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An improved channel attention mechanism Inception-LSTM human motion recognition algorithm for inertial sensor signals is
proposed to address the problems of high cost, many blind areas, and susceptibility to environmental effects in traditional
video image-oriented human motion recognition algorithms. The proposed algorithm takes the inertial sensor signal as input,
first extracts the spatial features of the sensor signal into the feature vector graph from multiple scales using the Inception
parallel convolution structure, then uses the improved ECA (Efficient Channel Attention) channel attention module to extract
the critical details of the feature vector graph of the sensor data, and finally uses the LSTM network to further extract the
temporal features of the inertial sensor signals to achieve the classification and recognition of human motion posture. The
experiment results demonstrate that 95.04% recognition accuracy on the public dataset PAMAP2 and 98.81% accuracy on the
self-built dataset can be realized based on the algorithm model, indicating that the algorithm model has a superior recognition
effect. In addition, the results of the visual analysis of channel attention weights show that the proposed model is interpretable
for the recognition of human motions and is consistent with the living intuition.

1. Introduction

Lately, human motion recognition has turned into the most
dynamic and famous area because of its wide application in
true situations like medical care, smart home, and monitoring
[1–3]. Traditional computer vision-based human motion rec-
ognition [4, 5] is limited in its effectiveness in the actual recog-
nition process due to variations in illumination, complex
background environments, and the influence of individual dif-
ferences in objects. Compared with computer vision-based
methods, inertial sensors have become increasingly important
and started to be extensively applied in human motion recog-
nition due to their low environmental coupling, high individ-
ual adaptability, and small size and low cost.

There are many existing studies on automatic human
motion posture recognition based on inertial sensor data
[6, 7], but accurate detection and recognition is still a chal-

lenge.The quality of the manually extracted signal features
has a huge impact on the human motion recognition effect
based on traditional machine learning algorithms (such as
support vector machines [8] and random forests [9]), and
thus, the professional knowledge in the field is required to
transform sensor signal into corresponding feature expression
for human motion recognition [10]. In addition, the elemen-
tary human postures can be represented effectually by the
hand-made features, but they are unable to handle more com-
plex motion patterns. In most cases, feature selection tech-
niques are also needed to obtain significant features and
reduce the dimension of feature space [11] to achieve optimal
performance. To address these challenges, in-depth research
on automatic feature extraction methods that do not require
human intervention has become an active research area.

Convolutional neural networks (CNN) has emerged as a
powerful tool in image processing and machine vision. When
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used for human action recognition of inertial sensors, convolu-
tional neural networks can automatically extract high-
dimensional data features and thus can largely avoid the reli-
ance on feature engineering. Also, due to its rich expressive
power and spatial feature extraction capability, it can achieve
better results than traditional machine learning algorithms
when processing inertial sensor data [12]. However, in existing
studies, researchers have mostly used serial convolutional struc-
tures to deepen the depth of convolution [13, 14], while there
are fewer studies on parallel convolutional structures to widen
the convolution width for processing inertial sensor data. An
Inception neural network structure was proposed in the litera-
ture [15]. This structure is established on convolutional neural
network and adopts multipath parallel convolution mode,
which improves the utilization rate of computing resources in
the network and fully extracts spatial features of data on multi-
scale convolution kernel. It has excellent performance in the
field of visual recognition and good scalability. LSTM is a special
recurrent neural network (RNN) structure, which consists of a
series of repeating neural networks combined in a chain. Its
unique network structure makes it very sensitive to signals with
temporal dependence. The attention mechanism is a widely
studied network design approach in the fields of computer
vision [16] and natural language processing [17]. Exhibiting a
resemblance to human perception, the attention mechanism
focuses upon the certain section of the objective region to mag-
nify the key details of the object while abolishing other extrane-
ous potentially baffling information, allowing neural network
models to have a high level of interpretability. There are limited
existing studies that apply attentional mechanisms to the field of
inertial sensor action recognition. Literature [18] used a multi-
head model based on the SENet (Squeeze Excitation Network)
channel attention mechanism to extract features from inertial
sensors signal and attained good recognition results on the
UCI andWISDM datasets. Literature [19] used a dual attention
approach combining channel attention and spatial attention to
achieve good action classification results on all four publicly
available datasets. In literature [20], based on SENet, an opti-
mized channel attention mechanism model ECA is proposed,
which significantly reduces the complexity of the model
through cross-channel interaction of feature information and
the performance of the model has been raised simultaneously.

