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NAT10 acetylates BCL-XL mRNA
to promote the proliferation of
multiple myeloma cells through
PI3K-AKT pathway
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Multiple myeloma (MM) is a clinically distinctive plasma cell malignancy in the

bone marrow (BM), in which epigenetic abnormalities are featured

prominently. Epigenetic modifications including acetylation have been

deemed to contribute to tumorigenesis. N-acetyltransferase 10 (NAT10) is an

important regulator of mRNA acetylation in many cancers, however its function

in MM is poorly studied. We first analyzed MM clinical databases and found that

elevated NAT10 expression conferred a poor prognosis in MM patients.

Furthermore, overexpression of NAT10 promoted MM cell proliferation. The

correlation analysis of acRIP-seq screened BCL-XL (BCL2L1) as a significant

downstream target of NAT10. Further RNA decay assay showed that increased

NAT10 improved the stability of BCL-XL mRNA and promoted protein

translation to suppress cell apoptosis. NAT10 activated PI3K-AKT pathway

and upregulated CDK4/CDK6 to accelerate cellular proliferation. Importantly,

inhibition of NAT10 by Remodelin suppressed MM cell growth and induced cell

apoptosis. Our findings show the important role of NAT10/BCL-XL axis in

promoting MM cell proliferation. Further explorations are needed to fully define

the potential of targeting NAT10 therapy in MM treatment.

KEYWORDS

multiple myeloma, NAT10, acetylation, BCL-XL, PI3K-AKT
Abbreviations: MM, Multiple myeloma; BM, bone marrow; NAT10, N-acetyltransferase 10; GEP, gene

expression profilin; acRIP-seq, acetylated RNA immunoprecipitation sequencing; WB, Western Blot;

TCGA, The Cancer Genome Atlas; GEPIA, Gene Expression Profiling Interactive Analysis; siRNA, small

interfering RNA, NP, normal plasma; MGUS, monoclonal gammopathy of undetermined significance; GO,

Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CHOL, Cholangio carcinoma; COAD,

Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; READ, Rectum

adenocarcinoma; THYM, Thymoma.
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Introduction

Multiple myeloma (MM) is a hematological cancer

characterized by clonal expansion of plasma cells secreting

large amounts of monoclonal immunoglobulins (1). Currently,

MM remains incurable and inevitably relapses due to drug

resistance, and more importantly, the monoclonal antibodies

and CAR-T therapy are limited for MM patients (2). In

addition, the rapid disease progression, short survival time

and extremely poor prognosis of relapsed and refractory

patients are also huge challenges for MM treatment (3).

Therefore, there is an urgent need to discover novel

therapeutic targets to develop new drugs.

NAT10 belonging to the family of Gcn5-related N-

acetyltransferases possesses histone acetyltransferase (HAT)

activity (4), which upregulates telomerase activity through

transactivation of the human telomerase reverse transcriptase

promoter (5). Moreover, NAT10 is an enzyme that catalyzes the

acetylation of ac4C on rRNA, tRNA and mRNA (6). Recently, it

is reported that NAT10-catalyzed mRNA acetylation in coding

sequences can stabilize and increase translation efficiency of

mRNA (7). NAT10 is emerging as a critical regulator in the

development of various cancers, such as NAT10 increases the

stability of mutant p53 to enhance its tumorigenic activity in

liver cancer (8) and acetylates p53 at K120 to stabilize p53 by

counteracting the effect of Mdm2 to promote cellular

proliferation in colorectal cancer (9). The regulation of cell

cycle checkpoint through NAT10 acetylation participates in

breast cancer development (10). An oncogenic role of NAT10

also has been validated in hematological malignancies, such as

acute myeloid leukemia (4). However, the functions of NAT10 in

MM are still not well elaborated.

