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SUMMARY

Many motor skills are learned by comparing ongoing behavior to internal performance 

benchmarks. Dopamine neurons encode performance error in behavioral paradigms where error 

is externally induced, but it remains unknown whether dopamine also signals the quality of 

natural performance fluctuations. Here, we record dopamine neurons in singing birds and 

examine how spontaneous dopamine spiking activity correlates with natural fluctuations in 

ongoing song. Antidromically identified basal ganglia-projecting dopamine neurons correlate with 

recent, and not future, song variations, consistent with a role in evaluation, not production. 

Furthermore, maximal dopamine spiking occurs at a single vocal target, consistent with either 

actively maintaining the existing song or shifting the song to a nearby form. These data show 

that spontaneous dopamine spiking can evaluate natural behavioral fluctuations unperturbed by 

experimental events such as cues or rewards.
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In brief

Learning and producing skilled behavior requires an internal measure of performance. Duffy 

et al. examine dopamine neurons’ relationship to natural song in singing birds. Spontaneous 

dopamine activity correlates with song fluctuations in a manner consistent with evaluation of 

natural behavioral variations, independent of external perturbations, cues, or rewards.

INTRODUCTION

Dopamine (DA) is associated with fluctuations in future movements as well as the outcomes 

of past ones. During spontaneous behavior, DA activity can be phasically activated before a 

movement (da Silva et al., 2018; Hamilos et al., 2020), or can ramp as an animal approaches 

reward (Hamid et al., 2016; Howe et al., 2013). DA neurons can also signal a reward 

prediction error (RPE) during reward seeking, where phasic signals represent the value of 

a current outcome relative to previous outcomes (Schultz et al., 1997). It remains poorly 

understood how spontaneous DA activity relates to natural fluctuations in behavior that are 

independent of experimentally induced rewards or perturbations.

Zebra finches provide a tractable model to study the role of DA in natural behavior. First, 

they sing with a significant amount of trial-to-trial variability, but the overall stereotypy of 

the song allows renditions to be accurately compared. Second, they have a discrete neural 

circuit (the song system) that includes a DA-basal ganglia (BG) loop (Figures 1A and 1B) 

that is necessary for song learning and maintenance (Brainard and Doupe, 2000; Hisey 
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et al., 2018; Hoffmann et al., 2016; Xiao et al., 2018). Third, BG projecting DA neurons 

signal performance prediction error (PPE) during singing: they exhibit pauses following 

worse-than-predicted outcomes caused by distorted auditory feedback (DAF), and they 

exhibit phasic bursts following better-than-predicted outcomes when predicted distortions do 

not occur (Figures 1A-1D) (Gadagkar et al., 2016). Yet one limitation of this study was that 

song quality was controlled with an external sound (DAF; Figure 1C), so it remains unclear 

if the DA system is simply using song timing to build expectations about an external event 

(DAF), or if it also evaluates the quality of natural fluctuations (Figure 1E), which would be 

necessary for natural song learning. Furthermore, this experimental paradigm did not test if 

DA activity was associated with upcoming syllables, consistent with a premotor signal.

To test DA’s role in natural behavior, we recorded from DA neurons in the ventral tegmental 

area (VTA) (Figure 1B), and examined how spiking activity correlated with natural song 

fluctuations (Figure 1E). First, if DA activity following externally distorted and undistorted 

song (Figure 1D) truly reflects a function of the DA system in performance evaluation, 

then DA activity should correlate with recent song fluctuations (Figure 1E). Second, DAF-

associated error signaling was previously only observed in a small subclass of “VTAerror” 

neurons, most of which projected to Area X, the BG nucleus of the song system. “VTAother” 

neurons were defined by the absence of an error signal during singing. We hypothesize that 

the VT Aerror population will carry a performance error signal for natural song (Figure 

1E), while the VTAother population will not. Thus, we ask in this analysis: Do VTA 

neuron activity patterns relate to fluctuations in natural song? If so, what is the structure 

of these relationships, and do they relate to a performance evaluation framework, a premotor 

framework, or both?