In order to deal with the problem that the human
motion recognition algorithm based on video images is
vulnerable to uncertainties in the environment in applica-
tions, and to overcome the limitation that traditional
machine learning algorithms require expert knowledge in
related fields for manual feature extraction, this paper
proposes an Inception-LSTM human motion recognition
algorithm that introduces a channel attention mechanism
based on inertial sensor signals. The proposed human
motion recognition algorithm automatically extracts spatial
features of inertial sensor data using Inception convolutional
structure, extracts temporal features of data using LSTM,
and introduces an improved ECA channel attention mecha-
nism module between the two feature extraction networks to
make the model focus more on the critical details of sensor
data features, suppress non-key information, and improve
motion recognition rate.

2. Model Construction of the Inception-LSTM
Algorithm for Introducing
Channel Attention

The proposed Inception-LSTM human motion recognition
algorithm, which introduces the channel attention mecha-
nism, extracts the features of sensor signals in three parts:
the spatial features of inertial sensor signals are extracted
using a spatial feature extraction network; the model con-
verges its attention on the key details of each action using
a modified ECA channel attention module; and the temporal
dependencies hidden in sensor signals are extracted using a
temporal feature extraction network.

2.1. Spatial Feature Extraction Network. The multiaxial data
output of acceleration and gyroscope of inertial sensors
allows them to collect rich spatial features in characterizing
human activities. And CNN have significant advantages in
extracting spatial features of signals. Each feature pixel in
the current neuron of a CNN is mapped to the previous
layer of neurons by a local receptive field and then obtained
by a nonlinear activation function. The calculation is shown
in Equation (1).
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where sði, jÞ is the feature pixel of the current neuron, σ is
the nonlinear activation function, w is the weight matrix of
the H × K convolution kernel, b is the bias, and x is the local
receptive field of the upper layer neuron. CNN represent the
data by convolution in order to abstract the features of the
signals. Generally, the performance of convolutional neural
network can be enhanced through increasing the depth
and node number of each layer in serial sequential manner,
but this brings two drawbacks: first, the larger network size
makes the model risk of overfitting. Second, the amount of
nodes in the network is too large, which makes the compu-
tational resources exponentially increase.

The Inception convolutional structure changes the serial
sequential connection between layers of the traditional con-
volutional model by distributing four different convolutional
kernels—one 1 × 1 convolution, one 1 × 1 convolution in
series with a 3× 3 convolution, one 1 × 1 convolution in
series with a 5 × 5 convolution, and one 3 × 3 maximum
pooling layer in series with a 1 × 1 convolution—on four dif-
ferent convolutional paths, and the input signals enter these
4 convolution paths in parallel in turn, and finally, the out-
puts of the 4 convolution results are stitched together and
used as the input of the poststage network. This parallel con-
volution method can extract the spatial features of the input
signal at different scales and give different weights to achieve
a good recognition effect.

The proposed model in this paper adopts the Inception
asymmetric convolution structure to construct a lightweight
sensor signal space feature extraction module. As shown in
Figure 1, from left to right, it is channel 1 to channel 4. Chan-
nel 1 performs two 1 × 1 convolution operations, similar to the
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fully connected operation in linear networks; channel 2 first
performs a 1 × 1 convolution operation, aiming to trim the
number of parameters and quicken the training process. Then,
one 1 × 3 asymmetric convolution operation is performed to
mine the feature information between acceleration and angu-
lar velocity of the inertial sensor and extract it into the feature
vector graph through the convolution kernel of the lateral vec-
tor. Finally, a 3 × 1 convolution operation is performed to get
the signal features in the same inertial axes of adjacent time
into the feature vector map through the convolution kernel
of longitudinal vectors; channel 3 first performs a 1 × 1 convo-
lution operation with the same effect as in channel 2, then a
1 × 5 lateral convolution operation to expand the interaxis
data features in a larger range into the feature map, and finally
a 5 × 1 vertical convolution operation to fuse the temporal fea-
tures of the data at a larger scale and add them to the feature
map; channel 4 first introduces a maximum pooling layer to
downsample the data samples composed of inertial sensor
data to reduce the data dimensionality and compress the fea-
tures and then performs a 1 × 1 convolution operation. The
four channels of the altered Inception structure are indepen-
dent of each other and process the data in parallel, and finally,
the data of the four channels are stitched together by channel
dimension. This asymmetric convolution structure can obtain
the spatial features of inertial sensor signals better.