This study aimed to investigate the potential involvement of

NAT10 in the pathogenesis of MM. We found that NAT10

directly enhanced mRNA acetylation and promoted BCL-XL

protein translation to inhibit cell apoptosis, leading to activation

of PI3K-AKT pathway and CDK4/CDK6 to promote MM cell

proliferation. Inhibition of NAT10 by Remodelin suppressed

MM cell growth. Our work suggests that NAT10 may be a

potentially promising therapeutic target for MM treatment.
Materials and methods

Gene expression profiling

The gene expression profiling (GEP) of MM patients were

obtained from the GEO database as previously described (11,

12). The examination of The Cancer Genome Atlas (TCGA)

datasets using gene expression profiling interactive analysis
Frontiers in Oncology 02
Gene Expression Profiling Interactive Analysis (GEPIA)

webserver (http://gepia.cancer-pku.cn/).
Antibodies and reagents

The primary antibodies used in this study were at the

dilutions of 1:1000 as follows: NAT10 (13365-1-AP,

Proteintech), ac4C (ab252215, Abcam), AKT (9272s, Cell

Signaling Technology), p-AKT (4058s, Cell Signaling

Technology), BCL-XL (2762s, Cell Signaling Technology),

Bax (2774s, Cell Signaling Technology), PARP (9542S, Cell

Signal ing Technology) , Cleaved Caspase-3 (9661S,

Ce l l S igna l ing Techno logy) , b -ac t in (60008-1- Ig ,

Proteintech), CDK4 (11026-1-AP, Proteintech), CDK6

(14052-1-AP, Proteintech).

The second antibodies included goat anti-Rabbit IgG(H+L)

HRP (FMS-Rb01, Fcmacs) or mouse (S0002, Affinity) were at

the dilutions of 1:5000.

Remodelin was purchased from CSNpharm (Chicago, USA).

Puromycin was obtained from Merck KGaA (Darmstadt,

Germany). Trizol reagent (YEASEN, Shanghai), Hifair 1st

Strand cDNA Synthesis SuperMix for qPCR (gDNA digester

plus) (YEASEN, Shanghai), SYBR Green PCR master mix

(YEASEN, Shanghai).
Cell lines and culture

Human MM cell lines including KMS28-PE and OPM2 were

cultured in RPMI-1640 with 10% fetal bovine serum, 100 U/mL

penicillin, and 100 µg/mL streptomycin (Biological Industries,

Israel) in a 37°C humidified incubator with 5% CO2.
Plasmids and transfection

The plasmids containing the human NAT10 cDNA were

purchased from TranSheepBio (Shanghai, China). The NAT10

coding sequence was cloned into the lentiviral vector, pTSB

carrying Flag tag. MM cells were transfected using lentivirus as

described previously (13).
Electroporation method

BTXpress Cytoporation Media T4 (BTX, 47-0003) was used

to deliver siRNA into cells according to the Manufacturer’s

manual (14).

Sequences of siRNA were as following: negative control

(sense 5’-UUCUCCGAACGUGUCACGUTT-3’ and anti-sense
frontiersin.org
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5’-ACGUGACACGUUCGGAGAATT-3’); NAT10 (sense 5’-

GCAUGGACCUCUCUGAAUATT-3’ and anti-sense 5’-

UAUUCAGAGAGGUCCAUGCTT-3’).
Cell proliferation and viability assay

MM cells (1.5 x 103/well) were seeded in a 96-well plate.

CCK8 (Beyotime) reagent was added to each well and

incubated for 24, 48 and 72 h, respectively. The absorbance

was measured at 450 nm using a microplate reader (Varioskan

LUX,Thermo).
Colony formation

MM cells (1 x 104/well) were seeded in a 24-well plate with

0.5 mL of 0.33% agar/RPMI 1640 supplemented with 10% FBS.

The medium was added twice per week for 2 weeks. Colonies

were imaged and counted.
Flow cytometry analysis of cell cycle
and apoptosis

Cell cycle and apoptosis were performed according to

previous report (15) and analyzed by flow cytometry (Merck

Millipore, Germany).
ac4C detection by dot blot

Dot blot was conducted referring to the method described

previously (14). Anti-ac4C antibody was used for dot blot.
Quantitative PCR

Quantitative PCR (qPCR) was performed as previously

described (13).