To answer these questions, we first parameterized natural song into a low-dimensional set 

of time-varying song features. We then agnostically fit the relationship between rendition-to-

rendition variations in song features and spike counts at local time steps in song across 

a range of song segment-spike window latencies and identified if and when song feature 

variations predicted spike counts. Finally, we characterized both the timing and the form of 

these predictive fits. We find that the activity of the VTAerror, but not the VTAother, neuronal 

population encodes fluctuations in natural song in a manner consistent with a performance 

evaluation signal. These results show that basal ganglia-projecting DA neurons may provide 

continuous evaluation of natural motor performance independent of external rewards or 

perturbations.

RESULTS

We performed our analysis on n = 22 VTAerror neurons and n = 23 VTAother neurons 

during uninterrupted, natural portions of singing. Regions of song selected for DAF were 

excluded from analysis. Classifications of neuron type were based on responses to the DAF 

paradigm described above. Neurons were recorded on single days during approximately 

20–80 consecutive renditions of song.
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A Gaussian process model approach reveals song-spike relationships

We sought to identify how VTA spiking varied with natural fluctuations in song syllables. 

To identify relationships between natural song fluctuations and VTA spiking, we chose 

an eight-dimensional, time-varying representation of song based on established song 

parameterizations, which have been shown in previous studies to relate to neural activity, 

vary over song development, and drive adult learning in DAF paradigms (Figure 2A; see 

STAR Methods) (Andalman and Fee, 2009; Deregnaucourt et al., 2004; Kao et al., 2005; 

Leblois et al., 2010; Ravbar et al., 2012; Sober and Brainard, 2009; Tchernichovski et al., 

2000; Tumer and Brainard, 2007; Woolley and Kao, 2014). For each neuron, we identified 

song syllables and binned both song feature values and spike counts in sliding windows 

across each syllable to search for relationships between song fluctuations and spike counts 

at different latencies (song window width = 35 ms; spike window width = 100 ms) (Figure 

2B; see STAR Methods). We combined all eight song features and binned spike counts into 

a single multi-dimensional Gaussian process (GP) regression model (two features shown for 

illustration) to quantify whether song feature fluctuations predicted spike counts (Figures 

2C, S1, and S2; see STAR Methods). This strategy flexibly identifies the most relevant 

dimensions of song variation within a single model. Specifically, we computed an r2 value 

for each model fit using leave-one-out cross-validation to assess how well variations in song 

features predicted spike counts (Figure 2C). Values of r2 > 0 indicate that song feature 

variations across renditions can predict spike counts; the larger the r2 value, the more 

predictive the song-spike relationship in the model. Finally, we fit the full model to many 

song-spike latencies and thus built a matrix of r2 values for each neuron’s response to song 

fluctuations, with each r2 value in the matrix representing one full model fit (one feature 

shown for illustration) between a song window-spike window pair (Figure 2D).

Timing of song-spike relationships for VTAerror neurons is consistent with an evaluative 
process

Using the GP model approach described above, we asked if significant relationships between 

natural song fluctuations and VTA neuron spiking exist and, if so, at what song-spike 

latencies they occur. If VTA spiking is predictive of upcoming syllable fluctuations in 

a premotor fashion, then significant relationships would be observed at negative lags. 

Alternatively, if VTA spiking is playing an evaluative function, then variations in spike 

counts should follow variations in syllable acoustic structure, and relationships should be 

observed at positive lags. Based on past work (Gadagkar et al., 2016), an evaluation signal 

is predicted to occur at a positive lag of ~50 ms with a duration range of 0–150 ms. 

