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Correspondence
marta.mele@bsc.es

In brief

Garcı́a-Pérez et al. perform a multi-tissue

analysis of the association between

demographic and clinical traits and

human transcriptome variation. Ancestry,

sex, age, and BMI and certain diseases

make large tissue-specific contributions

to gene expression variation, whereas

alternative splicing variation is mostly

driven by ancestry and under genetic

control.
ll

mailto:marta.mele@bsc.es
https://doi.org/10.1016/j.xgen.2022.100244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2022.100244&domain=pdf


OPEN ACCESS

ll
Article

The landscape of expression and alternative
splicing variation across human traits
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SUMMARY
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human
biology and disease.We implement a statistical framework to quantify the contributions of 21 individual traits
as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals
from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make addi-
tive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in
splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins
showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution
of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where his-
topathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-
trait approach provides an extensive characterization of the main drivers of human transcriptome variation in
health and disease.
INTRODUCTION

Over the past two decades, transcriptome analyses have revolu-

tionized our understanding of a myriad of biological processes,

allowing us to connect molecular changes to phenotypic traits.

Analyses of gene and alternative splicing patterns across tis-

sues,1,2 developmental time points,3–5 different physiological

and pathological conditions,6–8 and species9–14 have provided

insights into transcriptional and post-transcriptional regulatory

mechanisms that underlie organismal phenotypes. A large-scale

transcriptomic analysis in humans showed that gene expression,

rather than alternative splicing, is key to defining tissue pheno-

types, whereas both expression and alternative splicing

contribute to interindividual variation.1 Further studies, focused

on specific tissues, have shown that demographic traits such

as ancestry, sex, age, and body mass index (BMI) are strongly

associated with gene expression variation. Expression differ-

ences between populations are widespread, particularly in

response to immune challenges.15,16 Sex expression differences
This is an open access article under the CC BY-N
are ubiquitous and can also be associated with the genetic regu-

lation of gene expression,17 whereas changes in expression

with age are mostly tissue specific and often correlated with

mitochondrial activity.18 Alternative splicing (AS) also drives

transcriptional heterogeneity by generating different exon com-

binations from the same gene. Several studies have identified

AS events that vary with age,19,20 sex,21 and ancestry22 and

have provided important insights into how splicing contributes

to phenotypic variation.1,2

Despite the important contributions of these studies, analyses

of transcriptome variation have mostly been restricted to

single traits and a few tissues.17–21,23,24 Consequently, while

demographic traits, such as ancestry, sex, and age, are simulta-

neously associated with human transcriptome variation, the

nature of their joint effects across tissues remains largely un-

known. Only studies in whole blood have started to address

the synergic contribution of sex and age to differential gene

expression variation upon immune stimulation, with sex

associations being shared more across conditions than age
Cell Genomics 3, 100244, January 11, 2023 ª 2022 The Authors. 1
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associations.25 Similarly, it has been shown that gene expres-

sion varies between males and females during immune cell ag-

ing.26 However, beyond immune cell types, little is known about

how different traits simultaneously interplay to define tissue,

organ, and individual phenotypes.

Studies identifying gene and AS differences between healthy

and diseased individuals have shed light on disease mecha-

nisms by pinpointing the specific genes and pathways involved

in disease progression and severity.27 However, most transcrip-

tome analyses in the context of human disease have investigated

their associations in well-known affected tissues (e.g., diabetes

in pancreas28,29 or adipose tissues30,31), usually neglecting their

systemic effects due to tissue sample collection limitations. The

extensive medical history available for the Genotype-Tissue

Expression (GTEx) cohort32 overcomes this drawback, allowing

the study of the influence of different diseases on a multi-tissue

scale. Similarly, the pathology annotation of GTEx samples’

images allows us to connect transcriptomic changes to dis-

ease-associated differences in tissue architecture.33

Here, we take advantage of GTEx data to systematically

analyze the associations between multiple demographic and

clinical traits and between gene expression and AS variation

across human tissues.We identify differentially expressed genes

and differentially spliced events across tissues, focusing on ad-

ditive and interaction effects. We highlight commonalities and

differences between tissues and traits and between expression

and splicing. Overall, our multi-tissue and multi-trait approach

provides an extensive characterization of the main drivers of hu-

man transcriptome variation, improving our understanding of

how phenotypic variation emerges in health and disease.

RESULTS

Demographic traits make different contributions to
tissue transcriptional variation
We used the GTEx release v.8 data to simultaneously quantify

gene expression changes with four demographic traits, genetic

ancestry,2 sex, age, and BMI, across 46 different tissues from

781 individuals (Figure S1A). We considered a total of 22,967

genes (Figure S1B) and identified differentially expressed genes

(DEGs) while controlling for known sources of technical variation

and unobserved confounders such as cell-type composition

(STAR Methods). Age had the largest number of DEGs followed

by sex, ancestry, and BMI, with variations across tissues (Fig-

ure 1A). Skin, breast, and adipose tissues had the largest number

of DEGs for ancestry, sex, and BMI, respectively, as previously

observed.1 Interestingly, the arteries have the largest number

of DEGs with age, which may relate to the observation of

widespread aging changes in the cardiovascular system.34

These general patterns persist when controlling for sample

size, although expression changes in the uterus and ovary with

age becomemore apparent35 (Figure 1C). To assess replication,

we compared our findings with four independent studies (STAR

Methods) and found significant overlaps (one-tailed Fisher’s

exact test, false discovery rate [FDR] <0.05) with all demographic

traits in the expected tissues (Table S1A). We observed

consistent replication of age-DEGs in blood reported in

Pellegrino-Coppola et al.,36 which explicitly corrected for
2 Cell Genomics 3, 100244, January 11, 2023
differences in cell-type abundances, suggesting that our

differential expression analysis correctly controls for tissue

composition.

Next, we assessed whether demographic traits made similar

contributions to expression variation across tissues or their indi-

vidual contributions varied independently by tissue. We used a

hierarchical partitioning approach to quantify the contribution

of each trait to gene expression variation while controlling for

collinearity effects (STAR Methods). We found that, while one

trait explains most of the variation in some tissues (e.g., sex in pi-

tuitary or age in aorta artery), the four demographic traits have

comparable contributions in others (e.g., skeletal muscle or ad-

ipose subcutaneous) (Figure 1B). Ancestry was the principal

contributor to expression variation in most tissues, followed by

age, sex, and BMI (Figure 1B).

In general, the variation explained by demographic traits per

gene is low (Figures 1C and S1D), consistent with previous ob-

servations.25 Age is associated with more genes but explains a

lower proportion of their variation compared with sex, which is

associated with fewer genes but makes larger contributions,

consistent with observations in whole blood.25 The contribution

of ancestry is similar to that of sex, and the contribution of

BMI, in tissues where it contributes, is generally higher than

that of age. We identified 3,196 genes for which a single trait ex-

plains more than 10% of their interindividual tissue differences

(Figure 1D; Table S1B). Among these, some are known to be

implicated in trait-related phenotypes, such as ACKR1, the

malaria receptor gene, whose lower expression in individuals

of African ancestry is associated with higher resistance to

malaria infection.37

Overall, we observe that the associations of each demo-

graphic trait on interindividual variation in gene expression is

largely tissue dependent.

Gene expression differences are restricted to one or a
few tissues
We next sought to explore similarities between the contributions

of each demographic trait across tissues. Most genes (90%) are

differentially expressed (DE) in between one and five tissues

(Figure 2A; Table S1C).17,18 This pattern cannot be explained

by tissue-restricted expression because only 430 genes are

exclusively expressed in the tissues where they are DE

(Tables S1D and S1E) and the tissue where a gene is DE is often

not the tissue with the highest expression of that gene

(Figure S2A). Genes that are DE in many tissues for a given trait

might be important drivers of phenotypic differences for that

trait. We found 443 highly tissue-shared DEGs (DEGs in 10 or

more tissues; Table S1F). Among these, ancestry-DEGs are

enriched in glutathione-related metabolic processes (Figure 2B;

Table S1G), mostly driven by glutathione genes clustered in

a highly polymorphic locus associated with cancer risk.38–40

Most highly tissue-shared sex-DEGs are X-chromosome-

inactivation escapees17,41 and Y-linked genes (Figure 2A),

whereas highly tissue-shared age-DEGs are enriched in p53

pathway genes (Figure 2B; Table S1H), which are involved in ag-

ing and cancer.42 Genes DE with BMI in more than three tissues

(159) include genes involved in body weight and food intake

regulation, such as LEP or AKAP143,44 (Figure 2A).
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Figure 1. Contributions of demographic traits to gene expression variation

(A) Number of DEGs per tissue and demographic trait. Heatmap cell colors are normalized to the maximum value per trait. Tissues are sorted by sample size, and

tissue labels correspond to tissue names described in Figure S1.

(B) Proportion of total tissue expression variation explained by each demographic trait. Top bars show the number of tissues for which each demographic trait

explains the largest proportion of variation.

(C) Mean gene expression variation explained by each demographic trait in each tissue. This decreases with sample size since larger numbers of samples provide

power to detect smaller contributions.

(D) Examples of genes with a large proportion of expression variation explained by a demographic trait.
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Genetic effects underlie a large proportion of tissue
gene expression differences between populations
Expression differences between human populations are partially

driven by cis-regulatory variants (cis-eQTLs) with different allele
frequencies between populations.15,16,45,46 Consistent with this,

we observe that ancestry-DEGs are significantly enriched in

eGenes (genes with at least a cis-eQTL)2 (two-tailed Fisher’s

exact, FDR <0.05) (Table S2A). The contribution of cis-eQTLs
Cell Genomics 3, 100244, January 11, 2023 3
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Figure 2. Tissue sharing of DEGs and contribution of genetic variants to expression differences between human populations

(A) Distribution of the number of tissues in which a gene is DE with each demographic trait. Labeled ancestry- and age-DEGs correspond to highly tissue-shared

genes enriched in glutathione-related metabolic processes and p53 pathways, respectively. For sex-DEGs, black points correspond to highly shared

X-chromosome-inactivation (XCI) escapees17 and Y genes. As examples, the well-known XCI escapee XIST41 and the ubiquitously transcribed Y gene UTY are

labeled. The top three most tissue-shared BMI-DEGs are labeled. Bottom bars show the proportions of tissue-specific DEGs and DEGs in a low (2–5), moderate

(6–9), or high (R10) number of tissues with each demographic trait.