Sequences of primers were as following: GAPDH: GGG

GAGCCAAAAGGGTCATCATC, GACGCCTGCTTCACCAC

CTTCTTG; BCL-XL: GCCACTTACCTGAATGACCACC, AAC

CAGCGGTTGAAGCGTTCCT.
RNA decay assay

MM cells were treated with mRNA transcription inhibitor

Actinomycin D (5 mg/mL) (MCE, HY-17559) for 0, 2, 4, 6 h.

BCL-XL mRNA was analyzed by qPCR method.
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Statistical analysis

Data were presented as the mean ± standard deviation and

analyzed by using a two-tailed Student’s t-test (2 groups) and

one-way ANOVA for multiple comparisons. A Kaplan–Meier

curve and Log-rank test were employed to determine MM

patient survival. p<0.05 (*), p<0.01 (**) and p<0.001 (***) were

considered to indicate statistically significant differences.
Results

Elevated NAT10 is associated with poor
survival in MM patients and promotes
MM cell proliferation in vitro

The examination of TCGA datasets using GEPIA webserver

shows that NAT10 is highly expressed in a variety of cancers

(p<0.05) (Figure 1A). We also interrogated the GEP of NAT10

dataset from normal plasma (NP) cells, monoclonal

gammopathy of undetermined significance (MGUS) and MM

bone marrow plasma cells, showing that NAT10 expression in

patients of MGUS (n=22) and MM (n=69) was obviously

increased compared with NP (n=15) (p=0.0027; GSE6477)

(Figure 1B). Then, we constructed stably overexpressing (OE)

NAT10 MM cell lines (OPM2 and KMS28-PE) by lentivirus-

based method and knocked down NAT10 expression by siRNA

technology, which were val idated by WB analysis

(Figures 1C, D). CCK8 assay showed that the cellular

proliferation capacity was enhanced in NAT10-OE MM cells

relative to WT cells (p<0.001) (Figure 1E). On the contrary,

silencing NAT10 inhibited cell proliferation compared with

negative control (NC) cells (p<0.001) (Figure 1F). Consistently,

a clonogenic soft agar assay indicated that interfering the

expression of NAT10 significantly altered long-term

proliferation of MM cells (p=0.0180, p=0.1024, p=0.0091,

p=0.0178) (Figures 1G, H). These findings support that

NAT10 acts as an oncogene stimulating MM cell growth.
NAT10 acetylates mRNA to regulate the
progression of MM

NAT10 is an acetyltransferase involved in N4-Acetylcytidine

(ac4C) modification on tRNA and 18S rRNA (16) and mRNA

(17), which may further affect RNA stability and gene expression

(7). We used acetylated RNA immunoprecipitation and

sequencing (acRIP-seq) to assess the transcriptomic

distribution and turnover of ac4C by NAT10 (Figure 2A). The

acRIP-seq results from KMS28-PE WT and NAT10-OE cells

showed that ac4C-enriched mRNA genes were upregulated in
frontiersin.org
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NAT10-OE cells compared to WT cells. Gene ontology (GO)

analysis of these genes confirmed that gene expression, cellular

protein metabolic process, mRNA metabolic process and

translation were the top enriched GO terms (Figure 2B).

Meanwhile, the acetylation level of total RNA in MM cells by

dot blot method showed that elevated NAT10 increased ac4C

level, while silencing NAT10 resulted in decreased ac4C

acetylation in MM cells (Figure 2C). Here, it is speculated that

NAT10 accelerates the progression of MM by catalyzing

mRNA acetylation.
NAT10 acetylates BCL-XL mRNA to
enhance translation efficiency

In order to further screen the downstream targets of NAT10,

we also analyzed the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway results. There were top 20 most significantly

enriched pathways, such as the PI3K-AKT signaling and cell

cycle pathways (Figure 3A). In addition, KEGG pathway analysis

showed that the PI3K-AKT pathway was significantly

upregulated upon NAT10 overexpression, and BCL-XL was
Frontiers in Oncology 04
distinguished among the genes associated with the upregulated

PI3K-AKT pathway (Figure 3B). More importantly, from the

sequencing results, we found that the anti-apoptotic BCL-XL

was quite different between NAT10-OE cells and WT cells.