Figure 3A shows an example VTAerror neuron’s song-spike relationship (the r2 matrix) 

for a single syllable. The y axis is the midpoint of each song window aligned to syllable 

onset (t = 0). The x axis is the latency, defined as the time between the song window 

midpoint and the spike window midpoint. Colored pixels in the r2 matrix indicate that song 

feature fluctuations predict spike counts (r2 > 0); grayscale pixels indicate that song feature 

fluctuations do not predict spike counts (r2 ≤ 0). The pink box indicates the song-spike 

latencies (0–150 ms) where we expect to see evaluation-like relationships based on the 

DAF experimental results (Figure 1D). We assessed the significance of finding predictive 

fits by shuffling entire spike trains relative to song renditions and refitting our model 

across all latencies and song windows (Figure 3A, bottom and S3; see STAR Methods). 
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This population method of shuffling the data preserves the underlying temporal correlation 

structure of song and spiking while randomizing the song-spike relationship and allowed us 

to assess the significance of the entire set of model fits and account for multiple comparisons 

(see STAR Methods). The bottom matrix in Figure 3A shows the r2 values from one such 

randomized shuffle of the same neuron’s activity patterns. Positive r2 values were found to 

be less frequent in the shuffled data (one-sided bootstrap test: p < 0.01; see STAR Methods).

We then analyzed the temporal relationship between song features and spiking by plotting 

the latency distribution for all song window-spike window pairs within the r2 matrix in 

which song features predicted spike counts (r2 > 0) (Figure 3B). The latencies of the 

predictive fits were clustered within the expected error evaluation range (0–150 ms) (Figure 

3B). In Figure 3B, the blue line indicates the song-spike latency distribution for which song 

fluctuations predict spike counts (r2 > 0) while the black line and gray shading are the mean 

and standard deviation of the same latency distributions across all randomized population 

shuffles. Figure 3C shows the result of the same analysis performed across all the VTAerror 

neurons in our dataset (n = 22). The true data showed a large peak within the expected PPE 

latency range (3.74 standard deviations from the mean, one-sided bootstrap test: p < 0.01; 

see STAR Methods). We found that song fluctuations are most predictive of spike counts 

0–100 ms after the song fluctuation occurs, consistent with a PPE-like signal based on 

our previous DAF experiments (Figure 1D). In addition, across the population of VTAerror 

neurons there were significantly more predictive fits within the PPE latency window than 

expected by chance (one-sided bootstrap test: p < 0.01; see STAR Methods). Thus, the 

timing and frequency of the predictive song-spike relationships was remarkably consistent 

with a PPE-like response to natural song variations.

We next performed the identical analysis on a population of VTAother neurons (n = 23), 

which did not show an error-like response in previous DAF experiments (Figure 1D). The 

number of predictive song-spike relationships from this population was also significantly 

larger than expected by chance (one-sided bootstrap test, p < 0.01; see STAR Methods). 

However, unlike the VTAerror neurons, the predictive relationships from this population did 

not cluster within the PPE latency range, nor did the variance of the distribution significantly 

deviate from the randomized latency distributions (one-sided bootstrap test: p = 0.21; 

Figure 3D; see STAR Methods). Thus, consistent with results from the DAF experiments 

(Figure 1D), only the responses of VTAerror, and not the non-error responsive VTAother, 

neuron populations were predicted by natural song fluctuations within the expected PPE 

latency range with significantly increased frequency. The same neurons that exhibited 

error responses to the DAF sound exhibited significant relationships with natural syllable 

fluctuations. Remarkably, both the DAF-induced error and the natural fluctuations were at a 

similar latency with respect to song.

The form of the predominant song-spike relationship for VTAerror neurons is consistent 
with song maintenance

The hypothesis that VTAerror neurons evaluate natural song fluctuations led to further 

predictions about the forms of these song-spike relationships. If a bird is trying to maintain 

the acoustic structure of a syllable, then typical variations should be followed by more spikes 
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and rare, outlying syllable variations should be followed by fewer spikes (Figure 4A, top 

left). Alternatively, if the bird is trying to modify a syllable, e.g., increase its pitch, then 

the relationship between syllable acoustic structure and spike counts should be directional: 

spike counts should peak at whatever shifted variant to which the bird aspires but is not yet 

consistently producing (Figure 4A, right panels). We did not expect PPE-like signals to have 

multiple maxima in a disruptive fit: we assumed there is a single “best” version of the song 

at each time step (Figure 4A, bottom left).