2.2. Channel Attention Mechanism. In the purpose of improv-
ing the performance of the proposed algorithm for inertial
sensor signal recognition, the ECA channel attention mecha-
nism module is introduced in this paper. ECA is an optimized
channel attention mechanism model. Based on SENet, ECA
can realize a huge complexity reduction and performance
improvement of the model by a local cross channel interaction
strategy without no reduction of the dimension and self-
adaptive selection of 1D convolution kernel size. For a feature
graph input A ∈ RW×H×C with channel number C, height H,
and width W, ECA first performs a global average pooling to
compress the information of each channel independently to
obtain a feature strip with dimension 1 × 1 × C. Then, the

1D convolution and nonlinear transformation are performed
on the feature strip to obtain the attention weight ωi for each
channel Ai. The weight ωi for channel Ai focuses only on the
current channel Ai and its k neighboring channels and is cal-
culated as shown in Equation (2).
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where Ωk
i represents the set of k adjacent channels of A

j
i . The

1D convolution kernel size k is obtained by adaptive calcula-
tion of Equation (3), where γ = 2, b = 1.
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γ

+
b
γ
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Based on the original ECA module, the proposed algo-
rithm combines the inertial sensor signal to realize human
motion recognition, and a channel feature extraction module
is added in the later stage, as shown in Figure 2.

The algorithm put forward here is based on the original
ECA module and combines the application context of
human motion recognition with inertial sensor signals, add-
ing a channel feature extraction module to its back-end, as
shown in Figure 2.

The attention weights ωi obtained from the original ECA
module after the 1D convolution and nonlinear transforma-
tion are first arranged in descending order according to their
absolute value magnitudes to obtain the sequence ~ω and its
corresponding index. Then, the values of the first N
sequences in sequence ~ω and their index values are selected.
At the end of the multiplication of the original feature map
input A ∈ RW×H×C with the attention weights ωi, the corre-
sponding feature channels of the multiplication results are
extracted according to the indexes of the obtained values of
the first N sequences, and the output feature map A′ ∈
RW×H×N is finally obtained, where the parameter N is calcu-
lated by Equation (4).

N = k +
log2 Cð Þ

2

����
even

, ð4Þ

where even indicates that the result is taken as the closest
even number. By this extraction of the main feature chan-
nels, the feature utilization efficiency of the deep neural net-
work is improved, which in turn improves the recognition
performance of the network.

2.3. Temporal Feature Extraction Network. The signals gener-
ated by inertial sensors have strong temporal dependence
when the human body performs various action posture activ-
ities, and RNN has significant advantages in extracting tempo-
ral features of the signals. The temporal features extracting
network in the algorithm proposed in this paper consist of
LSTM. Unlike RNN, LSTM introduces the concepts of input
gate, forgetting gate, and output gate for realizing the update
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Figure 1: Inception asymmetric convolution structure.
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and output of memory states. Its basic neural network unit
structure is shown in Figure 3.

In Figure 3, c is the cell state, which is similar to an infor-
mation pipeline that runs through the entire operation cycle
of the LSTM. The three gate structures of the LSTM allow
for the removal and addition of information in the cell,
allowing for selective information flow. σ is a nonlinear acti-
vation function that maps the output value of the function
between 0 and 1, with 0 indicating no information passes
and 1 indicating all information passes. W is the weight
matrix, and b is the bias vector.

