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INTRODUCTION 
 

As the natural barrier, skin tissue plays an important 

role in preventing water loss, maintaining a constant 

body temperature, resisting infection from 

microorganisms, reducing mechanical injury, providing 

a protective shield, and maintaining the homeostasis of 

the body [1, 2]. Skin mainly consists of the epidermis, 

dermis, subcutaneous tissues, and their accessory organs 

[3]. Epidermal stem cells (ESCs) are specific stem cells 

derived from the embryonic ectoderm, which can be 

differentiated into various layers of the skin to activate 

the state of proliferation and differentiation and the 

apoptotic state of the epidermis. In this way, the 

integrity and dynamic equilibrium of the epidermis is 

maintained. In addition, as the specific stem cells for 

wound repairing, ESCs play a vital role in the repairing 

and rebuilding of skin and its accessory organs [4, 5]. 

However, ESCs are easily damaged by external stimuli, 

such as ultraviolet (UV), which induces DNA damage 

and oxidative stress in ESCs [6]. Interleukin-1α (IL-1α) 

has been identified as an important DNA damage sensor 

that transmits the genotoxic stress signal to oxidative 

stress and inflammation, making IL-1α a potential target 
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ABSTRACT 
 

Background and purpose: Skin tissue is the natural barrier that protects our body, the damage of which can be 
repaired by the epidermal stem cells (ESCs). However, external factors abolish the self-repair ability of ESCs by 
inducing oxidative stress and severe inflammation. Apremilast is a small molecular inhibitor of 
phosphodiesterase 4 that was approved for the treatment of psoriasis. In the present study, the protective 
property of Apremilast against IL-1α-induced dysfunction on epidermal stem cells, as well as the preliminary 
mechanism, will be investigated. 
Methods: ESCs were isolated from neonatal mice. The expression levels of TNF-α, IL-8, IL-12, MMP-2, and MMP-
9 were detected using real-time PCR and ELISA. MitoSOX Red assay was used to determine the level of 
mitochondrial reactive oxygen species (ROS). Western blot and real-time PCR were utilized to determine the 
expression levels of IL-1R1, Myd88, and TRAF6. Activation of NF-κB was assessed by measuring the p-NF-κB p65 
and luciferase activity. Capacities of ESCs were evaluated by measuring the gene expressions of integrin β1 and 
Krt19 using real-time PCR. 
Results: Firstly, the expression levels of TNF-α, IL-8, IL-12, MMP-2, MMP-9 and IL-1R1, as well as the ROS level, were 
significantly elevated by IL-1α but greatly suppressed by treatment with Apremilast. Subsequently, we found that 
the activated Myd88/TRAF6/NF-κB signaling pathway induced by stimulation with IL-1α was significantly inhibited 
by the introduction of Apremilast. As a result, Apremilast protected ESCs against IL-1α-induced impairment in 
capacities of ESCs, this was verified by the elevated expression levels of integrin β1 and Krt19. 
Conclusions: Apremilast might ameliorate IL-1α-induced dysfunction in ESCs by mitigating oxidative stress and 
inflammation through inhibiting the activation of the Myd88/TRAF6/NF-κB signaling pathway. 
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for the alleviation of injury on ESCs by UV [7]. As an 

inflammatory factor, IL-1α induces the excessive 

production of reactive oxygen species (ROS) [8], 

cyclooxygenase-2 (COX-2) [9], and prostaglandin 2 

(PGE2) [10], which are important elements that 

contribute to the activation of oxidative stress [11, 12]. 

By mediating the IL-1α/IL-1R signaling pathway, the 

excretion of inflammatory factors is significantly 

induced, further triggering the development of multiple 

inflammation-related diseases [13]. Tracy reported that 

as a major epithelial alarmin released from lung 

epithelial cells, IL-1α induces the excretion of 

inflammatory mediators in fibroblasts during 

photodynamic therapy [14]. Clinically, the expression 

of IL-1α is reported to be greatly elevated in the lung 

tissues of chronic obstructive pulmonary disease 

(COPD) patients [15]. The level of pro-inflammatory 

factors in fibroblasts isolated from COPD patients is 

significantly higher than in normal fibroblasts [16]. IL-

1α might be a potential target for the alleviation of 

injury on ESCs by suppressing the activation of 

oxidative stress and the production of inflammatory 

factors. In in-vitro experiments, treatment with IL-1α 

triggers pro-inflammatory responses in fibroblasts [17]. 