To test these possible outcomes, we characterized tuning curve shapes of song-spike 

relationships. For this analysis, we focused our attention on the subset of GP model fits 

that were predictive (r2 > 0). Within this subset, we further selected single-feature fits 

that were also predictive (r2 > 0 for the 1D feature fit). We selected this subset of song-

spike relationships because we are interested only in the tuning curves that might carry 

information about song. We re-fit all such song-spike relationships with a generalized linear 

model (GLM) using both linear (l-GLM) and linear and quadratic (q-GLM) features (Figure 

4B; see STAR Methods). We chose these models because the parameters can be used to 

directly quantify aspects of the tuning curve shapes. If the song-spike fit has a single peak, 

the spiking response is stabilizing, and the quadratic coefficient of the q-GLM is negative 

(Figure 4A, top left). If the song-spike fit has two peaks, the spiking response is disruptive, 

and the quadratic coefficient of the q-GLM is positive (Figure 4A, bottom left). If the 

song-spike fit is monotonic, the spiking response is directional, and the l-GLM (with only 

linear features) is the more appropriate model (Figure 4A, right panels). Figure 4C shows 

examples of predictive relationships between individual song features and spike counts 

along with all model fits (GP, q-GLM, and l-GLM). Each point on these plots represents the 

song feature value and the spike count for a single rendition. Specific models were better fits 

for some distributions than others. For example, in panel 4 (Figure 4C, fourth panel from 

left), the q-GLM produced the same model fit as the l-GLM because the quadratic term 

added no improvement to the fit, whereas in panel 3 (Figure 4C, third panel from left), the 

quadratic term was necessary to accurately follow the spiking response and thus the q-GLM 

resulted in a better fit than the l-GLM.

When the spiking response is either stabilizing or disruptive, the quadratic coefficient of 

the q-GLM distinguishes between these two response types by indicating the direction of 

curvature. We used the Akaike information criterion (ΔAIC) to compare the relative success 

of the q-GLM and the l-GLM and, from this, identified potential curvature in our data (see 

STAR Methods). ΔAIC introduces a penalty for added parameters in a model to account 

for possible overfitting. ΔAIC > 0 indicates that the quadratic model outperforms the linear 

model, considering both the likelihood of the model fit (the goodness of the fit) and the 

complexity of the model used (the number of parameters in the model). Because of this, 

we use ΔAIC > 0 as the threshold for potential curvature in a song feature-spike count fit. 

The larger the ΔAIC, the better the q-GLM fit relative to the l-GLM. In Figure 4D, each 

point represents a fit to a single song feature with an r2 > 0 within a multi-dimensional 

model fit with an r2 > 0 for the population of VTAerror neurons within the expected PPE 

latency range. When we identified potential curvature in the data (ΔAIC > 0), we found 

a significantly greater fraction (0.78) of q-GLM fits with negative quadratic coefficients, 

which indicates more stabilizing tuning curves than disruptive tuning curves (Figures 4D 
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and 4E; two-tailed bootstrap test, p < 0.02; see STAR Methods). Furthermore, when ΔAIC 

> 0 the fraction of stabilizing fits also increased (Figure 4E, inset). Thus, the predictive 

fits from the GP model had significantly more stabilizing tuning curves than disruptive 

when their shape had identified curvature, as we expect for a PPE signal with a single best 

outcome (Figure 4E). This finding is consistent with our hypothesis that a PPE signal should 

respond most strongly to a single best performance of song. The ΔAIC measure also allowed 

us to examine the fraction of tuning curves that are better fit by a linear versus quadratic 

model. The VTAerror population did not differ from chance in this fraction (fraction fits with 

ΔAIC > 0 = 0.43; two-tailed bootstrap test, p = 0.34; see STAR Methods), consistent with a 

PPE signal with both directional and stabilizing responses depending on the current level of 

song error.

DISCUSSION

Value judgments in the brain are necessary to drive appropriate changes in behavior during 

learning. Using experimentally constrained tasks with external rewards, previous studies 

have found that DA neurons in VTA can encode a key component of value judgment: the 

mismatch between expected and actual reward outcomes, the RPE (Schultz et al., 1997). 