First, the forgetting gate determines what kind of mes-
sage will be discarded from the cell. The gate will read the
hidden stateht−1 of the prior moment with input Xt and out-
put a value between [0,1] and the cell state ct−1 of the prior
moment by the σ function to do the element multiplication
operation. The result of the outputf t of the forgetting gate is
illustrated in Equation (5).

f t = σ Wf × ht−1, Xt½ � + bf
� �

: ð5Þ

Second, the input gate determines what new messages
are to be stored in the cell state The output of the σ function
determines what values are to be updated and the tanh layer
builds a new candidate cell state vector ect to determine in
which way to add the output to the cell state. The output it
of the input gate, the candidate cell state vector ect , is updated
with the current cell state ctas shown in Equation (6) to
Equation (8).

it = σ Wi × ht−1, Xt½ � + bið Þ, ð6Þ

ect = tanh Wc × ht−1, Xt½ � + bcð Þ, ð7Þ

ct = f t × ct−1 + it × ect : ð8Þ
Finally, the output of the LSTM is obtained from the

output gate ot . The function σ determines which informa-
tion will be output. The current cell state ct is processed by
tanh, and by the output of the σ function is multiplied by
elements to obtain the final output ht of the LSTM. The out-
put ot of the output gate and the final output ht is illustrated
according to Equation (9) to Equation (10).

ot = σ Wo × ht−1, Xt½ � + boð Þ, ð9Þ

ht = ot × tanh ctð Þ: ð10Þ
The design of the three gates in the LSTM makes the

structure highly sensitive when dealing with data with tem-
poral dependencies. For the temporal feature extraction
module, its input at each time step is derived from the fea-
ture vector map extracted by the predecessor improved
ECA module. At each time step, the LSTM reads in the fea-
ture map input A′ ∈ RW×H×N line by line, and at time steps t1
to tn, a total of n data frames of the feature maps are read in.
The LSTM network is used to take into account the interac-
tion between the timing dimensions of the upstream and
downstream inertial sensor data frames and to better extract
the timing features.

In summary, the architecture of the proposed algorithm
in this paper is presented in Figure 4.

3. Experimental Design

3.1. Experimental Data Acquisition. In the purpose of verify-
ing the effectiveness of the proposed human motion recogni-
tion algorithm model, the recognition performance of the
algorithm model is tested on the public dataset PAMAP2
and the self-built motion posture dataset, respectively.

The PAMAP2 human activity monitoring dataset [21]
includes 18 different physical activity postures (e.g., cycling,
running, and walking). The dataset was obtained from nine
persons wearing three inertial measurement units, one at the
wrist of the subject’s dominant arm, one at the chest, and
one at the ankle of the subject’s dominant side of the body.
According to the experimental requirements, each person
was required to conduct 12 different activities, including sit-
ting, standing, walking up and down stairs, jumping rope,

Channel feature
extraction

GAP

1×1×C 1×1×C

Original ECA module

C

H
W

C
K

H

H

W

W
N

f

𝜔i

σ

Figure 2: Improved ECA module structure.

ct – 1

ht – 1

ct

ht

Xt

ft it t ot

tanh

tanhσ σ σ

Figure 3: Internal structure of LSTM.

4 Computational and Mathematical Methods in Medicine



and running. In addition, a number of random activities were
performed for each program, including cleaning the room,
driving, and working in front of the computer. Each inertial
measurement unit was used with a sampling frequency of
100 Hz, and at eachmoment, three inertial measurement units
collected acceleration, gyroscope, magnetometer, and body
temperature data from the different body parts of the subject’s
current activity. A total of 216,000 data from 9 subjects were
selected for the training. In the experiment, the dataset was
split into training dataset and test dataset based on 7 : 3.