In epidermal stem cells, IL-1α has also been shown to 

mediate the inflammatory response and produce the 

stem cell proliferation factors [18]. Therefore, IL-1α-

stimulated ESC cells can be used as an in-vitro model. 

 

Apremilast is a small molecular inhibitor of 

phosphodiesterase 4 (PDE4) and has been approved by 

the Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) to treat psoriasis 

vulgaris and joint psoriasis [19]. The molecular structure 

of Apremilast is shown in Figure 1. PDE4 mediates 

immunity by degrading the cyclic adenosine 

monophosphate (cAMP). Apremilast induces the 

accumulation of cAMP by inhibiting the activity of 

PDE4 to downregulate the expression level of pro-

inflammatory factors and upregulate the expression of 

anti-inflammatory factors (such as IL-10), which further 

suppresses the inflammatory reactions [20]. In recent 

years, Apremilast has been reported to protect skin 

tissues from external injuries, such as wounds [21]. In the 

present study, the protective property of Apremilast on 

IL-1α-induced injury on ESCs, as well as the underlying 

mechanism, will be investigated to explore the potential 

therapeutic effects of Apremilast on skin diseases. 
 

MATERIALS AND METHODS 
 

Cell isolation and treatments 
 

The protocols for animal experiments used in this study 

were approved by the Animal Care Committee of The 

China-Japan Union Hospital of Jilin University. BALB/c 

mice were purchased from Beijing Vital River 

Laboratory Animal Technology Co., Ltd. The neonatal 

mouse dorsal skin was isolated from mice within 1–3 

days after birth. Following incubation with 0.3% Dispase 

II, the ESCs were isolated from the epidermis removed 

from the animals and cultured in CnT-07 progenitor 

 

 
 

Figure 1. Molecular structure of Apremilast. 
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cell-targeted (PCT) epidermal keratinocyte medium for 

subsequent experiments. Recombinant mouse IL-1α was 

purchased from R&D Systems (400-ML), PDE inhibitor 

Apremilast was from Sigma-Aldrich (SML1099). Cells 

were stimulated with 5 ng/mL IL-1α in the presence or 

absence of 1.5 or 3 μM Apremilast for 6 hours. The 

concentrations of IL-1α and Apremilast were adopted 

based on the studies previously described [22, 23]. 

 

Real-time PCR analysis 
 

The Trizol Reagent was used to isolate the total RNA 

from the treated ESCs and cDNA was transformed from 

the total RNA with a revert aid first-strand cDNA 

synthesis kit (Fermentas, Vancouver, Canada), followed 

by real-time PCR analysis with SYBR-Green PCR kit 

(Invitrogen, California, USA) incubated with cDNA and 

gene-specific primers. The relative expression levels of 

related genes were determined using the 2
−ΔΔCt method 

and GAPDH was used as a negative control in the cells. 