Additionally, qPCR analysis validated that BCL-XL was

significantly increased in NAT10-OE cells (p=0.0298,

p=0.0130) (Figure 3C) while decreased in siNAT10 cells

(p=0.0085, p=0.0177) (Figure 3D). The RNA decay assays

demonstrated a higher stability of BCL-XL transcripts in

NAT10-OE cells than that in WT cells (p=0.0021 & p=0.0011)

(Figure 3E). Therefore, BCL-XL mRNA may be the direct

acetylated target of NAT10 in MM, which further stabilizes

and improves translation efficiency of BCL-XL.
NAT10 enhances BCL-XL mRNA
translation and activates PI3K-AKT
pathway to promote the proliferation of
MM cells

To further elucidate the downstream targets and pathways

regulated by NAT10, we detected the protein expressions of BCL-
A B

D

E

F G H

C

FIGURE 1

Elevated NAT10 is relevant to poor survival of MM patients and promotes MM cell proliferation. (A) Boxplots of high-expressing NAT10 in tumors
(T) from CHOL, COAD, DLBC, READ, THYM and normal controls (N). (B) NAT10 mRNA levels were significantly elevated in MM patients of
GSE6477 dataset. The signal level of NAT10 was shown on the y-axis. The groups of healthy donors with normal BM NP (n=15), MGUS (n=22)
and MM (n=69) were displayed on the x-axis respectively. (C) Confirmation of NAT10 expression in NAT10-OE MM cells by WB test. (D)
Confirmation of NAT10 expression in siNAT10 MM cells by WB test. (E) CCK8 assay showed increased NAT10 enhancing cellular proliferation. (F)
CCK8 assay showed siNAT10 impeding cell growth in MM cells. (G) Images of representative soft agar plates indicated accelerated clonogenic
growth of NAT10-OE cells and suppressed clonogenic growth of siNAT10 cells compared to NC cells. (H) Statistical analysis of the long-term
proliferation ability of NAT10-OE or siNAT10 MM cells for clonogenic soft agar assay. The data are expressed as mean ± SD. *p < 0.05, **p < 0.01,
***p < 0.001. CHOL, Cholangio carcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; READ,
Rectum adenocarcinoma; THYM, Thymoma.
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XL and upstream pro-survival protein AKT of BCL-XL, whose

activity was regulated by phosphorylation. WB results confirmed

that BCL-XL was increased in NAT10-OE cells while decreased in

siNAT10 cells compared to control cells, respectively. Likewise, the

expression of p-AKT not total AKT was increased in NAT10-OE

cells while decreased in siNAT10 cells (Figure 4A). The increased

p-AKT activates the PI3K-AKT pathway and promotes cell

proliferation (18–20) by facilitating the synthesis of anti-
Frontiers in Oncology 05
apoptotic proteins or phosphorylating and inactivating pro-

apoptotic Bcl-2-related death-initiating proteins (21). We

subsequently verified that the pro-apoptotic protein BAX was

decreased upon NAT10 overexpression, and vice versa

(Figure 4B). Furthermore, the expressions of cleaved-PARP and

cleaved-Caspase 3 were increased upon silencing NAT10

(Figure 4C). As apoptosis is closely related to cell cycle in cancer

cells (22), we next employed flow cytometric analysis to examine
A B

D EC

FIGURE 3

NAT10 acetylates NAT10 mRNA to enhance translation efficiency. (A) KEGG pathway enrichment analysis of acRIP-seq. (B) Pathway analysis:
upregulated pathway in red, downregulated pathway in blue. (C) BCL-XL mRNA expression was measured in WT and NAT10-OE MM cells by
qPCR. (D) BCL-XL mRNA expression was measured in NC and siNAT10 MM cells by qPCR. (E) RT-qPCR was performed to detect BCL-XL mRNA
stability in OPM2 and KMS28-PE cells with the treatment of Actinomycin D (5 mg/mL). The data are expressed as mean ± SD. *p < 0.05,
**p < 0.01, ***p < 0.001.
A B