However, extending these findings to natural behavior and intrinsic reward has been a 

challenge. Here, we made use of a novel opportunity to use an experimental context to 

partition songbird VTA neurons into error and non-error classes and analyze their spiking 

responses in the context of a natural behavior (Gadagkar et al., 2016). We compared natural 

song fluctuations at a local, within-syllable scale with variations in spike counts of VTA 

neurons. We developed a GP regression analysis to quantify the non-stationary spiking 

response to variations in performance at different points in song and with different temporal 

relationships to song. We found evidence that VTA DA neurons’ activity patterns correlate 

with variations in natural song in a manner consistent with performance evaluation: both the 

timing and tuning properties of the DA response was consistent with a PPE-like response. 

This finding corroborates and extends complementary discoveries of RPE signals emerging 

from mammalian DA neurons in VTA in experimentally imposed tasks. Previous studies 

have shown the significance of midbrain DA in song learning and maintenance in artificial 

manipulations of the circuit and behavior: 6-OHDA lesions disrupt DAF-induced shifts in 

pitch (Hoffmann et al., 2016). Optogenetic manipulations of VTA inputs to Area X induce 

changes in song consistent with a reinforcement paradigm (Hisey et al., 2018; Xiao et al., 

2018). While these experiments implicated DA in song evaluation, our work directly shows 

that VTA inputs to Area X are active in a manner consistent with song evaluation during 

natural behavior. We did not find significant temporal relationships between DA and song 

fluctuations consistent with a premotor signal as has been observed in previous studies of 

DA (Barter et al., 2015; Engelhard et al., 2019). Our results provide direct evidence that 

DA neurons in VTA respond to fluctuations in natural behavior in a manner consistent with 

evaluation.

While, as a population, the non-error VTAother neuron activity did not relate to song 

fluctuations in a manner consistent with a PPE signal, many neurons exhibited correlated 

relationships to song (Chen et al., 2021). These findings are consistent with previous studies 

in mammals, which found that both DA and non-DA neurons in VTA contribute to an RPE 
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calculation and that elements of the RPE signal are computed, in part, locally within VTA 

(Cohen et al., 2012; Dobi et al., 2010; Tian et al., 2016; Wood et al., 2017). Correlations 

with song variations in this population could represent components of the PPE calculation.

This project uses the structure of an experimentally grounded characterization of individual 

neurons’ response to song-triggered DAF to analyze the same neurons during natural 

behavior. The connection to an existing experiment (Gadagkar et al., 2016) as well as to 

a reinforcement learning framework (Sutton and Barto, 1998) anchors our interpretations 

of natural behavior in a constrained laboratory paradigm and theory. The unusually 

high stereotypy of the natural behavior we consider, zebra finch song, allows reasonable 

inferences to be made both in the experimental and natural context about the behavior of the 

bird and a reasonable way to characterize and align a complex, natural behavior. We found 

a parallel relationship, including a striking temporal correspondence, between the VTAerror 

neuron activity in experimental and natural contexts that corroborates the experimental 

finding that VTAerror neurons encode time step-specific PPEs in song. Our analysis of 

natural song addresses the critique that the DAF experimental paradigm is aversive rather 

than perturbative and thus qualitatively different from natural song evaluation. A frequent 

debate in neuroscience is whether artificial behavioral paradigms serve as true building 

blocks for understanding neural activity in complex, freely behaving contexts, or whether 

they represent a different, overly simplified context that will not extrapolate to natural 

behavior. This experimentally guided study of natural behavior is a fruitful direction that 

permits the control of experimental contexts and the complexity of natural contexts to 

interact and build upon one another.

Limitations of the study

Two important predictions from these PPE-like signals we find in DA VTA neurons are 

that (1) future song renditions will shift toward song variations that correlate with the peak 

response in the DA neurons, and that (2) this shift will be accompanied by a decrease in 

the PPE peak response. We could not address these predictions here because of the limited 

duration of our single recording sessions. This will be an important direction for future 

work and will help disambiguate the role of the VTA DA responses from other possible 

relationships to song. We chose a pre-defined set of song features (n = 8) that have been 

shown to represent biologically relevant song variations in previous studies, because we 

focused on single sessions with limited data. Future work could apply more flexible, non-

parametric dimensionality reduction methods using more song renditions to better identify 

VTA’s relationship to song features that are most modulated by the bird at different points 

in song (Goffinet et al., 2021; Kollmorgen et al., 2020). Because of the size of our dataset 

and the subtlety of the natural behavior, our study draws conclusions at the population level. 