The following primers were used in this study: TNF-α 

(F: 5′-CCAGACCCTCACACTCAGATC-3′, R: 5′-CAC 

TTGGTGGTTTGCTACGAC-3′); IL-8 (F: 5′-ATGACT 

TCCAAGCTGGCCGTGGCT-3′, R: 5′-TCTCAGCCCT 

CTTCAAAAACTTCTC-3′); IL-12 (F: 5′-ATGACTTC 

CAAGCTGGCCGTGGCT-3′, 5′-AACTTGAGGGAGA 

AGTAGGAATGG-3′); MMP-2 (F: 5′-AAGGATGGA 

CTCCTGGCACATGCCTTT-3′, R: 5′-ACCTGTGGG 

CTTGTCACGTGGTGT-3′); MMP-9 (F: 5′-AAGGAC 

GGCCTTCTGGCACACGCCTTT-3′, R: 5′-GTGGTAT 

AGTGGGACACATAGTGG-3′); IL-1R1 (F: 5′-TTTA 

GCTCACCCATGGCTTCA-3′, R: 5′-GCATCTTGCAG 

GGTCTTTTCC-3′); Myd88 (F: 5′-CCACCTGTAAAG 

GCTTCTCG-3′, R: 5′-CTAGAGCTGCTGGCCTTGTT-

3′); TRAF6 (F: 5′-ATTTCATTGTCAACTGGGCA-3′, 

R: 5′-TGAGTGTCCCATCTGCTTGA-3′);  

 

Integrin β1 (F: 5′-ACACCGACCCGAGACCCT-3′, R: 

5′-CAGGAAACCAGTTGCAAATTC-3′); Krt19 (F: 5′-

GCACTACAGCCACTACTACACGA-3′, R: 5′-CTCA 

TGCGCAGAGCCTGTT-3′), GAPDH (F: 5′-AAGA 

GGGATGCTGCCCTTAC-3′, 5′-CCATTTTGTCTAC 

GGGACGA-3′). 

 

Western blot analysis 
 

The proteins extracted from the digested cells were 

separated using sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) [24], followed by being 

transferred to the PVDF membrane (Thermo Fisher, 

Massachusetts, USA). The blots were then blocked with 

5% BSA to remove the non-specific binding proteins 

for 1 hour at room temperature. Subsequently, the 

membranes were incubated with primary antibodies 

against IL-1R1 (1: 1,000, Abcam, Massachusetts, 

USA), Myd88 (1: 1,000, Abcam, Massachusetts, USA), 

TRAF6 (1: 1,000, Abcam, Massachusetts, USA), p-NF-

κB p65 (1: 1,000, Abcam, Massachusetts, USA) and β-

actin (1: 1,000, Abcam, Massachusetts, USA) at 4°C 

overnight, followed by being incubated with the 

secondary antibodies. The immunoreactive bands were 

visualized by chemiluminescence using an ECL kit 

(Beyotime, Shanghai, China) and the specific bands 

were analyzed using Image J software. 

 

Mito SOX red assay 
 

To determine mitochondrial ROS levels, ESCs were 

incubated with a mitochondrial superoxide indicator 

5 μM MitoSOX Red (YEASEN, Shanghai, China) for 10 

minutes at 37°C. The cells were live imaged immediately 

after incubation with a fresh, complete culture medium 

for 60 minutes with the Olympus Laser Scanning 

Confocal Microscope (Olympus, Tokyo, Japan). 

Quantification of Mito SOX Red staining was performed 

using the software Image J. Firstly, the regions of interest 

(ROI) were defined. Secondly, the integrated density 

value (IDV) of target cells was determined. Thirdly, we 

counted the average numbers of cells (n) presented in the 

ROI. Average levels of mitochondrial ROS = IDV/n. 

 

ELISA assay 
 

ELISA assay was used to detect the concentrations of 

TNF-α, IL-8, IL-12, MMP-2, and MMP-9 in the 

supernatant of treated ESCs that were incubated with 5% 

BSA to remove the non-specific binding proteins for 

1 hour at room temperature, followed by incubation with 

the primary antibodies for 1 hour. Subsequently, the 

samples were incubated with streptavidin-horseradish 

peroxidase (HRP)-conjugated secondary antibodies for 

20 minutes at room temperature, followed by being read 

at 450 nm with a microplate spectrophotometer (Thermo 

Fisher, Massachusetts, USA). 