(B) Median tissue expression values for a highly tissue-shared ancestry (top) and age (bottom) DEG (EA, European American; AA, African American).

(C) Percentage of cis-driven of the total ancestry eGenes DE across tissues.

(D) Example of a cis-driven DEG in sun-exposed skin. Left: bar plot showing the allele frequency of the eQTL variant in each population. Right: PWP2 violin plots of

gene expression levels stratified by population and individual genotype.

(E) cis-driven DEGs are associated with eQTLs with larger Fst values (Wilcoxon signed-rank test, p = 1.9e�10). Violin plots show the distribution of tissue median

Fst values for cis-driven (left) and cis-independent (right) DEGs.

(F) cis-driven DEGs are more tissue shared (Wilcoxon signed-rank test, p = 3.9e�07). Violin plots show the distribution of median tissue-sharing values for cis-

driven (left) and cis-independent (right) DEGs.

(G) cis-eQTLs explain a larger amount of gene expression variation than ancestry (Wilcoxon signed-rank test, p = 2.8e�14). Violin plots show the distribution of

tissue median gene expression variation explained by eQTLs in cis-driven and cis-independent DEGs (left) and by ancestry in cis-independent DEGs (right).
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to expression variation across populations has been explored

only in immune cell types15,16 or cell lines.47,48 Here, we esti-

mated the proportion of ancestry differences in expression vari-

ation attributable to cis-genetic effects across healthy tissues.

We found that on average, 63% of the expression differences

between populations in eGenes can be explained by cis-eQTLs

(cis-driven DEGs) (Figures 2C, 2D, and S2B; STAR Methods).

The proportion of cis-driven DEGs does not correlate with sam-

ple size (Spearman’s r = 0.15, p = 0.2914), suggesting that our

ability to discriminate between cis-driven and cis-independent

ancestry-DEGs does not depend on the number of eQTLs

discovered. As expected, cis-driven DEGs have eQTLs with

larger fixation indexes (Fsts), whichmeasure the degree of differ-

entiation between two populations49 (Figures 2E and S2C), and

are DE in more tissues than cis-independent DEGs (Figures 2F

and S2D), consistent with the observation that cis-eQTLs are

often shared across tissues.2 Furthermore, on average, cis-

driven ancestry effects explained a larger proportion of expres-

sion variation (�22%) than genetic (�11%) and ancestry effects

(�6%) in cis-independent DEGs (Figures 2G and S2E). In addi-

tion, although the numbers of both cis-driven and cis-indepen-

dent DEGs are correlated with sample size (Spearman’s r 0.92

and 0.87, p 2.2e�16 and 3.8e�15, respectively), the number of
4 Cell Genomics 3, 100244, January 11, 2023
cis-independent DEGs is much more variable across tissues

than the number of cis-driven DEGs (Figure 2B). Overall, cis-

driven genetic effects underlie a substantial fraction of ancestry

differences and explain more expression variation than cis-inde-

pendent effects, which have more subtle and tissue-specific in-

fluences and likely reflect a combination of developmental,

environmental, and trans-genetic factors.

Additive contributions are widespread and tissue
specific, whereas interactions are rare
Our study offers the opportunity to characterize the combined

associations of demographic traits on specific genes across tis-

sues. Unlike previous studies,25,26 by including several traits in

the same model, we can explicitly assess whether the joint con-

tributions of multiple traits are independent (additive) or depen-

dent (interaction) and how these vary across tissues. First, we

identified 7,458 DEGs with additive contributions for multiple

traits across tissues (Figures S3A, S3B, and S3D). As expected,

the expression variation explained per gene is larger for genes

with additive contributions than for DEGs with one trait (Fig-

ure S3C). Most DEGs with two traits are restricted to a few

tissues (e.g., 56% and 70% of ancestry-sex-DEGs and age-

BMI-DEGs occur in not-sun-exposed skin and subcutaneous
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(A) Bar plot indicating the number of tissues with at least 20 DEGs with two demographic traits, of those how many have a significant overlap, and of those how

many have a significant bias in the direction of change.

(B) Proportion of DEGs with sex and age (left) or sex and BMI (right) in each tissue that fall in each color-coded category.

(C and D) Left: examples of two tissues with more DEGs with two traits than expected that also have a bias in the direction of change. The scatterplots show the

log2 fold change associated with each demographic trait, and each point represents a gene. Red, genes in categories with larger observed versus expected

ratios. Labeled genes are among the ones with larger fold changes with both traits. Right: violin plots of expression levels for example genes, stratified by age

range or sex. Bars at the bottom indicate the proportion of expression variation explained by each demographic trait.

(E) Comparison of age fold changes calculated separately for males and females in genes with a significant interaction between sex and age (Wilcoxon signed-

rank test, p <2.2e�16).

(F) Example of a gene with a significant interaction between sex and age: its expression increases with age in males but it decreases with age in females.

Expression levels are stratified by sex and age range.
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adipose tissue, respectively, consistent with their larger number

of DEGs in those tissues) (Table S3A). Consequently, few genes

(204) show the same additive contributions in more than two tis-

sues. DEGs between populations and between sexes are the

most tissue shared (Figures S3E and S3F), consistent with sex-

and ancestry-DEGs being more tissue shared (Figure 2A).

We next explored whether particular combinations of demo-

graphic traits were more likely to be associated with the same

genes. In 9 of the 21 tissues with a significantly larger than ex-

pected number of genes with additive contributions (two-tailed

Fisher’s exact test, FDR <0.05) (STAR Methods), sex and age

simultaneously affected gene expression, followed by sex and

BMI (Figure 3A; Table S3B). Notably, in most cases, these

additive contributions are driven by expression changes with

specific directionalities (chi-square test, FDR <0.05) (Figure 3B;

Table S3B), e.g., upregulation in males and older individuals in

the tibial artery (Figure 3C) or upregulation in females and high

BMI in the subcutaneous adipose tissue (Figure 3D). Importantly,

these results are not confounded by differences in age or BMI

between sexes (Figure S3G; STAR Methods). Such additive

contributions might be especially relevant in genes whose

expression levels are associated with disease risk, because

healthy individuals in specific demographic groups may be at

higher risk independent of their genetic background. Such is

the case of CDKN2A, which has higher expression levels in

males and older individuals (Figure 3C). CDKN2A is abundantly
expressed in atherosclerotic lesions, particularly in cell types

involved in atherogenesis,50 and positively correlates with

CD68 (macrophages) and TNF (proinflammatory cytokine),51

both related to atherosclerosis.52

We also tested whether the association of one demographic

trait with gene expression variation could depend on another de-

mographic trait (STARMethods). We found 235 genes with a sig-

nificant interaction between two demographic traits in 11 tissues

(Table S3C). Most interactions (91%, 216 genes) occur in breast

with sex and age and are driven by aging expression changes in

females related tomammary gland development (Figures 3E and

3F; Table S3D).

Overall, these results show that demographic traits have

tissue-specific additive contributions, whereas interactions

are rare and highlight the importance of analyzing multiple indi-

vidual traits simultaneously to assess the nature of their joint

contributions.

Tissue distribution of alternative splicing events
Alternative processing of mRNAs contributes to transcriptional

heterogeneity by generating transcripts with different exon com-

binations from the same gene. Such transcriptional heterogene-

ity has been shown to be important for development,53 disease,8

and evolutionary innovation.54 To improve our understanding of

alternative mRNA processing variation across tissues and indi-

viduals, hereafter summarized as AS, we quantified AS based
Cell Genomics 3, 100244, January 11, 2023 5
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Figure 4. Contribution of demographic traits to AS variation

(A) Schematic illustration of the different types of splicing events. For each type of splicing event, we present the spliced-in and spliced-out versions of the splicing

event. In black is the exonic/intronic sequence that is included in the spliced-in isoform and for which PSI values are calculated.

(B) Cumulative distribution of the number of tissues in which splicing events are AS.

(C) Functional characterization of AS events.

(D) Proportion of AS events associated with a switch between a non-coding and a coding isoform per type of event. Boxplots show the distribution of the

proportion of AS events per tissue.

(E) Number of DSEs per tissue and demographic trait. Heatmap cell colors are normalized to maximum value per column.

(F) Proportion of the total tissue AS variation explained by each demographic trait. Top bars are the numbers of tissues for which each demographic trait explains

the largest proportion.

(G) Examples of the potential functional consequences of DSEs. Shown are schematic representations of the PFAM domain and the transcript structure of

isoforms that either include or exclude the splicing event and that contribute to the DSEs. For each event, PSI values are represented as boxplots with samples

stratified by population or age range. Violin plots show the PSI distribution. Points correspond to individual PSI values. The number of individuals in each group is

shown within the plot. Bars at the bottom indicate the proportion of alternative splicing variation explained by each demographic trait.

(H) Comparison of the relative contribution of each demographic trait to the total tissue expression and splicing variation explained. For each trait, the average

value across tissues is plotted. The error bars correspond to the standard deviation. For each demographic trait, we considered only tissues with at least five

DEGs and five DSEs.
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on the ‘‘percentage spliced-in’’ (PSI)55 for seven types of AS

events (Figure 4A). We identified a total of 62,269 AS events (Fig-

ure S1B) (STAR Methods). The number of AS events per tissue

was highly variable, but the distribution of type of event across

tissues was similar: exon skipping and mutually exclusive exons

were the most and least abundant, respectively (Figure S1B). In
6 Cell Genomics 3, 100244, January 11, 2023
addition, alternative first and last exons are more tissue specific,

consistent with previous observations,56 while retained intron

events are more shared across tissues (Figure 4B).

We assessedwhether AS events are associatedwith coding or

non-coding isoform switches. Nearly half of the AS events were

associated with a switch between two protein-coding isoforms
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(Figure 4C; Table S4A; STAR Methods). In 28% of those, the

alternative usage of exonic/intronic sequences overlapped with

a known protein-coding domain57 (STAR Methods), thus likely

contributing to protein diversity. Most of the remaining AS events

(40%) were associated with a switch between a non-coding and

a protein-coding isoform. In these cases, inclusion of introns and

alternative 50 and 30 events was more often associated with the

non-coding isoform (binomial test, FDR <0.05; Figure 4D;

Table S4B), suggesting that the inclusion rather than exclusion

of additional bases is more associated with the loss of coding

potential.