In the purpose of further verifying recognition capability
and data robustness of the proposedmodel, a self-built human
activity dataset was constructed in this paper. Two inertial
measurement units are installed on the abdomen and the
upper side of the knee of the left leg of the experimental tester,
as shown in Figure 5. Each inertial measurement unit can out-
put 3-axis gyroscope and 3-axis acceleration signal of the cur-
rent activity of the tester. According to the experimental
requirements, the tester needs to complete seven prescribed
movements including sitting, standing, going upstairs, going
downstairs, walking, running, and cycling. The long-time
movements (sitting, standing, walking, running, and riding)
are recorded as a set of data every 3min, and the short-time
movements (going upstairs and downstairs) are recorded as
a set every 5 s. The sampling frequency of the inertial measure-
ment unit was set to 25Hz, and finally, 52,500 action data were
obtained. During the training process, the dataset is also split
into training dataset and test dataset based on 7 : 3.

3.2. Data Preprocessing. The preprocessing of the data is
mainly for the processing of the missing values of the data
and the segmentation of the data. For the missing values of
the data, this paper mainly uses the method of Equation
(11) for linear interpolation, where yi is the missing value
of the inertial sensor to be interpolated at the moment xi.

ys and yd are the normal output sensor values at both ends
of the missing value.

yi = ys +
yd − ys
xd − xs

xi − xsð Þ: ð11Þ

For data segmentation, an intelligent segmentation
approach was used in literature [22] to adaptively adapt to
human activity poses with different duration lengths, and
good action recognition results were achieved under differ-
ent conditions. However, the data segmentation method
with fixed window size has obvious advantages in terms of
computational efficiency, while it is easier to achieve end-
to-end processing. Therefore, this paper uses the fixed-
window-size strategy by referring to the approach in litera-
ture [23]. When the fixed window length is K , the data
sequence for the same inertial measurement cell at the i win-
dow time is as follows:
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Different window lengths K will have an impact on the
accuracy, and the relationship between several groups of
window lengths K and accuracy is obtained by comparing
the experiments as shown in Figure 6.

As can be seen from Figure 6, on the PAMAP2 dataset,
the accuracy can reach about 95% when K is 100. On the
self-built dataset, the accuracy can reach about 98% when
K is 50. Therefore, the model training process sets K to
100 and 50 on the PAMAP2 dataset and the self-built data-
set, respectively.

3.3. Model Training. The specific design parameters of the
proposed Inception-LSTM human motion recognition algo-
rithm that introduces the channel attention mechanism are
shown in Table 1. The model is based on the Windows plat-
form, running in the Anaconda environment of Python 3.6
kernel, and is obtained by CPU-accelerated training. During
the training process, the hyperparameters learning rate and
the number of training iteration are set to 0.001 and 200
respectively.

4. Experimental Results and Analysis

4.1. EvaluateMetrics. In this paper, the performance of the algo-
rithm model is measured by using the evaluation metrics of
average accuracy, precision, recall, and F1 value. The calculation
formulas are Equation (13) to Equation (16), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
, ð13Þ

Precision =
TP

TP + FP
, ð14Þ

Recall =
TP

TP + FN
, ð15Þ

F1 =
2 × Precision × Recall
Precision + Recall

, ð16Þ

where TP means true positive, indicating a positive sample
judged to be positive, TN means true negative, indicating a
negative sample judged to be negative, FPmeans false positive,
indicating a negative sample judged to be positive, and FN
means false negative, indicating a positive sample judged to
be negative.

4.2. Performance on the PAMAP2. In the purpose of observing
the performance of the proposed algorithm on the public data-
set PAMAP2, four algorithms, namely, the standard CNN net-

work, the LSTM network, the neural network without channel
attention mechanism, and the neural network with the origi-
nal ECA added in the proposed model, are also designed as
the control experiment of the proposed algorithm model in
this paper. Meanwhile, in the purpose of ensuring the fairness
of the comparison experiment, the parameters of the convolu-
tional layers of the standard CNN network are set to the serial
sequential connection form of the parameters of the Inception
convolutional structure in this model to ensure the consistent
scale of the convolutional layers. The parameters of the rest of
the neural network algorithms are set with the same values of
the proposedmodel. All adjustable hyperparameters were kept
consistent with the proposed model during the experiments.
The results are displayed in Figure 7.