 

Luciferase reporter assay 
 

The cells were seeded on the 24-well plates at a density 

of 5 × 10
4
 cells/well and transfected with the pNL3.2-

NF-κB-RE reporter plasmids using TransFast 

transfection reagent (Promega, Madison, USA). The 

luciferase reporter assay was performed as described 

previously [20]. Briefly, transfected ESCs were allowed 

to grow for 24 hours after the transfection, followed by 

stimulation with 5 ng/mL IL-1α in the presence or 

absence of 1.5 or 3 μM Apremilast for 6 hours. The cell 

extracts were prepared with reporter lysis buffer and 

luciferase activity was measured with a dual luciferase 

assay buffer (Promega). The transfection efficiencies 

were normalized to an independent control (Renilla 

luciferase vector). The results were presented as the fold 

increase with untreated cells as control. 
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Caspase activity assay 
 

For the determination of caspase activity, the Caspase 

3/7 assay kit was used. ESCs were seeded at a density 

of 1 × 10
5
 cells/mL in a white-walled 96-well plate. At 

the indicated time points, cells were assayed using the 

respective kits according to the manufacturer’s 

instructions. Caspase 3/7 assay buffer was added and 

incubated at 22°C for 30 minutes. The luminescence 

was then recorded. 

 

Statistical analysis 

 

GraphPad Prism 7.0 (GraphPad Software, USA) was 

used to perform statistical analysis. Data are presented as 

Mean  ±  SD. Results were statistically analyzed with 

Student’s t-test for group comparisons and using one-way 

ANOVA with Tukey’s post hoc test for multiple group 

comparisons. Ns indicates no significant difference. Data 

with P values < 0.05 were considered significant. 

 

RESULTS 
 

Apremilast suppressed IL-1α-induced expression of 

pro-inflammatory cytokines in mouse ESCs 
 

To evaluate the effects of Apremilast on the 

inflammation in the ESCs induced by IL-1α, the cells 

were stimulated with 5 ng/mL IL-1α in the presence or 

absence of 1.5 or 3 μM Apremilast for 12 hours and the 

concentrations of inflammatory factors were detected. 

As shown in Figure 2A, the expression levels of TNF-α, 

IL-8 and IL-12 were significantly elevated by 

stimulation with IL-1α. Importantly, treatment with 

Apremilast significantly inhibited the elevated 

expressions of TNF-α and IL-8, but not IL-12. ELISA 

assay was used to detect the concentrations of the 

inflammatory factors. As shown in Figure 2B, the 

concentrations of TNF-α in the control, IL-1α, 1.5 μM 

Apremilast and 3 μM Apremilast groups were 96.2, 

462.4, 335.4 and 288.1 pg/mL, respectively. 

Approximately 52.7, 259.1, 165.8, and 113.3 pg/mL IL-

8 were determined in the ESCs incubated with blank 

medium, IL-1α, IL-1α in the presence of 1.5 μM 

Apremilast and IL-1α in the presence of 3 μM 

Apremilast, respectively. In addition, the concentrations 

of IL-12 in the control, IL-1α, 1.5 μM Apremilast, and 3 

μM Apremilast groups were 78.5, 369.6, 361.7, and 

342.7 pg/mL, respectively. 

 

The expressions of MMP-2 and MMP-9 induced by 

IL-1α were prevented by apremilast in mouse ESCs 
 

As shown in Figure 3A, we found that the elevated 

expressions of MMP-2 and MMP-9 induced by 

stimulation with 5 ng/mL IL-1α were significantly 

inhibited by treatment with Apremilast in a dose-

dependent manner. The concentrations of MMP-2 in the 

control, IL-1α, 1.5 μM Apremilast, and 3 μM 

Apremilast groups were 83.5, 235.6, 176.2, and 138.9 

pg/mL, respectively. Approximately 136.7, 397.1, 

281.5, and 233.5 pg/mL MMP-9 were detected in the 

ESCs treated with blank medium, IL-1α, IL-1α in the 

presence of 1.5 μM Apremilast and IL-1α in the 

presence of 3 μM Apremilast, respectively (Figure 3B). 