Ancestry explains most alternative splicing differences
between individuals
We then explored the association between ancestry, sex, age,

and BMI and AS variation by performing differential splicing

analysis on the PSI value for each splicing event and correcting

for known sources of technical variation and unobserved con-

founders such as cell-type composition (STAR Methods). We

identified 16,197 differentially spliced events (DSEs) across

tissues and demographic traits. In contrast to expression

(Figure 1A), ancestry has the largest number of DSEs, followed

by age, sex, and BMI (Figure 4E). DSEs affect a total of 6,909

genes (differentially spliced genes, DSGs; Figure S4A). Similar

to expression, the largest number of DSEs with ancestry, sex,

and BMI occur in not-sun-exposed skin, breast, and subcutane-

ous adipose tissue, respectively. However, the hypothalamus

has the largest number of age-DSEs, closely followed by the ar-

teries. The general patterns of differential splicing remain when

controlling for the number of samples, but the aging signal in

the brain becomes more apparent (Figure S4B). Splicing differ-

ences in the brain persist even if correcting for neuron abun-

dance58 (Figure S4C), suggesting that age may be associated

with splicing patterns in some brain regions independent of

neuronal decay with aging.59 Further analyses may be needed

to confirm this observation.

We foundmore alternative last exons but fewer alternative first

exons and alternative 30 events differentially spliced (DS) be-

tween populations than expected (Table S4C; chi-square test,

FDR <0.05; STAR Methods). We also identified tissue- and

trait-specific biases for some event types (Table S4D; binomial

test, FDR <0.05; STAR Methods), with the strongest bias being

increased intron retention in tibial artery with age and increased

intron retention in not-sun-exposed skin in Europeans.We further

explored the functional consequences of differential splicing.

There were 7,925 (46.37%) DSEs associated with a switch be-

tween protein-coding isoforms, 1,892 (23.87%) of which affect

a known protein-coding domain57 (Figure 4G; Table S4E; STAR

Methods). Consistent with previous findings,5,22 more genes

change both their expression and their splicing pattern than ex-

pected by chance, particularly between populations (two-tailed

Fisher’s exact test, FDR <0.05) (Table S4F). These genes are en-

riched in eGenes and in genes with cis-sQTLs (cis-driven DSEs;

sGenes) (Table S4G).

Next, we quantified the independent contributions of demo-

graphic traits to AS variation across tissues and compared

them with expression (STAR Methods). Ancestry is the major

contributor to splicing variation in most tissues, with a few ex-
ceptions, such as the aorta or brain regions such as the hypo-

thalamus or amygdala, where age has a larger contribution

(Figures 4F, S4D, and S4E). The contributions of sex and BMI

are of note in only a few tissues, such as breast and muscle or

the adipose tissues, respectively. The amount of variation ex-

plained by each demographic trait is lower for splicing than for

expression (Figure S4F). However, proportionally, ancestry ex-

plained a larger proportion of splicing than expression variation,

whereas the opposite was true for age, sex, and BMI (Figure 4H).

Comparing splicing event types, exon skipping, alternative 50

and 30, and intron retention events explain larger amounts of

variation than the alternative usage of transcript initiation or

termination sites (Table S4H). This suggests that changes at

the post-transcriptional level (i.e., exon skipping) might make a

larger contribution to the overall AS variation than changes at

the transcriptional level (i.e., alternative first or last exon). DSEs

(653) with a large proportion (>10%) of AS variation explained

by a given demographic trait might be relevant for trait-related

phenotypes (Table S4I). For example, we found ancestry-DSEs

in the CYP3A5 gene (Figure S4G), for which AS has been previ-

ously shown to abolish its enzymatic activity, mostly in European

populations.60

Together, these results indicate that ancestry significantly ex-

plains a larger proportion of interindividual splicing variation than

the other demographic traits.

cis-regulatory variants explain most alternative splicing
variation between human populations
Differences in allele frequency between populations underlie a

large proportion of splicing differences between populations.22

Genes with ancestry-DSEs are enriched in sGenes (two-tailed

Fisher’s exact test, FDR <0.05) (Table S5A) and, on average,

77% of population splicing differences can be explained by

cis-sQTLs with some variation across tissues (Figures 5A and

S5A; STAR Methods). As expected, cis-driven DSEs are associ-

ated with sQTLs with larger genetic distances between popula-

tions and are more tissue-shared than cis-independent DSEs

(Figures 5B, 5C, S5B, and S5C). Similar to expression, cis-sQTLs

associated with cis-driven DSEs explained a larger proportion of

splicing variation (�9%) than either sQTLs (�5%) or ancestry

(�6) in cis-independent DSEs (Figures 5D and S5D). The propor-

tion of cis-driven DSEs is negatively correlated with sample size

(Spearman’s r = �0.53, p = 0.0001548), suggesting that we

identify splicing differences between populations that are likely

driven by sQTLs yet to be identified.

Alternative splicing differences between human
populations in ribosomal proteins are widespread
across tissues and under genetic control
We next sought to characterize the tissue-sharing pattern of

DSEs. Only ancestry had highly shared DSEs (Figure 5E), and

genes with highly shared ancestry-DSEs were strongly enriched

in translation pathways, driven by ribosomal proteins (10 of 23

genes) (Figure 5F; Table S5B). This is consistent with previous

observations that translation-related genes had the largest

interindividual variation in AS.1 At the tissue level, ancestry-

DSGs are also enriched in ribosomal proteins (Figure S6A). To

explore further this functional enrichment, we used an
Cell Genomics 3, 100244, January 11, 2023 7
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Figure 5. Splicing patterns of ribosomal proteins vary across human populations

(A) Percentage of cis-driven DSEs across tissues.

(B) cis-driven DSEs are associated with sQTLs with larger Fst values (Wilcoxon signed-rank test, p = 1.563e�12). Violin plots show the distribution of tissue

median Fst values for cis-driven (left) and cis-independent (right) DSEs.

(C) cis-driven DSEs are more tissue shared (Wilcoxon signed-rank test, p = 1.395e�06). Violin plots show the distribution of median tissue-sharing values for cis-

driven (left) and cis-independent (right) DSEs.

(D) cis-sQTLs explain a larger amount of splicing variation than ancestry (Wilcoxon signed-rank test, p = 1.421e�13). Violin plots show the distribution of tissue

median splicing variation explained by sQTLs in cis-driven and cis-independent DSEs (left) and by ancestry in cis-independent DSEs (right).

(E) Distribution of the number of tissues in which a splicing event is DS with each demographic trait. Ancestry-DSEs in ribosomal proteins are highlighted in black

and labeled if shared in 10 or more tissues. Bottom bars show the proportions of tissue-specific DSEs and DSEs in a low (2–5), moderate (6–9), or high (R10)

number of tissues with each demographic trait.

(F) Functional enrichment of genes with highly shared ancestry-DSEs.

(G) Bar plot shows the proportion and number of ancestry-DSEs in ribosomal proteins in two or more tissues that have the same or different directionality.

(H) Example of a genetic variant associated with the splicing pattern of a ribosomal protein not previously reported as an sGene. Bar plot shows the allele

frequencies in each population. Violin plots show the PSI distribution stratified by population and genotype. Points correspond to individual PSI values (EA,

European American; AA, African American).

(I) Examples of two highly tissue-shared ancestry-DSEs on ribosomal proteins that affect a protein-coding domain.
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independent dataset of DSGs between individuals of European

and African ancestry in monocytes22 and found the same path-

ways enriched (Table S5C). Similarly, we found all DSGs be-

tween populations in monocytes also DS in at least one tissue
8 Cell Genomics 3, 100244, January 11, 2023
(Figure S6A). Furthermore, isoform expression changes across

tissues are highly concordant with those observed in mono-

cytes,15 particularly for isoforms underlying highly shared

splicing differences (Figure S6B). We do not observe this
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extensive variability in ribosomal proteins at the gene expression

level, and neither was it previously observed in monocytes15

(Figure S6A).

The DSEs between populations in ribosomal proteins not only

were tissue shared but also showed the same directionality

across tissues (Figures 5G and S6C), which would be consistent

with their splicing patterns being under genetic control.2 Consis-

tent with this hypothesis, �90% of the population DSEs in ribo-

somal proteins previously reported as sGenes2 are cis-driven

(Figure S6C; STAR Methods). For the remaining ancestry-DSEs

in ribosomal proteins, we investigated if their AS patterns were

significantly associated with nearby genetic variants (STAR

Methods), given that sQTLs tend to be located in close prox-

imity.61,62 Most splicing events (82%) have at least one signifi-

cantly associated variant, and the majority of them are cis-driven

(74%) (Figures 5H and S6C), which suggests that ancestry-dif-

ferential splicing in ribosomal proteins is under genetic control.

Reassuringly, five of the ribosomal proteins we find associated

with genetic variants that were not reported as sGenes in the

GTEx v.8 main paper2 were reported as sGenes using an iso-

form-based approach61 (Table S5D).

Finally, we explored the functional consequences of splicing

differences between populations in ribosomal proteins and

found that in 24% of the events associated with a switch be-

tween protein-coding isoforms, the alternative usage of exonic/

intronic sequences overlaps a known protein-coding domain57

(Figure S5C). Two of these events are highly shared across tis-

sues: an alternative 50 splice site in the ribosomal protein

RPLP2 that overlaps a 60s acidic ribosomal protein domain

and an alternatively spliced exon in RPL10 (Figures 5I and

S6D) that overlaps a ribosomal protein L16p/L10e domain. The

60s acidic ribosomal protein domain is an important component

of the ribosomal stalk, a conserved structure involved in the

recruitment of translation elongation factors,63 which affects

the translation of some specific mRNAs.64

Our results suggest that there are widespread splicing differ-

ences in ribosomal proteins between populations, likely due to

genetic control, and raises the possibility that some aspects of

the translational machinery may consistently vary across human

populations.