C

FIGURE 2

NAT10 acetylates mRNA to regulate the progression of MM. (A) Schematic of acRIP-seq. (B) GO analysis of acRIP-seq. (C) Dot bolt showed that
NAT10 overexpression led to higher mRNA acetylation level, and converse result was observed in siNAT10 MM cells.
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cell cycle distribution. A decrease in G0/G1 fraction was observed

in NAT10-OE cells (p=0.0255, p=0.0091) (Figure 5A), while an

increase in cellular G0/G1 fraction was observed in siNAT10 cells

compared to control cells, respectively (p=0.0396, p=0.0137)

(Figure 5A). Consistently, the protein expressions of CDK4 and

CDK6 were increased in NAT10-OE cells while decreased in

siNAT10 cells compared to control cells, respectively (Figure 5B).

Collectively, NAT10 not only acetylates and promotes the

translation of BCL-XL mRNA thus inhibiting cell apoptosis, but

also activates the PI3K-AKT pathway to promote cell proliferation

possibly via regulating the expressions of CDK4 and CDK6.
Remodelin impedes MM cell growth
in vitro

We followed to explore the therapeutic potential by

targeting NAT10 in MM cells using Remodelin, which is a
Frontiers in Oncology 06
small molecule inhibitor with the functions of inhibiting

NAT10 (Figure 6A) and sensit izing tumor cells to

chemotherapy (23). WB results showed that Remodelin

significantly promoted the expressions of cleaved-PARP and

cleaved-Caspase 3 compared to non-treated cells (Figure 6B).

Furthermore, flow cytometry analysis showed that Remodelin

evidently induced apoptosis in MM cells (p<0.001) (Figures 6C,

D). The above data suggest that targeting NAT10 may be a

promising strategy for MM treatment.
Discussion

As a member of the GCN5-related N-acetyltransferase

superfamily, NAT10 is involved in the regulation of

telomerase activity, DNA damage repair, apoptosis resistance,

and cell cycle regulation (24). NAT10 is mostly investigated in
A

B

FIGURE 5

NAT10 regulates cycle distribution and promotes cellular proliferation in MM cells. (A) Flow cytometry analysis displayed that NAT10
overexpression decreased G0/G1 phase fraction and siNAT10 increased G0/G1 phase fraction in MM cells. (B) WB assays indicted that NAT10
upregulated CDK4 and CDK6 protein expressions and siNAT10 decreased CDK4 and CDK6 protein expressions in MM cells. The data are
expressed as mean ± SD. *p < 0.05, **p < 0.01.
A B C

FIGURE 4

NAT10 acetylates BCL-XL mRNA to enhance its translation efficiency and activates PI3K-AKT pathway to induce anti-apoptosis in MM cells. (A) WB
examined the expressions of BCL-XL, AKT and p-AKT in OPM2 and KMS28-PE cells. (B) WB detected the expressions of BCL-XL and BAX in OPM2 and
KMS28-PE cells. (C) WB tested the expressions of caspase-3 & cleaved caspase-3 and PARP & cleaved PARP in OPM2 and KMS28-PE cells.
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solid cancers, but less in hematological cancers. In this study, we

found that high expression of NAT10 was associated with poor

prognosis in MM patients. Based on the clinical data, we

conceived that NAT10 might be a potential target in MM.

NAT10 is the first identified acetylation regulator

maintaining efficient translation and stabilizing mRNA by

forming ac4C on mRNA (25). More importantly, our ac4C

functional analysis revealed an intrinsic role of NAT10 in

promoting mRNA stability and translation. The ac4C helps to

maintain translation fidelity, and the distal conformation of the

N4-acetyl side chain of ac4C is responsible for avoiding

misinterpretation of the isoleucine AUA codon during protein

translation (26). It also can improve translation efficiency and

stability of mRNA. A recent study demonstrates that ac4C on

tRNA in plants can improve translation efficiency and fidelity

(27), while ac4C plays an important role in maintaining the

stabi l ity of tRNA that is associated with the high

thermotolerance of cells (28). The ac4C is involved in the

occurrence of various diseases including cancer (6),

inflammation (29), metabolic diseases (30), autoimmune

diseases (31). Our study indicated that increased NAT10 led to

high ac4C level, while silencing NAT10 decreased ac4C

acetylation in MM cells.