 

Apremilast alleviated IL-1α-induced oxidative stress 

and expression of IL-1R1 in ESCs 
 

Oxidative stress was evaluated by measuring 

mitochondrial ROS. As shown in Figure 4, the 

mitochondrial ROS levels were significantly increased

 

 
 

Figure 2. Apremilast suppressed IL-1α-induced expression of pro-inflammatory cytokines in mouse epidermal stem cells 
(ESCs). Cells were stimulated with 5 ng/mL IL-1α in the presence or absence of 1.5 or 3 μM Apremilast for 12 hours. (A). mRNA of TNF-α, 
IL-8, and IL-12; (B). Secretions of TNF-α, IL-8, IL-12 (****P < 0.0005 vs. vehicle group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 
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by stimulation with IL-1α but greatly suppressed by 

treatment with Apremilast. In addition, the upregulated 

expression of IL-1R, the main binding receptor of IL-

1α, induced by stimulation with IL-1α, was significantly 

downregulated by the introduction of Apremilast at both 

the mRNA and protein levels (Figure 5A and 5B). 

 

 
 

Figure 3. Apremilast prevented IL-1α-induced expression of MMP-2 and MMP-9 in ESCs. Cells were stimulated with 5 ng/mL IL-
1α in the presence or absence of 1.5 or 3 μM Apremilast for 12 hours. (A). mRNA of MMP-2 and MMP-9; (B). Protein of MMP-2 and of 
MMP-9 (****P < 0.0005 vs. vehicle group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 

 

 
 

Figure 4. Apremilast alleviated IL-1α-induced oxidative stress in ESCs. Cells were stimulated with 5 ng/mL IL-1α in the presence or 
absence of 1.5 or 3 μM Apremilast for 12 hours. Mitochondrial ROS (****P < 0.0005 vs. vehicle group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment 
group, N = 6) was measured using MitoSOX Red. Scale bar, 100 μm. 



 

www.aging-us.com 19298 AGING 

Apremilast mitigated IL-1α-induced apoptosis in 

ESCs 

 

The activity of caspase 3/7 has been considered as a 

marker for apoptosis. We used it to investigate the 

effects of Apremilast in IL-1α-induced apoptosis. 

Results in Figure 6 demonstrate that IL-1α treatment 

significantly increased the activity of Caspase 3/7, 

which was significantly reduced by Apremilast in a 

dose-dependent manner. These findings suggest that 

Apremilast mitigated IL-1α-induced apoptosis in 

ESCs.  

 

Apremilast suppressed the Myd88/TRAF6/NF-κB 

p65 signaling induced by IL-1α 

 

To explore the potential mechanism underlying the 

inhibitory effect of Apremilast against IL-1α-induced 

 

 
 

Figure 5. Apremilast reduced IL-1α-induced expression of IL-1R1 in ESCs. Cells were stimulated with 5 ng/mL IL-1α in the presence 
or absence of 1.5 or 3 μM Apremilast for 12 hours. (A). mRNA of IL-1R1; (B). Protein of IL-1R1 (****P < 0.0005 vs. vehicle group; #, ##, P < 
0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 
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excessive inflammation and oxidative stress, the 

expression levels of Myd88 and TRAF6, as well as the 

activation state of NF-κB p65, were detected after the 

cells were stimulated with 5 ng/mL IL-1α in the 

presence or absence of 1.5 or 3 μM Apremilast for 6 

hours. As shown in Figure 7, the elevated expression 

levels of Myd88 and TRAF6 induced by treatment with 

IL-1α were greatly inhibited by the introduction of 

Apremilast in a dose-dependent manner. In addition, the 

expression level of p-NF-κB p65 was significantly 

promoted by IL-1α but suppressed by treatment with 

Apremilast (Figure 8A) in a dose-dependent manner. 

Importantly, as shown in Figure 8B, the enhanced 

luciferase activity of NF-κB induced by stimulation 

with IL-1α was greatly reduced by the introduction of 

Apremilast in a dose-dependent manner. 

Apremilast protected ESCs against IL-1α-induced 

impairment in capacities of ESCs 

 

To evaluate the impact of Apremilast on the biological 

function of ESCs, the gene expressions of integrin β1 

and Krt19 were determined in the ESCs following 

stimulation with 5 ng/mL IL-1α in the presence or 

absence of 1.5 or 3 μM Apremilast for 12 hours. As 

shown in Figure 9A and 9B, the expression levels of 

integrin β1 and Krt19 at the mRNA level were 

significantly decreased by stimulation with IL-1α but 

greatly elevated by the introduction of Apremilast. 