Clinical traits contribute to tissue expression variability
Many diseases are associated with differences in transcription,

altering both expression6 and splicing.8 We leveraged the do-

nors’ medical history and histopathological annotations to inves-

tigate transcriptomic changes associated with clinical traits and

selected 17 disease-related phenotypes for analysis based on

the number of affected donors and DEGs in the tissue of origin

(Figure 6A; Tables S6A and S6B; STAR Methods). Hashimoto’s

thyroiditis, pneumonia, and atherosclerosis have among the

largest numbers of DEGs and DSGs in thyroid, lung, and tibial ar-

tery, respectively (Figures 6B and S7A). Except for Hashimoto’s

thyroiditis, genes DE are not more likely to be also DS than ex-

pected by chance (two-tailed Fisher’s exact test, FDR <0.05)

(Figure S7A; Table S6C), suggesting independent contributions.

As expected, the contribution of clinical traits to expression and

splicing variation is highly variable, depending on the tissue and

the disease (Figures 6C and S7B). Notably, in some tissues, the
contribution of clinical traits to expression variation is larger than

that of the demographic traits (e.g., Hashimoto’s thyroiditis) (Fig-

ure S7B). Conversely, ancestry remains the principal driver of

splicing variation (in 24 of 25 tissues) (Figure S7B). Among the

genes (633) with a large proportion (>10%) of their interindividual

transcriptomic differences explained by a clinical trait, some are

well-known disease-related genes, such as INS in type 1 dia-

betes65 or FBLN2 in atherosclerosis66 (Figure S7C). Others, still

uncharacterized, might also play important roles in disease phe-

notypes, such as CD37, related to immunity,67 in Hashimoto’s

thyroiditis, or KYAT3, a regulator of KYNA, which is a biomarker

for diabetes,68 in type 2 diabetes (Tables S6D and S6E). Nearly

10% of disease-DSEs overlap known protein domains, including

an exon more frequently excluded in type 2 diabetic individuals

in the NAGLU gene, which is associated with glucose meta-

bolism and neuropathy69 (Figure S7D).

Type 1 and type 2 diabetes are associated with
transcriptome variation in multiple tissues, particularly
the tibial nerve
Both type 1 and type 2 diabetes have systemic associations with

transcriptome variation.65,78,79 Yet, previous work studying tran-

scriptome changes in diabetes has focused on specific tissues80

or cell types.81 Here, we took advantage of the GTExmulti-tissue

data to assess how types 1 and 2 diabetes are associated with

changes in the transcriptome of multiple tissues (Figure S7E).

We first assessed if types 1 and 2 diabetes’ association was

similar across tissues and found 78 and 309 DEGs in two or

more tissues with either type 1 or type 2 diabetes, respectively

(Table S6F). The difference in the number of DEGs is likely due

to decreased statistical power related to the lower number of in-

dividuals with type 1 diabetes. Seven of 14 DEGs in more than

three tissues have been previously linked to diabetes, but the

others are novel, like LDOC1, a regulator of NF-kB, which is

involved in diabetic pathogenesis82,83 (Figure 6D). Conversely,

only six events are DS with type 1 or 2 in more than one tissue

(Figure S7F). In both the pancreas and the tibial nerve, we found

a larger than expected overlap of DEGswith both type 1 and type

2 diabetes (two-tailed Fisher’s exact test, FDR <0.05; Fig-

ure S7E), with a significant bias in the nerve toward both diabetes

changing expression in the same direction (chi-square test, FDR

<0.05) (Figure 6E; Table S6G). Comparing the DE signal across

tissues, we found that the tibial nerve is the most affected tissue

in both types of diabetes. Pancreas had fewer DEGs than nerve,

likely because pancreatic islets, central to the etiology of both

types of diabetes,84,85 represent only �3% of the tissue, and

thus, the whole pancreas is not representative of pancreatic is-

lets.29,86 The observation that there are many genes associated

with diabetes in other tissues may reflect the consequences of

long-term exposure to hyperglycemia across tissues. The

DEGs in the tibial nerve significantly overlap with those reported

as dysregulated in the sciatic nerve of diabetic mice (two-tailed

Fisher’s exact test, p = 1.195e�06).87 Functional enrichment

analysis (Table S6H; STAR Methods) revealed that upregulated

genes in the tibial nerve are enriched in immune receptor activity,

whereas downregulated genes are enriched in ion channel activ-

ity. Our findings are consistent with the high incidence of diabetic

neuropathy in diabetic patients, with�50% expected to develop
Cell Genomics 3, 100244, January 11, 2023 9
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Figure 6. Types 1 and 2 diabetes alter the transcriptome of multiple tissues, especially of the tibial nerve

(A) Clinical traits and affected tissues.

(B) Number of DEGs per tissue and clinical trait. Bars are colored according to the tissues.

(C) Proportion of the total tissue expression variation explained by each clinical trait.

(D) DEGs with type 1 or 2 diabetes in three or more tissues. The y axis corresponds to the fold change between healthy and diseased samples per tissue. In bold

are known disease-related genes.70–75

(E) Left: the overlap between DEGs with types 1 and 2 diabetes in the tibial nerve. Right: DEGs with both diabetes have the same directionality. Genes driving

functional enrichments (Table S6H) are labeled in the plot.

(F) On the left, tissue images from a healthy and a diabetic individual. Note the larger diameter of the fascicles (circles) and smaller interstitial spaces in the diabetic

donor, consistent with previous observations.76 The right shows the ROC curves of the top and a median performing classifier.

(G) Top: DEGs with age and clinical traits show a biased directionality. Our observations are not confounded by age differences between healthy and diseased

individuals (Figure S7F). Bars indicate the proportion (and number) of DEGs in each of the four possible directionalities. Bottom: scatterplot shows the fold change

associated with age (x axis) versus the fold change between healthy and type 2 diabetes (y axis) in the tibial nerve. Labeled genes (24) have been previously

associated with type 2 diabetes susceptibility in the tibial nerve through transcriptome-wide association studies.77

(H) LPL expression changes with age and type 2 diabetes. Gene expression levels are represented as boxplots with samples stratified by both traits. Bars at the

bottom indicate the proportions of expression variation explained by age and type 2 diabetes.
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this complication over time.88 Diabetic neuropathy is a type of

nerve damage due to continuous high blood sugar levels that

result in thicker nerve fascicles.76 To further validate our results,

we used the GTEx tibial nerve samples’ histology image data to

train a support vector machine to classify diabetic individuals

(STAR Methods), and we obtained a maximum and median

area under the receiver characteristic operator curve (AUC) of

81% and 75%, respectively (Figure 6F). We wondered whether

the probability of being classified as diabetic could be a proxy
10 Cell Genomics 3, 100244, January 11, 2023
for disease severity. We found 328 genes (Table S6I) whose

expression significantly correlated with the probability of being

diabetic (STAR Methods). These genes were highly enriched in

neuropathy-related terms (Table S6J) and included genes

previously linked with diabetic neuropathy pathogenesis, e.g.,

SYNDIG189 (Figure S6G), but also novel genes that could be

important players in neuropathy progression, such as ARH-

GEF16, previously associated with diabetes but not diabetic

neuropathy.90
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Taken together, our findings expand previous work76,87,91 and

suggest that, despite their different etiologies, types 1 and 2 dia-

betes are more strongly associated with transcriptome changes

in tibial nerve than in other tissues. These changes are consistent

with the high prevalence of diabetic neuropathy in patients88 due

to hyperglycemia and provide novel gene candidates associated

with diabetic neuropathy.

Clinical and demographic traits jointly contribute to
gene expression variation
Demographic traits, such as sex, age, ancestry, and BMI, often

influence complex disease risk, prevalence, and progres-

sion.92–95 Thus, we set out to investigate the interplay between

demographic and clinical traits. We found 5,790 DEGs with at

least one demographic and one clinical trait (Table S6K). These

additive contributions are enriched in a tissue- and trait-specific

fashion, e.g., larger than expected DEGs with sex and gyneco-

mastia in the breast (two-tailed Fisher’s exact test, FDR <0.05).

As we previously noted, many of these additive contributions

are driven by expression changes with specific directionalities

(chi-square test, FDR <0.05) (Table S6K): genes upregulated in

individuals with Hashimoto’s thyroiditis and older individuals,

consistent with the hypothyroidism caused by the disease96

and the subclinical hypothyroidism caused by age.97,98 Notably,

most DEGs with age and both type 1 and type 2 diabetes in the

tibial nerve are upregulated either in older and diabetic individ-

uals or in younger and healthy individuals (Figure 6G). Among

these genes is LPL, involved in the regeneration of the myelin

sheath, which is deteriorated in diabetic neuropathy99 (Fig-

ure 6H). Importantly, this finding is not confounded by the greater

incidence of type 2 diabetes in aged individuals (Figure S7H;

Table S6K; STAR Methods), suggesting that diabetes affects

the tibial nerve in a way similar to biological aging. These results

indicate that some disease-related genes also have interindi-

vidual expression variation associated with non-disease traits

and highlight the importance of characterizing their synergistic

contribution to better understand disease mechanisms.