Populations of neurons were defined by their responses to the DAF experiments reported 

in Gadagkar et al. (2016). If, in future work, recordings of single cells could be carried out 

for longer periods of time, this would increase the signal-to-noise ratio and allow single-cell 

analyses of response significance. Finally, although we have only focused on natural song 

in this analysis and excluded distorted song regions, our dataset did not include a control 

in which songs were not targeted for distortion. Future work could apply our analysis 

techniques to recordings made with no distortions to any parts of song.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by Vikram Gadagkar (vikram.gadagkar@columbia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• All original code has been deposited at Figshare and is publicly available as of 

the date of publication. The DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects were 19 adult male zebra finches, 74–300 days old, singing undirected song. 

Male zebra finches (Taeniopygia guttata) used in this study were obtained from Magnolia 

Bird Farm in Anaheim, CA and kept on a 12h:12h light-dark cycle with ad-libitum access 

to food. All experiments were conducted in accordance with NIH guidelines and were 

approved by the Cornell Institutional Animal Care and Use Committee. Before implant 

surgeries, each bird was anesthetized with isoflurane. A bipolar stimulation electrode was 

implanted into Area X at previously established coordinates (+5.6A, +1.5L relative to 

lambda and 2.65 ventral relative to pial surface; head angle 20 degrees). Intraoperatively 

in each bird, antidromic methods were applied to locate the precise part of VTA 

containing VTAx neurons. Next, custom made, plastic printed microdrives carrying an 

accelerometer, linear actuator, and homemade electrode arrays (5 electrodes, 3–5 MOhms, 

microprobes.com) were implanted into the region of VTA containing VTAx neurons.

METHOD DETAILS

Syllable-targeted distorted auditory feedback—Detailed description of all aspects 

of the distorted auditory feedback (DAF) experiments is described elsewhere (Gadagkar et 

al., 2016). Descriptions of experimental details relevant to this study are presented here. 

Postoperative birds were put in a sound isolation chamber. The chamber was equipped 

with a microphone and two speakers which provided DAF. To carry out targeted DAF, the 

microphone signal was analyzed every 2.5 ms using custom Labview software. Specific 

syllables were targeted either by detecting a characteristic spectral feature in the previous 

syllable (using Butterworth band-pass filters) or by identifying an inter-onset interval (onset 

time of previous syllable to onset time of target syllable) using the sound amplitude (this 

procedure has been previously described (Ali et al., 2013; Hamaguchi et al., 2014; Tumer 

and Brainard, 2007)). A delay between 10-200 ms was applied between the detected song 

interval and the target time.
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To help ensure that DAF would not be perceived as an aversive stimulus, the DAF sound 

was generated with the same amplitude and spectral content as normal zebra finch song. 

For broadband DAF (n = 16 birds), DAF was a broadband sound, band passed at 1.5-8kHz 

in order to be in the same spectral range of zebra finch song (Andalman and Fee, 2009). 

For displaced syllable DAF (n = 10 birds), DAF was a segment of one of the bird’s own 

syllables displaced in the song. For both types of DAF, the amplitude was measured with a 

decibel meter (CEM DT-85A) and kept at less than 90 dB, which is the average maximum 

loudness of zebra finch song (Mandelblat-Cerf et al., 2014). This ensured that DAF was not 

an unusually loud sound for the bird; the distorted part of the song was always softer than 

the loudest parts of the song.

Target time in the song was defined as the median DAF onset time across renditions of 

target syllables; jitter of the target time in each bird was defined as the standard deviation of 

the distribution of DAF onset times relative to the target syllable onset. Syllable truncations 

following DAF events were rare and were excluded from analysis.