Consistently, Apremilast preserved the expressions of 

integrin β1 and Krt19 at the protein level (Figure 9C), 

indicating a promising protective property of Apremilast 

against IL-1α-induced impairment in capacities of ESCs. 

 

 
 

Figure 6. Apremilast mitigated IL-1α-induced apoptosis in ESCs. Cells were stimulated with 5 ng/mL IL-1α in the presence or 
absence of 1.5 or 3 μM Apremilast for 12 h. The activity of caspase 3/7 as measured using a commercial kit (****P < 0.0005 vs. vehicle group; 
#, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 

 

 
 

Figure 7. Apremilast reduced IL-1α-induced expressions of Myd88 and TRAF6 in ESCs. Cells were stimulated with 5 ng/mL IL-1α 
in the presence or absence of 1.5 or 3 μM Apremilast for 12 hours. (A). mRNA of Myd88 and TRAF6; (B). Protein of Myd88 and TRAF6 (****P 
< 0.0005 vs. vehicle group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 
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DISCUSSION 
 

A group of cells that are highly expressed with integrin 

α2β1 or α3β1 are located in the epidermal basal layer. 

They are characterized by clonal growth, are small in 

size, have rare organelles, and a low concentration of 

cellular RNA [25]. These cells are defined as ESCs. As 

the expression level of integrin β1 in the ESCs is 

approximately 2-fold higher than that in other cells, 

integrin β1 has been regarded as the specific biomarker 

of ESCs [26]. In the process of re-epithelialization of 

the wound, ESCs differentiate into various layers of 

epidermal cells to contribute to the repair of injured skin 

tissues [27]. In an investigation on the distribution of 

regenerative cells in the wound repairing tissues, Krt19-

positive ESCs were observed in the epidermal basal 

layer of repairing tissues. In addition, in the layer 

between basal cells and keratinocytes, numerous Krt19- 

 

 
 

Figure 8. Apremilast inhibited IL-1α-induced activation of NF-kB in ESCs. Cells were stimulated with 5 ng/mL IL-1α in the presence 
or absence of 1.5 or 3 μM Apremilast for 6 hours. (A). Levels of p-NF-κB p65; (B). Luciferase activity of NF-κB (****P < 0.0005 vs. vehicle 
group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5–6). 
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positive ESCs were observed. However, in the normal 

skin tissues, Krt19-positive ESCs were only located in 

the epidermal basal layer and the cutaneous appendages, 

indicating that ESCs might be involved in the process of 

wound repairing [28]. However, external factors, such 

as UV and inflammation infiltration, bring significant 

injury to ESCs, therefore reducing their tissue repairing 

ability [29, 30]. A series of pathological processes can 

be induced when the ESCs are injured, including 

oxidative stress and inflammation [31]. Oxidative stress 

is characterized by excessively produced ROS. Under a 

physiological state, a balance between the production 

and elimination of ROS is maintained by the anti-

oxidative and oxidative systems. When the excessively 

produced ROS cannot be excluded by the anti-oxidative 

system, cellular or tissue injuries are induced, and this is 

widely regarded as oxidative stress [32]. In the present 

study, IL-1α was used as an inflammatory stimulator to 

induce an in-vitro injury model on ESCs, it was verified 

by excessive excretion of inflammatory factors, an 

elevated level of oxidative stress, and decreased 

expression of ESCs biomarkers. Recent investigations 

indicate that two subtypes of pro-inflammatory 

cytokines are produced in ESCs during wound healing. 