Demographic and clinical traits influence tissue cellular
composition
The GTEx samples are heterogeneous bulk tissue samples that

comprise diverse cell types. To identify changes in cell-type

composition with demographic and clinical traits, we used

enrichment scores for seven different cell types, benchmarked

in Kim-Hellmuth et al.58 We found significant changes (FDR

<0.05, STAR Methods) for six cell types across 18 tissues (Fig-

ure S7I) and replicated previously reported differences with

sex.17 We found increased abundances of adipocytes in the liver

with BMI100 and decreased adipocyte abundances in the subcu-

taneous adipose tissue with age.101,102 We observed lower

enrichment scores for neurons in older individuals across brain

regions, consistent with a decline in neuronal functions with ag-

ing.103,104 Changes in epithelial cells were associated with three

demographic traits in different tissues: they decreased in colon

transverse and prostate with age and they were more abundant

in the sun-exposed skin of African American individuals and in

the female breast. Epithelial cells are widespread throughout

the body and perform different functions,105–107 some specific
to particular body sites (e.g., the glandular epithelium secretes

enzymes, hormones, and fluids,108 whereas the epithelial lining

of internal organs absorbs nutrients109), which might explain

the different patterns of change in the different tissues. We repli-

cated previously reported changes with clinical traits58 but we

did not find significant changes with either type 1 or type 2

diabetes, likely due to the limited number of cell types analyzed

(Figure S7J). We further leveraged the histopathological annota-

tions and found increased abundances of macrophages in lung

samples with fibrosis (Figure S7J) (two-tailed Fisher’s exact

test, p = 3.04e�07) and reduced spermatogenesis in older testis

samples (two-tailed Fisher’s exact test, p = 9.8e�05). Together,

these results suggest that both demographic and clinical traits

are associated with differences in cell-type composition.33

DISCUSSION

Understanding interindividual transcriptome variation is funda-

mental to deciphering human biology and disease. Our work

quantifies the joint associations of different demographic and

clinical traits on the transcriptome and identifies the most impor-

tant drivers for each tissue. We show that demographic traits

contribute to transcriptome variation additively, with few exam-

ples of interactions. Previous work focused on age and sex iden-

tified important aging differences between males and females in

immune cells26 but did not address whether these were due to

additive contributions or interactions. Our results suggest that

age and sex make additive contributions to gene expression

variation across tissues, often with biased directionalities. In

addition, we also observe a larger contribution of aging in female

reproductive tissues (i.e., breast, uterus, and ovary) than in those

of males (i.e., testis and prostate). These changesmay be related

to female hormonal changes, as the age span of GTEx samples is

centered aroundmenopause age.110,111 However, larger sample

sizes might be needed to identify more subtle interactions and to

explore further interactions between demographic and clinical

traits.

We show that many expression and splicing ancestry differ-

ences are under genetic control, and the proportion is larger

for splicing (77%) than for expression (63%) (Figures 2C and

5A). This is likely explained by limitations in AS analysis due to

the inherently noisier nature of splicing,112 which favors the

detection of splicing differences with larger effect sizes, such

as those driven by cis genetic effects (Figures 2F and 5D). In

addition, we observed widespread splicing but not expression

differences in ribosomal proteins between European Americans

and African Americans across tissues that are mainly under

genetic control. Notably, these results raise the intriguing possi-

bility that specific aspects of the ribosome machinery differ be-

tween individuals of different genetic ancestries across tissues.

Further analyses might be needed to address whether these dif-

ferences arose as a product of positive selection simultaneously

targeting ribosomal protein genes.113 Importantly, a recent pub-

lication reported expression—rather than splicing—differences

in ribosomal proteins between populations using single-cell

data,16 which highlights the power of bulk multi-tissue data anal-

ysis to distinguish between expression and splicing variation

compared with single-cell analysis.
Cell Genomics 3, 100244, January 11, 2023 11
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Although machine learning methods have been previously used

on GTEx histology images to identify image quantitative trait

loci,114,115 classify GTEx tissues,116 and make pathology annota-

tions,117 our analysis on the diabetic nerve is the first to link genes

with histology image features related to the association between

diabetes and changes in tissue architecture. Importantly, this

analysis successfully identified novel candidates associated with

diabeticneuropathy that couldbeof interestgiven the limited treat-

ment options.88 Furthermore,weobserve that diabetic neuropathy

andagingmakeadditivecontributions togeneexpressionvariation

in the samedirection, consistent with aging anddiseasepathology

often sharing common molecular mechanisms.118,119 Our result

highlights the richness of the GTEx dataset to explore the relation-

ship between transcriptome, histology, and disease.

Collectively, our results provide a comprehensive catalog of

gene expression and AS differences across many different hu-

man tissues and traits. They offer insight into the traits that drive

human transcriptome variation; can help unveil the role of tran-

scriptome variation in complex traits, disease risk, and disease

progression; and are a resource to be further exploited by the

scientific community.

Limitations of the study
Despite our multi-tissue and multi-trait approach, there are

certain inherent limitations in our study, such as the limited rep-

resentation of human populations (only European Americans and

African Americans) or the biased age span toward older individ-

uals. Our findings highlight the urgent need to include individuals

with diverse ancestries as well as developmental and pediatric

samples in transcriptomic analyses, since both demographic

traits are important drivers of transcriptome variation.120 We

also have reduced statistical power to detect transcriptomic

changes associated with certain clinical traits due to both

reduced sample sizes and analysis of bulk tissue transcriptomes

rather than specific cell types, such as pancreatic islet cells for

type 1 diabetes.29 These limitations might explain why we find

the same genes associated with type 1 and type 2 diabetes

only in the tibial nerve and not in other tissues affected by

long-term hyperglycemia, such as the heart or arteries.121,122

Alternatively, disease treatment is known to mitigate diabetic

complications121,123,124 and could thus have an effect on the

number of genes we observe DE in specific tissues. Hence, col-

lecting information about donor prescribed drugs would be

desirable in future studies. Our ability to detect changes in

cell-type composition is limited by the analysis of bulk tissue

transcriptomes (Figures S7I and S7J). Future organ single-cell

atlases that include more donors and disease conditions will

shed light on how demographic and clinical traits influence the

transcriptomes at single-cell resolution.125
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html/EBImage.html

e1071 Meyer et al.136 cran.r-project.org/web/packages/e1071
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, MartaMelé

(marta.mele@bsc.es).

Materials availability
No materials were generated in the study.

Data and code availability
All GTEx protected data are available at the accession number dbGaP: phs000424.v8. Access to the raw sequence data is now pro-

vided through AnVIL: https://gtexportal.org/home/protectedDataAccess. Public-access data, including QTL summary statistics and

expression levels, are available on the GTEx Portal: https://www.gtexportal.org, as well as in the UCSC and Ensembl browsers.

Analysis scripts are available at github: https://github.com/Mele-Lab/2022_GTExTranscriptome and all results tables derived from

the analyses conducted in this paper are deposited at zenodo: https://doi.org/10.5281/zenodo.6797627.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

GTEx subjects
All human donors were deceased, with informed consent obtained via next-of-kin consent for the collection and banking of deiden-

tified tissue samples for scientific research. The research protocol was reviewed by Chesapeake Research Review Inc., Roswell Park

Cancer Institute’s Office of Research Subject Protection, and the institutional review board of the University of Pennsylvania. There
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were 838 donors (557 biological sex male, 281 biological sex female). Donors ranged in age from 20-70, with most enrolled donors

being older individuals. For more details on donor characteristics and sample collection, see the GTEx v8 main paper (DataS2).2

METHOD DETAILS

Biospecimen collection
The biospecimen collection is described in detail in the GTEx v8 main paper.2

Molecular analyte extraction and QC
Molecular analyte extraction and QC DNA and RNA extraction and sequencing details are provided in the GTEx v8 main paper.2

QUANTIFICATION AND STATISTICAL ANALYSIS

GTEx data
The GTEx version 8 dataset consists of 17,382 RNA-seq samples from 948 post-mortem donors and 54 tissues, with genotype data

for 838 donors from whole genome sequencing available in a phased analysis freeze. The GTEx biospecimen collection, molecular

phenotype data production, and quality control are described in detail in the GTEx v8 main paper.2 Here, we analyzed data from the

46 tissue sourceswith at least 100 RNA-seq samples.We only included samples (n=13,684) fromdonors (n=781) with availablemeta-

data for the covariates included in our differential expression and splicing analysis, as well as demographic trait information for the

donors’ genetic inferred ancestry2 (we only included European American and African American donors), sex, age, and body mass

index (BMI).

Gene and alternative splicing event quantification
Gene and transcript quantifications were based on the GENCODE 26 release annotation (https://www.gencodegenes.org/releases/

26.html). We downloaded gene counts and TPM quantifications from the GTEx portal (https://gtexportal.org/home/datasets). We

selectedgeneswith theprotein-coding and lincRNAbiotypeon theGTEXGENCODEv26GTF.For theexpression analysis,weconsid-

ered expressed genes per tissue (TPMR 1 andR 10 reads (unnormalized) inR 20%of tissue samples, excluding genes in the pseu-

doautosomal region (PAR). In total, we analyzed 22,967 genes (18,185 protein-coding and 4,782 lincRNA) across tissues (Figure S1B).

For the splicinganalysis,wedownloaded transcripts TPMquantifications from theGTExportal (https://gtexportal.org/home/datasets)

and we used SUPPA2127 (https://github.com/comprna/SUPPA/) to calculate percentages of splicing inclusion (PSI) for 7 different

types of splicing events: skipped exon (SE), mutually exclusive exons (MX), alternative 3 prime (A3), alternative 5 prime (A5), retained

intron (RI), alternative first exon (AF), and alternative last exon (AL). Specifically, we used SUPPA2 to first generate the dictionary of

splicing events from the GENCODE v26 annotation and then computed their PSI values for each sample and splicing event. Each

splicing event is defined by a set of isoforms: those that include the exonic/intronic sequence (spliced-in isoform) and those that either

exclude or include alternative exonic/intronic sequence (spliced-out isoform) (Figure 4A). We used the following criteria to select the

alternatively spliced events (ASEs) in each tissue: events in protein-coding and lincRNA genes expressed in each tissue; events quan-

tified in all tissue samples (noNAs); we excluded eventswith low complexity (fewer than 10 PSI unique values) or insufficient variability

(near zero variance); we kept events from expressed isoforms (TPM R 0.5 in R 20% of tissue samples for both the most abundant

spliced-in and spliced-out isoforms) and with a quantifiable contribution of the traits of interest (see hierarchical partition analysis).

In total, we analyzed 62,269 AS events (18,491 SE, 1,203 MX, 7,128 A5, 8,296 A3, 4,191 RI, 18,111 AF and 4,849 AL) across tissues

(Figure S1B). To investigate the potential functional consequences of ASEs, we first identified the isoforms that contribute to each

splicing event. From the set of isoforms that contribute to each splicing event, we selected the twomost abundant isoforms per tissue

that include (spliced-in) and exclude (spliced-out) the splicing event. Depending on the biotype of these two isoforms (spliced-in and

spliced out), ASEs can then be associated with a switch between protein-coding isoforms, a switch between a protein-coding and a

non-coding isoform, or a switch between non-coding isoforms. For those events with a switch between protein coding isoforms, we

implemented a pipeline to identify ASEss that disrupt PFAM domains (see identification of ASEs that disrupt known protein-coding

domains) (https://github.com/Mele-Lab/2022_GTExTranscriptome_fromSplicingEventsToProteinDomains).