As is displayed in Figure 7, the neural network without
ECA that combines the Inception parallel convolutional
structure with LSTM has significantly higher recognition
accuracy than the classical CNN with serial sequential con-
nections and the LSTM neural network alone. Meanwhile,
the model incorporating the channel attention mechanism
performs significantly better than the ordinary neural net-
work without the channel attention mechanism in terms of
recognition accuracy. In addition, the improved ECA model
with channel feature extraction proposed in this paper also
has a certain improvement in action recognition accuracy
compared with the unimproved original ECA.

The proposed algorithm in this paper is compared with
other algorithms in existing studies using the same PAMAP2
dataset, and the comparison results are displayed in Table 2.
As is seen in the table, the proposed Inception-LSTM human
action recognition algorithm that introduces a channel
attention mechanism improves 1.88% in recognition accu-
racy compared to the literature [19] that uses a dual atten-
tion mechanism and improves over the AttnSense model
proposed in the literature [24] and the layered convolutional
neural network model with local loss proposed in the litera-
ture [25] by 5.74% and 2.07%. Also, the increase in model
size is almost negligible compared to the neural network
without the use of ECA.

The confusion matrix of the algorithm proposed in this
paper is displayed in Figure 8. From the figure, it can be
observed that the recognition accuracy of the algorithm
can reach more than 90% for most of the actions on the
PAMAP2 dataset. Among them, the recognition accuracy
of rope jumping and running actions can reach 100%. For
some more confusing actions such as sitting, standing, and
ironing, the recognition effect is poor. Sitting actions are eas-
ily misclassified as standing actions and standing actions are
easily misclassified as ironing. The demarcation between
such static actions is not obvious, so they are often misclas-
sified by the model.

In order to visualize the model interpretability brought
by the channel attention mechanism, this paper provides a
visual analysis of channel attention weights to evaluate the
influence of various body parts on motion recognition when
the human body performs different motion postures, and
the results are displayed in Figure 9.

In Figure 9, the shades of the sensor colors at different
moments indicate how much attention the algorithm model
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pays to the current activity on that component of the sensor.
From the figure, it can be observed that the model proposed
in this paper pays more attention to the x-axis component of
the wrist sensor, the x-axis component of the chest sensor,
and the z-axis component of the ankle sensor during the
running activity. During the cycling activity, the model pays
much attention to the x-axis and z-axis components of the
ankle sensors. For the rope-jumping activity, the proposed
model pays more attention to the y-axis and z-axis compo-
nents of the wrist and the three axial components of the
ankle. During the ironing activity, the model pays more

attention to the x-axis and y-axis components at the wrist.
Thus, it can be observed that the algorithm incorporating
the channel attention mechanism is interpretable in terms
of action recognition results and is generally consistent with
the life intuition.

4.3. Performance on the Self-Built Dataset. The same four
neural network algorithms, standard CNN network, LSTM
network, neural network without channel attention mecha-
nism, and the proposed model with original ECA neural net-
work, were designed as control experiments on the self-built
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Figure 6: Influence of different window lengths on accuracy.

Table 1: The parameters of each layer of the proposed model.

Order number Layer position Size Number of parameters

1 The convolutional layer, 1_1 [64, 1, 1, 1] 128

2 The convolutional layer, 1_2 [64, 64, 1, 1] 4160

3 The convolutional layer, 2_1 [64, 1, 1, 1] 128

4 Convolutional layer 2_21 [128, 64, 1, 3] 24704

5 Convolutional layer 2_22 [128, 128, 3, 1] 49280

6 The convolutional layer, 3_1 [64, 1, 1, 1] 128

7 Convolutional layer: 3_21 [128, 64, 1, 5] 41088

8 Convolutional layer 3_22 [128, 128, 5, 1] 82048

9 Maximum pooling layer [64, 1, 3, 3] 0

10 Convolutional layer 4 [64, 1, 1, 1] 4160

11 Channel attention block [1, 5] 385

12 Feature extraction layer [9, 384, 1, 1] 3465

13 LSTM layer [64, 18] 5312

14 Fully connected layer [12, 64] 780
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dataset. The adjustable hyperparameters of the models and
the scale of the models are kept consistent with the proposed
model. The experimental results are displayed in Figure 10.