Electrophysiology—Neural signals were band pass filtered (0.25-15 kHz) in homemade 

analog circuits and obtained at 40 kHz using custom Matlab software. Single neurons were 

identified as Area X-projecting (VTAx) by antidromic identification (stimulation intensities 

50–400 μA, 200 μs on the bipolar stimulation electrode in Area X). All neurons identified 

as VTAx were additionally validated by antidromic collision testing. Spike widths were 

calculated as the trough-to-peak interval in the mean spike waveform.

Histological verification of electrode location was performed after each experiment by 

making small, electrolytic lesions (30uA for 60 s) with the recording electrodes. Histological 

confirmation of reference lesions among dopamine neurons was then made by first fixing 

the brains, then cutting the brains into 100 um thick sagittal sections and immuno-staining 

them with tyrosine hydroxylase. Anatomical location was used to classify neurons as VTA, 

and antidromic identification and collision testing was used to classify VTAx neurons. Note 

that antidromic testing can produce false negatives, so it is possible that non-antidromically 

identified VTAerror neurons in fact project to Area X.

Spike sorting and analyzing responses to distorted auditory feedback—Offline 

spike sorting was performed using custom Matlab software. Firing rate histograms were 

constructed with 25 ms bins and smoothed with a 3-bin moving average. To calculate 

whether error responses were significant (Figure 1D), spiking activity within ±1 second 

relative to target onset was binned in a 30 ms, moving window in 2 ms steps. Each bin 

after the target was tested against the bins in the entire previous 1 second using a z-test 

(Mandelblat-Cerf et al., 2014). Response onset (latency) was defined as the first bin for 

which the next 3 consecutive bins (6 ms) were significantly different from the previous 

1 second of activity (z-test, p < 0.05); response offset was defined as the first bin after 

response onset for which the next 7 consecutive bins (14 ms) did not differ from the prior 

activity (p > 0.05, z-test); the response onset and offset were needed to set the maximum 

(undistorted) or minimum (distorted) response after target time.

Duffy et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Parameterizing song—We used open-source MATLAB software, Sound Analysis Pro 

2011 (SAP 2011), to assemble spectrograms and to define and extract song features. Given 

the limited size of our data, we were unable to use an unsupervised method to determine 

relevant song features. We therefore used an existing feature set in SAP 2011, a customized 

software package for analysis of animal communication developed to study bird song 

(Tchernichovski et al., 2000) for our parameterization. These features have been previously 

used to connect song variations to spiking activity or neuromodulator concentrations (Kao 

et al., 2005; Leblois et al., 2010; Woolley and Kao, 2014), to study variation in song 

over development (Deregnaucourt et al., 2004; Lipkind and Tchernichovski, 2011; Ravbar 

et al., 2012) and to drive adult learning in DAF paradigms (Andalman and Fee, 2009; 

Sober and Brainard, 2009; Tumer and Brainard, 2007). Therefore, we can use this form 

of dimensionality reduction knowing that these features are behaviorally relevant to song 

variation in other contexts. The song features used were Wiener entropy, pitch, goodness of 

pitch, amplitude, amplitude modulation (AM), frequency modulation (FM), mean frequency, 

and aperiodicity. These features create an eight-dimensional representation of song at each 

time-step. We further applied a moving-average filter (35 ms) to smooth the feature signals 

in time and sampled the smoothed value every 5 ms across song.

Aligning syllables across renditions—To compare song across renditions, syllables 

were classified using custom Matlab code (Gadagkar et al., 2016). Groups of unique 

syllables were labelled alphabetically as ‘a’, ‘b’, ‘c’ etc. depending on their order within 

a rendition. The number of unique syllables each bird sings differs bird-to-bird from 3-7 

syllables. We identified syllable onsets and offsets across renditions for every syllable set 

for which there were at least 15 renditions of that syllable. We used an amplitude threshold 

chosen to match the amplitude variance of that syllable. All alignments were then checked 

by eye. When alignment was ambiguous by eye, renditions were excluded from analysis.