Differential gene expression analysis with demographic traits
To identify differentially expressed genes (DEGs) we used linear-regression models following the voom-limma pipeline.128,139 We ran

the analyses separately for each of 46 tissue sources. We adjusted our differential expression analysis for technical covariates

routinely included in previous GTEx publications.41,140 These covariates are related to parameters of donor death, ischemic time,

RNA integrity number (RIN), and sequencing quality control metrics. To control for unknown sources of variation we explored the

expression variance captured by the PEER factors2 and explained by known sample and donor covariates, as well as by the xCell

enrichment scores.58 We also investigated the effect of including progressively increasing numbers of PEER factors in our model in

the identification of DEGs. As previously noted, we found that the first PEER factor wasmostly correlated with cell type heterogeneity

(see Figure S4A from58), and the second PEER factor was mostly correlated with the sequencing batch (see Figure S8A from141). We

also noted that, conversely to eQTL discovery, the effect of including additional PEER factors on the DEG discovery was variable
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across tissues and led to reduced power to detect expression differences. Thus, to control for unknown sources of variation mainly

related to differences in tissue composition and sequencing batch, we included the first two PEER factors. For each tissue, we

compared log-cpm gene expression values and evaluated the statistical significance of the demographic traits of interest: ancestry,

sex, age, and BMI. Ancestry and sexwere treated as categorical variables and age andBMI as continuous variables.We corrected all

analyses for multiple testing using false discovery rate (FDR) through the Benjamini–Hochberg method and considered genes differ-

entially expressed at an adjusted p-value below 0.05.

expression ðlog2cpmÞ � HardyScale + IschemicTime+RIN+Cohort+NucAcIsoBatch+ExonicRate+PEER1

+PEER2+Ancestry+Sex+Age+BMI

To investigate interactions between demographic traits, we expanded the linear models in each tissue adding interaction terms

between categorical variables or between categorical and continuous variables. For an interaction to be tested in a tissuewe required

that (1) we had previously found DEGs with both demographic traits involved in the interaction term, and (2) we had sufficient sample

size (n=20 samples in each group). To determine the number of samples in each combination we categorized the continuous vari-

ables: age in two groups (younger (donors younger than 45 years old), and older (45 years old or older donors)) and BMI in three

groups (normal (BMI < 25), overweight (25% BMI < 30) and obese (BMI R30)) (Table S3C).

Differential splicing analysis with demographic traits
To perform differential splicing analysis, we used a method that allowed both a direct comparison with the differential gene expres-

sion analysis and a subsequent quantification of the alternative splicing variation explained by each trait (see hierarchical partition

analysis). Thus, we implemented an approach as similar as possible to the one used to identify differentially expressed genes using

generalized linear models but modeling Percentage of Spliced In (PSI) values using fractional regression. We chose fractional regres-

sion over the more popular beta regression because fractional regression is suited to work with bounded values that can assume the

extremes, as is the case for PSI values (e.g. 0 and 1). Specifically, we used the R glm function from the R package stats126 setting

family= ‘quasibinomial (’logit’)’ as a parameter. For each splicing event within each tissue, we fitted logit transformed PSI values with

the samemodel used in differential expression analysis and evaluated the statistical significance of the demographic traits of interest:

ancestry, sex, age, and BMI.

splicing ðPSIÞ � HardyScale + IschemicTime+RIN+Cohort+NucAcIsoBatch+ExonicRate+PEER1+PEER2

+Ancestry+Sex+Age+BMI

To calculate robust standard errors for our coefficients we used the vcovHC function from the R package sandwich with type =

"HC0".142 We corrected all analyses for multiple testing using false discovery rate (FDR) through the Benjamini-Hochberg method

implemented in the R package stats.126 For all analyses we considered events differentially spliced at an adjusted p-value (FDR)

below 0.05. Notably, we found significant overlaps (see DEGs and DSEs replication with independent datasets) with previously re-

ported differentially spliced events between human populations22 (Table S1A).

Downsampling analysis for expression and splicing analysis with demographic traits
Different tissues have different sample sizes and demographic trait distributions (Figure S1B). To assess the influence of sample size

in the detection of DEGs and DSEs, we run the differential expression and splicing analysis 10 times per tissue, randomly downsam-

pling each tissue to 100 samples.

DEGs and DSEs replication with independent datasets
To validate and assess the replicability of our DEGs and DSGs with each of the four demographic traits, we compared our results to

several biologically related studies that used independent transcriptome datasets (Table S1A). Regarding ancestry, we downloaded

and parsed Table S1D fromQuach et al.15 to obtain a list of DEGs between Africans and Europeans in resting (non-stimulated) human

primary monocytes. Similarly, we downloaded and parsed Table S4A from Rotival et al.22 to obtain a list of DSGs between Africans

and Europeans in resting (non-stimulated) human primary monocytes. In relation to sex, we downloaded and parsed additional file 1

from Jansen et al.143 to obtain a list of sex-biased genes in human peripheral blood. In relation to age, we downloaded and parsed

Table S4 from Pellegrino-Coppola et al.36 to obtain a list of age associated genes from their extended model in human whole blood.

Lastly, regarding BMI, we downloaded and parsed Tables S1 and S2 from van der Kolk et al.24 to obtain a list of DEGs between heav-

ier and leaner co-twins in human adipose tissue and skeletal muscle, respectively. We performed a one-sided Fisher’s exact test to

test if the number of DEGs or DSGs we identified per tissue significantly overlapped with the genes identified in previous studies. We

corrected for multiple testing across tissues using the Benjamini-Hochberg method and determined significance at FDR < 0.05. For

DEGs with demographic traits, if information about the fold change was available in the corresponding study, we considered a gene

overlapped if it was DE in both studies and in the same direction. For sex-DEGs, we performed the analysis separately for genes

located on autosomal or sex chromosomes. For all demographic traits, we found that our DEGs or DSGs significantly overlapped

with the genes reported in the independent studies, and the tissues with the most significant overlap were the closest to the tissues

used in the independent studies (Table S1A).
e3 Cell Genomics 3, 100244, January 11, 2023
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Hierarchical partition analysis
In observational data, regressors are usually correlated and it is not straightforward to decompose the explained variability in amodel

into its components from the individual regressors. To calculate the independent relative contribution of the different traits to the

response variable, either gene expression or alternative splicing, we used a hierarchical partitioning approach. Specifically, hierar-

chical partitioning decomposes the model R2 through incremental partitioning where all possible orders of variables are used, and

then obtains the average independent percentual contribution of each trait. We applied hierarchical partitioning on the residual values

after regressing out the contribution of the covariates considered to be batch effects and previously included in the differential

expression and splicingmodels (i.e., a linear model for differential expression, a fractional regression for differential splicing analysis).

To do hierarchical partitioning on gene expression residuals, we used the hier.part R package.129 To do hierarchical partitioning on

splicing residuals, we modified slightly the hier.part R package. Specifically, we used fractional regression using the standard glm

function of R with the quasibinomial family and logit link functions and modified the code underlying the hier.part method so it would

decompose the global R2, rather than the deviance, to have the same measure used in linear models for differential expression. In

summary, we established for each gene and splicing event a linear or generalized linear regression model, respectively, that included

the demographic traits and estimated their respective contribution to the residual variance once the batch effects are regressed out.

Identification of cis-driven ancestry-DEGs and ancestry-DSEs
Wewanted to know if theexpressionandsplicingdifferencesbetweenpopulationsweredue tocisgenetic effects. To investigate so,we

focusedonancestry-DEGsor geneswith ancestry-DSEspreviously reported as eGenes or sGenes (geneswith significant gene-variant

(eQTL) and splice-variants (sQTL) associations). To determine if the population differences are solely driven by genetic regulatory

variants (cis-eQTLs and cis-sQTLs respectively), this is, if ancestry differences are due to cis-effects, we modeled the residual gene

expression and the residual PSI values of the alternative splicing events (after regressing out batch effects) controlling for their associ-

ated genetic regulatory variants. We considered only eGenes and sGenes associated with at least one independent cis-e/sQTL.2

To elucidate if population differences are cis-driven or cis-independent we applied an anova F test to contrast a reduced (H0)

versus a full model (H1).

The H0 is formulated as follows:

expression = splicing residuals � Age+Sex+BMI+ cis � e=sQTLs genotype f1.ng
The H1 is formulated as follows:

expression = splicing residuals � Age+Sex+BMI+ cis � e=sQTLs genotype f1.ng+Ancestry

To test the ancestry effect we applied an analysis of variance implemented in stats R package through anova function to contrast

the hypothesis:

H0 : reduced model
H1 : full model

For a given gene/splicing event, the acceptance of H0 (FDRR0.05) allows us to conclude that the ancestry effect (expression or

splicing differences between populations) is fully driven by cis genetic effects. Conversely, the rejection of the null hypothesis (H0)

(FDR<0.05) allows us to conclude that ancestry effect is not solely driven by cis genetic effects.

At the gene level, we fitted gene-specific linear models adding as covariates the genotype of the associated independent

cis-eQTLs.2 At the splicing level, we fitted an event-specific quasibinomial logit generalized linear model adding the genotype of in-

dependent cis-sQTLs.2 Specifically, for each splicing event, we included all cis-sQTLs associated with the gene, since cis-sQTL

mapping was performed testing at the gene level.2 This gene-level aggregation of cis-sQTL could result in the inclusion of a linearly

dependent set of cis-sQTL. To reduce this dependency we computed the pairwise correlation matrix among the cis-sQTLs using the

findCorrelation function in the caret R package144 and excluded highly correlated cis-sQTLs (correlation > 0.9). We also excluded cis-

e/sQTLs with no variance and samples with missing genotypes. Finally, we only kept cis-e/sQTLs with at least 3 genotyped donors of

each ancestry.