As it can be observed from Figure 10, the proposed
model has some improvement in accuracy over the model
using the original ECA. Meanwhile, the neural network
incorporating the channel attention mechanism is overall
more accurate and converges faster than the neural network
without the channel attention mechanism. The experimental
results and model sizes of the different models on the self-
built dataset are presented in Table 3.

The confusion matrix for the proposed model to identify
each action in the self-built dataset is displayed in Figure 11.

As can be observed from Figure 11, the proposedmodel can
maintain high accuracy in recognizing all seven motions on the
self-built dataset. Among them, the recognition accuracy of sit-
ting still, running, and cycling reaches 100%. Among them, the

motion patterns of going upstairs, going downstairs, and walk-
ing are more similar, so the degree of confusion is higher.

The visualization results of the attention weights of the
model are shown in Figure 12. As is shown in the figure,
under the condition that the two inertial measurement units
characterize the human activity posture, the channel atten-
tion model pays high attention to the signal component of
the abdominal sensor x-axis when the human body is in
the standing posture. During the upstairs activity, the chan-
nel attention model pays more attention to the signal com-
ponents of the x-axis and z-axis of the leg sensors, which is
consistent with the intuition of daily life.

5. Summary

In this paper, we propose the Inception-LSTM human
motion recognition algorithm with the introduction of
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Figure 7: Accuracy of each model on PAMAP2 dataset.

Table 2: Experimental results of different models on PAMAP2.

Algorithm model Accuracy Precision Recall F1 value Model size

Classics CNN 91.11% 91.41% 91.11% 91.26% 7.14M

LSTM 89.28% 89.69% 89.28% 89.49% 0.37M

Neural network without ECA 92.44% 92.93% 92.44% 92.68% 2.67M

Original ECA 93.91% 94.04% 93.91% 93.97% 2.68M

This article model 95.04% 95.06% 95.21% 95.13% 2.68M

Literature: [24] 89.30% — — — —

Literature: [25] 92.97% — — — —

Literature: [19] 93.16% — — — 3.51M
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channel attention mechanism, which has two main features.
One is to replace the traditional serial sequentially connected
convolutional neural network with the Inception parallel con-
volutional structure to fully extract the spatial features of iner-
tial sensors on multiple paths and scales and to join the LSTM
network to extract the temporal features of the signals. Second,
the channel attention mechanism ECA module is improved

and fused into the neural network model by combining the
inertial sensor signal characteristics to improve the recogni-
tion efficiency and resource utilization of the model. The pro-
posed algorithm is tested on the public dataset PAMAP2 and
the self-built dataset, and good recognition results are achieved
on both datasets. The accuracy of the proposed algorithm for
human motion recognition is higher than that of standard
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Figure 8: The confusion matrix of different motions of the proposed model on PAMAP2 dataset.
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Figure 9: Visualization of channel attention weights of different motions on PAMAP2 dataset.
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Figure 10: Accuracy of each model on self-built dataset.

Table 3: Experimental results of different models on self-built dataset.

Algorithm model Accuracy Precision Recall F1 value Model size

Classics CNN 95.71% 96.12% 95.71% 95.91% 2.53M

LSTM 95.02% 95.98% 95.02% 95.50% 0.34M

Neural network without ECA 96.77% 96.85% 96.77% 96.81% 1.21M

Original ECA 98.44% 98.54% 98.44% 98.49% 1.24M

The proposed model 98.81% 98.81% 98.81% 98.81% 1.24M
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Figure 11: The confusion matrix of different motions of the proposed model on self-built dataset.
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CNN, LSTM, and neural networkmodels without using atten-
tion mechanism. Also, the improved ECA module has
improved the recognition results compared with the original
ECAmodule. In addition, the visual analysis of channel atten-
tion weights for several typical actions shows that the action
recognition results of the proposed algorithmmodel are inter-
pretable and consistent with the living intuition.

Data Availability

The datasets used during the current study are available
from the corresponding author on reasonable request.
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