One subtype is induced in the early response to 

antigens, such as TNF-α and IL-8. Another type is 

mainly involved in the tissue repair process, like IL-12 

and IL-10. The balanced regulation of these pro- 

inflammatory cytokines is critical to epidermal cell 

function and wound healing [33]. In this study, we 

found that Apremilast suppressed IL-1α-induced 

expressions of TNF-α and IL-8. The blunt effect of 

Apremilast on IL-12 could be related to its function in 

late stage tissue repair. Through treatment with 

Apremilast, we found that the expressions of integrin β1 

and Krt19 were significantly upregulated and the levels 

of mitochondrial ROS were greatly suppressed. The key 

proteins of the down-stream of oxidative stress MMP-2 

and MMP-9 were also significantly downregulated. 

These data indicate that Apremilast protects ESCs 

against IL-1α-induced impairment in capacities by 

suppressing the level of oxidative stress. Based on the 

prospective results in the present study, the molecular 

mechanism underlying the regulatory effect of 

Apremilast on oxidative stress will be further explored 

in our future work. 

 

Severe inflammation was another important 

pathological process induced by IL-1α in ESCs. The 

TLR4/Myd88/TRAF6 signaling pathway is a classic 

 

 
 

Figure 9. Apremilast protects ESCs against IL-1α-induced impairment in capacities of ESCs. Cells were stimulated with 5 ng/mL 
IL-1α in the presence or absence of 1.5 or 3 μM Apremilast for 12 hours. (A) mRNA of integrin β1; (B). mRNA of Krt19; (C). Protein levels of 
integrin β1 and Krt19 (**, ****, P < 0.01, 0.0005 vs. vehicle group; #, ##, P < 0.05, 0.01 vs. IL-1α treatment group, N = 5). 
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inflammatory signaling pathway, reported to exert an 

important role in the development and process of 

fibrosis. By regulating the NF-κB signaling pathway, 

the TLR4/MyD88/TRAF6 signal triggers the excessive 

production of inflammatory factors to induce and 

aggravate the pathological state of fibrosis [34, 35]. As 

an important pathway involved in the regulation of 

inflammatory factors secretion and production, the NF-

κB signaling pathway was not activated under a normal 

physiological state. IκB, an innate inhibitor for NF-κB, 

blocks the gene mapping sequence of NF-κB by 

binding with NF-κB and inhibits the biological function 

of NF-κB. However, the phosphorylation of IκB is 

triggered when the cells are stimulated by external or 

internal factors, such as inflammatory mediators, viral 

infections, and oxidative stress. In this way, NF-κB is 

released from the inhibitory state, and transferred to the 

cell nucleus, and bound with enhancers of target 

proteins. As a result, transcription is enhanced [36, 37]. 

A series of studies show that Apremilast could 

ameliorate drug-induced cardiovascular toxicity by the 

inhibition of the ERK and JNK kinases, and NF-

κB/inflammatory pathways [38–39]. Particularly, 

Apremilast acts to inhibit the NF-κB pathway by 

upregulating IL10 and downregulating TNF-α [40]. 
PDE4 inhibition causes intracellular accumulation of 

cAMP-responsive element-binding protein 

(CREB/ATF-1) family of transcription factors. 

Apremilast is also reported to modulate inflammatory 

response by enhancement of cAMP-responsive element 

(CRE)-driven gene transcription and inhibition of NF-

κB-driven gene transcription [41]. Our data show that 

treatment with Apremilast significantly reduced the 

production of inflammatory factors and activation of 

the Myd88/TRAF6 signaling pathway by IL-1α. The 

levels of p-NF-κB p65 were significantly suppressed, 

indicating that Apremilast might inhibit the severe 

inflammation in the ESCs induced by IL-1α through 

regulating the Myd88/TRAF6/NF-κB signaling 

pathway. However, the direct target of Apremilast still 

remains to be identified. Therefore, the protective 

effect of Apremilast could be mediated by the NF-

κB/TLR pathway in ESCs. In our future work, TLR4 

will be further investigated to claim whether it is the 

direct or indirect target of Apremilast that is 

responsible for the biological functions achieved in the 

present study. 

 

Taken together, we conclude that Apremilast might 

ameliorate IL-1α-induced dysfunction in ESCs by 

alleviating oxidative stress and inflammation. 
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