Fst values and tissue sharing of cis-driven ancestry-DEGs and ancestry-DSEs
We used the vcftools130 command ‘‘–weir-fst-pop’’ to compute the fixation indexes (Fst values)145 between individuals of European

and African ancestry for all genotyped variants with a minimum allele frequency (MAF) of 0.01 in the latest GTEx release.2 Then, for

every eGene and sGene in every tissue, we calculated the average Fst value of the associated cis-e/sQTLs. We used a one-tailed

MannWhitney U test to compare the Fst values associated with cis-driven and cis-independent ancestry-DEGs/DSEs. We corrected

the associated P-values for multiple testing across tissues using the Benjamini-Hochberg method. We also used used a one-tailed

MannWhitney U test to compare the tissue sharing of cis-driven and cis-independent ancestry-DEGs/DSEs. We corrected the asso-

ciated P-values for multiple testing across tissues using the Benjamini-Hochberg method (Figures S2 and S5).
Cell Genomics 3, 100244, January 11, 2023 e4
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Tissue enrichment of differentially expressed genes with additive effects
Weused a two-tailed Fisher’s exact to test if genes are differentially expressedwith two demographic traitsmore often than expected

if they were independent. We ran the analysis in each tissue and for each pairwise combination of demographic traits and corrected

p-values for multiple testing using the Benjamini-Hochberg method across tissues and pairwise combinations. We determined sig-

nificance at an FDR < 0.05 (Table S3B). Then, we explored if there was a bias in the directionality of the additive effects. To do so, we

focused on genes with additive effects in each tissue and with each pairwise combination of demographic traits. We used a Chi-

square goodness of fit to test if the observed sample distribution (number of DEGs upregulated with both traits, number of DEGs

downregulated with both traits, and number of DEGs either upregulated with one trait and downregulated with the other, and vice-

versa) corresponded to the expected probability distribution (based on the total number of genes upregulated and downregulated

with each trait separately). We ran the analysis in tissues with at least 20 DEGs with a given pairwise combination of demographic

traits. We corrected p-values for multiple testing using the Benjamini-Hochberg method across tissues and pairwise combinations.

We determined significance at an FDR < 0.05 (Table S3B).

Enrichment of ancestry-DEGs and ancestry-DSGs in eGenes and sGenes
To investigate whether DEGs and DSGs between African Americans and Europeans Americans are overrepresented in eGenes and

sGenes, we downloaded the latest analyses2 from the GTEx portal (https://gtexportal.org/home/datasets/GTEx_Analysis_v8_eQTL.

tar and https://gtexportal.org/home/datasets/GTEx_Analysis_v8_sQTL.tar) and, as indicated in the portal, to obtain the list of eGenes

and sGenes per tissue, we selected the rowswith q-value < 0.05. Then, for each tissue, we computed a one-tailed Fisher’s Exact test

to test if there were more ancestry-DEGs/DSGs that were also e/sGenes, respectively, than expected if they were independent. We

determined a significant enrichment after correcting for multiple testing using the Benjamini-Hochberg method across tissues at an

FDR < 0.05 (Tables S2A and S5A).

Inclusion exclusion of exonic/intronic sequence bias
For those ASEs associated with a switch between a protein-coding and a non-coding isoform, we tested if the inclusion of exonic/

intronic sequence ismore often associatedwith a non-coding biotype. To test this, for each splicing event, we considered the biotype

(i.e coding or non-coding) of the most abundant spliced-in isoform, and the biotype of the most abundant spliced-out isoform (Fig-

ure 4A). We focused on those ASEs associated with a switch between a protein-coding and a non-coding isoform (Table S4A). Then,

we investigated if the inclusion of the exonic/intronic sequence in the spliced-in isoform is more often associated with a non-coding

biotype than with a coding biotype. To do so, in each tissue and for each type of splicing event, we counted the number of ASEs for

which the spliced-in isoform was non-coding and the spliced-out was coding (NC-PC), and the number of ASEs for which the

spliced-out isoform was non-coding and the spliced-in coding (PC-NC). We used a binomial test to test if the observed proportions

significantly deviate from an equiprobable distribution (p=0.5). Since the same isoforms can contribute to different ASEs, to prevent

redundancies in the statistical testing, we randomly selected one ASEs per spliced-in-spliced-out isoform combination. We

corrected for multiple testing using the Benjamini-Hochberg method across tissues and types of splicing events and determined

significance at an FDR < 0.05 (Table S4B).

Enrichment of DSEs in particular types of ASEs
We used a Chi-square test to investigate if there is a statistically significant difference between the expected frequencies and the

observed frequencies of ASEs DS and not DS for each type of splicing event (Figure 4A). We ran the analyses separately for

ASEs with each demographic trait and tissue. Since the same isoforms can contribute to different ASEs, to prevent redundancies

in the statistical testing, we randomly selected one ASEs per spliced-in-spliced-out isoform combination. We determined whether

the number of observed DSEs is significantly different than expected after correcting for multiple testing across tissues using the

Benjamini-Hochberg method at an FDR < 0.05 (Table S4C).

Inclusion or exclusion bias in particular types of DSEs
We investigated if there was a bias towards positive or negative betas for the different types of DSEswith each demographic trait. The

sign of the beta parameter indicates whether the exonic/intronic sequence included in the spliced-in isoform is more or less included

with respect to the reference level: positive betas indicate more inclusion in African Americans, females, older individuals, or in in-

dividuals with higher BMI. Specifically, we used the binomial test to test if the observed proportions of positive and negative betas

for the DSEs significantly deviate from an equiprobable distribution (p=0.5). We run one test for each type of splicing event

(Table S4D). To prevent redundancies in the statistical testing, if two or more events of the same type were DS in a gene, we selected

the beta of the DSE with the lowest adjusted p-value. We only ran the analysis in tissues with R 10 DSEs of a given type with a de-

mographic trait. We corrected for multiple testing using the Benjamini-Hochberg method across tissues and types of splicing events

at an FDR < 0.05.

Overlap between DEGs and DSGs
We used a two-tailed Fisher’s exact test to investigate if genes DE are more likely to be DS, by testing if they overlap more often than

expected if they were independent. We restricted the analysis to genes with ASEs, and hence tested for differential splicing, in each
e5 Cell Genomics 3, 100244, January 11, 2023
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tissue.We ran the analyses separately for DEGs and DSGswith each demographic trait (Table S4F). We corrected for multiple testing

using the Benjamini-Hochberg method across tissues and determined a larger than expected number of DEGs and DGSs at an

FDR < 0.05.

Comparison of the AS variation explained by the different types of AS events
We computed the AS variation explained per DSE as described in section hierarchical partition analysis. We used a Kruskal–Wallis

test (kruskal.test R function from the R package stats146) to compare the AS variation explained in the different types of splicing

events. If the associated p-value was < 0.05, we further used the function pairwise.wilcox.test from the R package stats, which per-

forms multiple testing correction, to compute all pairwise Mann–Whitney U-tests between the different types of splicing events. To

quantify the differences between pairwise combinations of splicing events, we computed the effect sizes (Glass rank biserial corre-

lation coefficient for Mann–Whitney U-test) for each pairwise combination of event types using the wilcoxonRG function from the R

package rcompanion.147 We ran the analysis separately per tissue and demographic trait, considering only tissues with R 3 trait-

DSEs of each type of splicing event (Table S4H).

Assessing replication of differential expression and splicing patterns of ribosomal proteins
We downloaded and parsed Table S1D from Quach et al.15 to obtain a list of DEGs between Africans and Europeans in resting (non-

stimulated) human primary monocytes. Similarly, we downloaded and parsed Table S4A from Rotival et al.22 to obtain a list of DSEs

between Africans and Europeans in resting (non-stimulated) human primary monocytes. From those lists, we retrieved the ribosomal

proteins DE and the ASEs in ribosomal proteins DS. To further validate our findings, we sought to investigate if the expression dif-

ferences between populations of the ribosomal protein isoforms that participate in DSEs were correlated between GTEx tissues and

monocytes. Monocyte isoforms expression matrices were provided by the authors and log2 FPKM values were transformed to TPM

values to match GTEx quantifications. Then, we computed the differences in expression between populations (effect sizes) for the

isoforms contributing to DSEs in ribosomal proteins for each GTEx tissue and in monocytes. Then, we tested whether the effect sizes

of a particular GTEx tissue were correlated with that of monocytes. We corrected for multiple testing using the Benjamini-Hochberg

method across tissues (FDR < 0.05).

Identification of cis-genetic variants associated with DSEs in ribosomal proteins
To identify candidate genetic regulatory variants of the splicing patterns of DSEs in ribosomal proteins, we focused on genotyped

variants with MAF R 0.01 within 1Kb of the splicing event. Then, in each tissue and for each DSE in ribosomal proteins, we fitted

a generalized linearmodel using fractional regression as explained before, controlling for technical covariates and demographic traits

as well as nearby genetic variants:

PSIi � technical covariates + demographic traits+SNP genotype f1.ng
We used an anova test implemented in stats R package through anova function to determine if at least one genetic variant per DSE

was significantly associated with the splicing patterns (FDR < 0.05). Then, we used the approach described in section identification of

cis-driven ancestry-DEGs and ancestry-DSEs to determine if the splicing differences observed between populations are cis-driven.

Read coverage for highly tissue-shared DSEs in RPLP2 and RPL10
We downloaded the available RNAseq bam files for the samples from the SkinSunExposedLowerleg and SkinNotSun

ExposedSuprapubic tissues, which are part of the GTEx protected data stored in dbGap (accession number phs000424.v8.p2). We

used deeptools131 to generate normalized coverage tracks (counts per million (CPM)) in 50 base-pairs windows considering uniquely

mapped reads. We used the R package Gviz132 to plot the average read coverage per population (Figure S6D).

Identification of ASEs that disrupt known protein-coding domains
To further characterize the functional consequences of ASEs associated with a switch between protein-coding isoforms, we used an

in-house developed pipeline that maps splicing events to protein-coding domains. Running the pipeline requires: (1) a gene anno-

tation file (GTF file), (2) a list of transcripts IDs (isoforms), (3) a genome fasta file, and (4) a database of known protein-coding domains

from the PFAM database.57 The computational method is implemented in Nextflow133 and publicly available at https://github.com/

Mele-Lab/2022_GTExTranscriptome_fromSplicingEventsToProteinDomains. In brief, the pipeline extracts each isoform’s coding

DNA sequence (CDS) from the GTF file and translates it into its corresponding amino acid sequence. Then, using the latter, it queries

the PFAM database and selects high-confidence amino acid alignments to identify protein-coding domains in each isoform. We

considered high-confidence protein-coding domain alignments those with: sequence alignment E-value < 1e-5, domain

E-value < 0.01, domain score > 10, accuracy (hmmscan metrics) R 0.8 and partiality R 0.9 (where partiality is an in-house metric

that represents the proportion of the sequence domain aligned).