PI3K-AKT pathway is a signaling pathway for cell survival

involved in multiple cellular processes, especially in cancer

development (32). Activation of the downstream transcription
Frontiers in Oncology 07
factors of PI3K/Akt signaling pathway promotes the synthesis of

anti-apoptotic proteins or phosphorylation and inactivation of

pro-apoptotic Bcl-2-associated death-initiating proteins. The

functional cooperation between PI3K-AKT and Bcl-2 family

proteins has become an important mechanism to prevent

apoptosis and promote tumorigenesis (33, 34). Apoptosis is a

normal physiological process composed of multi-step complex

pathways of programmed cell death that is necessary for

maintaining cellular homeostasis (35). Two main pathways are

related to apoptosis: the extrinsic pathway, which is activated by

signals from pro-apoptotic receptors on the cell surface; the

intrinsic pathway, which involves disruption of mitochondrial

membrane integrity (36). As an anti-apoptotic protein, BCL-XL

belongs to the Bcl-2 protein family. The Bcl-2 family controls

apoptosis-mediated mitochondrial outer membrane

permeability (MOMP) (37), which is a protein playing a vital

role in regulating apoptosis (38). Intriguingly, BCL-XL is

involved in the pathogenesis of hematological malignancies,

for which it maybe a potential biomarker (39).

Dysregulation of cell cycle is a common feature in human

cancers, and the cell cycle is closely related to apoptosis (40).

There are many similar features between mitosis and apoptosis,

indicating a direct link between the cell cycle and apoptosis (41).

Our data showed that the G0/G1 phase was decreased and the

expressions of CDK4 and CDK6 were increased upon NAT10

overexpression in MM cells. Moreover, we found that anti-
A B

D

C

FIGURE 6

Remodelin impedes MM cell growth in vitro. (A) The structure of Remodelin. (B) WB analysis confirmed that Remodelin increased the
expressions of apoptotic proteins: caspase-3 & cleaved caspase-3 and PARP & cleaved PARP. (C, D) Flow cytometry analysis indicated that
Remodelin facilitated cell apoptosis. The data are expressed as mean ± SD. ***p < 0.001.
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apoptotic BCL-XL was increased to inhibit the downstream

apoptotic protein BAX, while the upstream p-AKT was

elevated to activate PI3K-AKT pathway. These results suggest

that maintaining the stability of anti-apoptotic proteins may

further induce the activation of PI3K-AKT pathway resulted in

MM cell proliferation. Due to the fact that different myeloma

cells have different genetic backgrounds (shown as

Supplementary Table 1), KMS28-PE cell line was less sensitive

to genetic manipulation than OPM2 cell line. However, the

results in both cell lines were consistent.

Inducing apoptosis is an important way for the treatment of

cancer. It is known that Romedelin improves nuclear structure,

chromatin organization, and alleviates DNA damage (42).

Emerging evidences have shown that Remodelin inhibits cell

proliferation, migration and induces cell cycle arrest or apoptosis

in various cancer cells (43). We observed that Remodelin

suppressed MM cell proliferation and induced apoptosis by

inhibiting NAT10 activity in vitro, proving the potential of

Romedlin for clinical applications. It is worth further

exploration to discover specific inhibitors targeting NAT10.
Conclusion

In summary, our findings indicate that NAT10 acetylates

and stabilizes BCL-XL mRNA to increase translation efficiency

leading to elevated BCL-XL expression, which suppresses MM

cell apoptosis and activates PI3K-AKT pathway thus promoting

cell cycle progression and proliferation during MM malignancy.
Frontiers in Oncology 08
Targeting NAT10/BCL-XL axis may be a promising strategy for

MM treatment (Figure 7).
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