAK at the cell periphery. (C, D) Representative immunofluorescent images showing the nucleus (blue), F-actin (green), and FAK (red) in
HaCaT cells on substrates with low (C) and high (D) stiffness in response to 0.1% DMSO (Ctrl) and DNCB. Scale bar = 25 mm. (E, F) Quantification of area (E) and
length (F) of FAK estimated from fluorescent images in (C, D). n = 9~12/group. Data represent the mean ± S.E.M. *p < 0.1; **p < 0.01 by Student’s t-test. N.S.,
nonsignificant.
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as described in this study, to achieve better outcomes. In
addition, a recent study investigating this approach indicated
that integrin-targeted therapy prevents skin fibrosis in SSS,
supporting the therapeutic potential of the mechano-based
approach for the treatment (50).
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FIGURE 4 | ERK and PI3K/Akt pathways are involved in matrix stiffening-mediated IL-6 production. (A) Immunoblot analysis of b1 integrin, p-PI3K, PI3K, p-Akt,
Akt, p-ERK, ERK, and b actin in HaCaT cells cultured on substrates with low (20 kPa), medium (500 kPa) and high (1200 kPa) stiffness in response to 0.1%
DMSO (Ctrl) and DNCB. (B–E) Quantification of the band intensity ratio for b1 integrin:b actin (B), p-PI3K:PI3K (C), p-Akt : Akt (D), and p-ERK : ERK (E). Data
are normalized to 0.1% DMSO-treated cells (Ctrl) on substrates with low stiffness (B–E). (F) ELISA for IL-6 in the culture supernatants from HaCaT cells cultured
on substrates with low, medium, and high stiffness in response to DNCB in the absence or presence of PD98059 or/and LY294002. n = 3~4/group. Data
represent the mean ± S.E.M. *p < 0.1; **p < 0.01; ****p < 0.0001 by two-way ANOVA. N.S., nonsignificant. (G) A model describing matrix-stiffness-driven
regulation of IL-6 production in response to chemical stimuli in keratinocytes. Keratinocytes sense matrix rigidification through the activation of b1 integrin and
subsequent FAK, which in turn may lead to phosphorylation of ERK and PI3K/Akt. This mechanotransduction pathway coordinates chemical stimuli such as
DNCB to enhance IL-6 production in keratinocytes.
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