To link ASEs to changes in protein-coding domains, the amino acid coordinates of the protein-coding domains are translated to

genomic coordinates. Then, we evaluate if the exonic/intronic sequences that define an splicing event overlap with the genomic
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coordinates of the protein-coding domains. We determine that a splicing event affects a protein-coding domain if the exonic/intronic

coordinates that define the splicing event overlap with at least one protein-coding domain in either one or both the spliced-in and

spliced-out isoforms.

Selection of clinical traits
The clinical trait annotation was obtained either from the donors’ medical history, which are part of the GTEx protected data

stored in dbGap (accession number phs000424.v8.p2) and obtained either from the donors’ medical record or information pro-

vided by the donors’ next-of-kin,148 or from histopathological annotations obtained through pathologist review, publicly acces-

sible from the GTEx portal (https://gtexportal.org/home/histologyPage). Whereas the donors’ medical history annotations corre-

spond to each individual (and thus all the tissues obtained from the same donor have the same annotation), the

histopathological annotations are specific to tissue samples. Notably, annotations for some clinical traits were only available

for a subset of donors and samples (Tables S6A and S6B). We only considered the clinical traits with at least five affected sam-

ples per tissue. We manually curated the histopathological annotations and, in some instances, combined phenotypically

related annotations. Specifically, we labeled artery samples that suffered from atherosis, atherosclerosis, calcification, Möncke-

berg’s arteriosclerosis, and/or sclerosis with the wider term atherosclerosis, as more than one third (40.24%) of the tibial artery

samples were annotated with at least two of these phenotypes. We also modified the spermatogenesis annotation to distinguish

samples with normal and low levels of spermatogenesis based on the pathologists’ comments. We excluded clinical traits

directly related to the donor’s cause of death, as these were strongly correlated with the Hardy scale index, and we also

excluded donors annotated as type 1 diabetics that expressed insulin.149 Altogether, we analyzed expression and splicing

changes associated with 48 different clinical traits (Table S6B).

Differential expression, differential splicing, and hierarchical partition analysis with clinical traits
To identify DEGs with clinical traits we used the same approach described in the section Differential gene expression analysis, but

further including the clinical traits as covariates in the linear models. First, we ran one model per tissue and clinical trait

(Table S6A) and selected those clinical traits with at least five DEGs in the affected tissues (n = 17 clinical traits) (Table S6B). For

the histopathological annotations, the affected tissue was the tissue where we obtained the pathology annotation. For medical

history annotations, we defined the affected tissue as the known tissue of origin according to the literature, e.g., the pancreas in

type 1 diabetes.149 In cases withmore than one known affected tissue, i.e. brain regions, we selected the tissue with the highest sam-

ple size, e.g., the brain cortex in multiple sclerosis (Table S6B). Then, we ran one model per tissue including all clinical traits selected

in the previous step that had at least five DEGs in that tissue (Figures 6A and S7A). Note that the number of tissue samples is limited to

the number of samples with available annotation for all clinical traits, and thus the number of samples analyzed might be smaller than

previous analysis that considered only demographic traits. To test interactions we require at least 20 samples per group, but only type

2 diabetes in three tissues fulfilled this requirement. We only found 2 genes with a significant interaction between type 2 diabetes and

ancestry (SMN1) and between type 2 diabetes and sex (STK26) in the adipose subcutaneous. To quantify the contribution of demo-

graphic and clinical traits to gene expression variation, we used hierarchical partition analysis as described in section hierarchical

partition analysis expanding the model to include the clinical traits annotated in that tissue. To identify DSEs with clinical traits,

we used the same approach as described in section Differential splicing analysis expanding the models to include clinical traits

per tissue with at least 15 affected samples.

expression ðlog2cpmÞ = splicing ðPSIÞ � HardyScale+ IschemicTime+RIN+Cohort+NucAcIsoBatch+ExonicRate

+PEER1+PEER2+Ancestry+Sex+Age+BMI+clinical traitðsÞ
Tissue enrichment of genes with additive effects between clinical traits
Weused two-tailed Fisher’s exact tests to investigate if two clinical traits affect the same genes per tissuemore often than expected if

they were independent. We ran the analysis per tissue and for each pairwise combination of clinical traits. We corrected for multiple

testing using the Benjamini-Hochberg method in all tests and determined significance at an FDR < 0.05. Then, we used a Chi-square

goodness of fit to investigate the directionality of the additive effects by comparing the observed and expected sample distributions

as explained in tissue enrichment of differentially expressed genes with additive effects. We ran the analysis in tissues with at least 20

DEGswith additive effects.We corrected p-values for multiple testing using the Benjamini-Hochbergmethod across traits.We deter-

mined significance at an FDR < 0.05 (Table S6G).

Replication of tibial nerve DEGs with diabetes in mice
We downloaded and parsed Tables S1, S2, and S3 from Gu et al.87 to obtain a list of DEGs with type 1 and type 2 diabetes in the

sciatic nerve of mice. We then compared this gene list with DEGs with type 1 and type 2 diabetes in the tibial nerve. We used a

two-tailed Fisher’s exact test to test if the number of DEGs significantly overlapped between the two studies.We used as background

the genes expressed in the human tibial nerve.
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Prediction of diabetic status using tibial nerve histology images
The histology images are publicly available in the GTEx Histological Image Viewer (https://brd.nci.nih.gov/brd/image-search/

searchhome). We used PyHist134 to transform tibial nerve whole slide images with diabetic annotation (n=971) from Aperio format

(.svs) to png. We then segmented the images into tiles of 512x512 pixels (n=1399) with Otsu thresholding150 to keep the tiles with

at least 75% of tissue content. We excluded 4 images that, by visual inspection, corresponded to mis-annotated tissues. We

used the function computeFeatures.haralick() from the Bioconductor package EBImage135 to extract 13 Haralick features151 from

RGB pixel values on three scales: 1, 10, and 100-pixel sliding windows, as described in.114 Using these features we trained a support

vector machine136 with a linear kernel. We split the data into training (75% of the data) and testing sets (25% of the data) and ran 100

permutations. To identify genes associated with diabetic neuropathy progression, we used the probability of being classified as dia-

betic as a proxy for disease severity. Using only diabetic individuals, and for every data split, we computed for each gene the Pearson

correlation between the probabilities of being diabetic obtained from the classifier and the residual gene expression values (after re-

gressing out the effects of the covariates and demographic traits), and selected those genes that had a significant correlation

(FDR < 0.05) in 90 % of the permutations (Table S6I).

Tissue enrichment of genes with additive effects between demographic and clinical traits
We used a two-tailed Fisher’s exact test to check if genes are differentially expressed with a clinical and a demographic trait more

often than expected by chance. We ran the analysis per tissue and for each pair combination of demographic and clinical traits. We

corrected p-values for multiple testing using the Benjamini-Hochberg method across tissues and pairs and determined significance

at an FDR < 0.05. Then, we used a Chi-square test to investigate biases in the directionality of the additive effects as explained in

tissue enrichment of differentially expressed genes with additive effects.

Matching demographic distributions for bias validation
To confirm that the biases in directionality we observe are not due to demographic differences between healthy and diseased pop-

ulations, we ran differential expression analysis, as previously described, in subsamples of the data where the distribution of a given

demographic trait in healthy individuals was matched to the distribution in diseased individuals. We used the function matchit from

the R package MatchIt137 using the ‘‘optimal’’ method.152 For every clinical and demographic pair with a significant bias in the direc-

tionality of genes with additive effects, we subsampled with the maximum possible ratio of healthy to disease individuals, and ran the

analysis explained in tissue enrichment of genes with additive effects between demographic and clinical traits (Figure S7F and

Table S6K).

Differences in cell-type abundances with demographic and clinical traits
We downloaded cell-type abundance estimates for seven cell types (adipocytes, epithelial cells, hepatocytes, keratinocytes, myo-

cytes, neurons, and neutrophils) described in more detail in Kim-Hellmuth et al.58 from the GTEx portal (https://gtexportal.org/home/

datasets/GTEx_Analysis_v8_xCell_scores_7_celltypes.txt.gz). In each tissue, we only investigated changes in abundances for

robustly estimated cell types (median xCell score > 0.1).58 To detect changes in abundances associated with demographic traits,

we followed the same approach as described in Oliva et al 17,58. In brief, in each tissue, we fit a linear regression model as follows:

cell type abundance � RIN + Ischemic time+Ancestry+Sex+Age+BMI

After correcting for multiple testing using the Benjamini-Hochberg method across all cell type-tissue-trait combinations we deter-

mined significance for each demographic trait at FDR < 0.05.

To investigate changes in tissue composition associated with clinical traits, we used the same approach expanding the models to

include as covariates the corresponding clinical traits per affected tissue. We determined significance for each clinical trait at

FDR < 0.05.

Functional enrichment analysis
We used the clusterProfiler R package138 for the different overrepresentation enrichment analyses (ORA) conducted throughout the

paper, considering different databases (GO ontology, Reactome and DisGenet). We used the Benjamini-Hochberg method for mul-

tiple testing correction and report as significant gene sets with an FDR < 0.05. For each ORA, we carefully selected suitable back-

ground gene lists, rather than the default universe of all annotated genes. To investigate biological pathways associated with highly

tissue-shared genes we used as input the list of highly tissue-shared ancestry or age-DEGs, and as background the list of all ancestry

or age-DEGs. To investigate biological pathways associated with genes with highly tissue-shared ancestry-DSEs, we used as input

the list of genes with highly tissue-shared ancestry-DSEs, and as background the list of all genes with at least one ancestry-DSE. To

investigate biological pathways associated with genes with significant interactions between sex and age in breast, we used as input

the latter genes and as background the list of genes expressed in breast. To explore functional pathways associated with DEGs with

type 1 and type 2 diabetes, we used as input either the upregulated or downregulated DEGs and used as background genes ex-

pressed in the tibial nerve. To investigate the functional enrichments of genes whose expression correlates with the probability of

our classifier to assign an image sample as diabetic we used as input all genes with a significant Pearson correlation (FDR<0.05)

in all data permutations and as background, expressed genes in the tibial nerve.
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