All syllable types (i.e. ‘a’ or ‘b’ etc.) were isolated and aligned across renditions by syllable 

onset times. Individual syllable types have a stereotyped, consistent duration; however, 

there is slight variation of this duration from rendition-to-rendition. In order to make sure 

that small differences in syllable durations were not misaligning local syllable features at 

the later portions of the syllable, we linearly time-warped the feature wave forms of each 

syllable so that they all lasted the median duration of that syllable type (Kao et al., 2008).

Parameterizing and aligning spiking activity—Spike sorting was performed offline 

using custom MATLAB software (Gadagkar et al., 2016). For each syllable, we included 

the spike train ± 500 ms around the syllable onset. To align spiking activity to the song 

features, we first applied the same linear time-warping map to the spike times that we used 

to align syllables for each rendition (Kao et al., 2008). In all cases, we applied this map to 

the time window in which the syllable occurred. When possible, we built a piece-wise linear 

time warping map using syllable boundaries in surrounding syllables. In the time windows 

where there was no song with which to generate a time warping map, we left the spike train 

un-warped.
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We binned spike counts within a sliding window (100 ms) across the 1000 ms length of 

spike train we considered for each syllable. We selected this window based on the firing rate 

of the VTAerror neurons (mean firing rate = 13 ± 5 Hz).

Fitting spikes to song with a Gaussian process regression—The goal of our 

analysis is to quantify non-stationary spiking responses to a time-varying sensory signal, 

with the following characteristics. First, if VTA neuron activity encodes prediction error 

responses to song fluctuations, these responses would be specific to the time in song; an 

identical vocalization occurring at the beginning of the song might elicit a very different 

response than at the middle. Second, the relevant dimensions of the signal space could 

vary throughout the song; thus, different parameterizations of the song might provide better, 

low-dimensional representations of error-relevant song variation at different song time-steps. 

Third, the form of a PPE-like tuning curve could also vary across the song.

Towards this goal, we used a regression approach to determine if spike counts are related to 

the variation in song (Aljadeff et al., 2016). The relationship between spike counts and song 

is likely non-linear and related to a variable number of features depending on the point in 

song. To address this, we used a non-parametric Gaussian process (GP) regression to fit the 

relationship between our eight song features and spike counts within single time windows 

(Williams and Rasmussen, 2006).

There are multiple sources of model uncertainty in this task: it is unclear which and how 

many features to use at a given point in song. Furthermore, the prediction of the model 

depends heavily on which features are used. To address this uncertainty, we used a Bayesian 

model averaging approach to determine the predicted spike count wherein we integrated 

over all possible feature combinations and weighted their predictions according to their 

posterior probability given the observed spike counts (Hoeting et al., 1998).

For each neuron, in every non-target (distorted or undistorted) syllable for which there were 

N ≥ 15 renditions, we sampled the smoothed song features every 5 ms across the syllable 

and sampled spike counts in 100 ms windows every 10 ms across 1s of spike train centered 

around syllable onset. We fit the multi-dimensional GP model across all song segment-spike 

bin pairs and generated song-spike relationships at many time latencies. We additionally fit 

a GP model using each feature individually. For all of these fits we computed the r2 value 

(coefficient of determination).

Construction of the Gaussian process regression model—We modeled the 

relationship between the set of N, z-scored song features on a single rendition i, xi, and 

the spike counts on that given rendition, yi, in single time windows (e.g. the song feature 

values 20 ms after syllable onset and the spike count in a 100 ms window, 75 ms after 

syllable onset). We used a non-parametric Gaussian process (GP) regression to fit the 

relationship between the eight song features and spike counts across song and spike window 

pairs (Williams and Rasmussen, 2006). We used a Bayesian model averaging approach 

to combine a weighted average of GP regressions using all subsets of song features into 

a single model prediction. Note that the full GP model can result in worse predictions 

than individual features since the full model takes a weighted average across all feature 
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combinations. While the model learns to shrink away unrelated features, the model won’t 

completely shrink features (exactly zero weights) with finite data due to remaining posterior 

uncertainty. If only one feature is truly related to the spiking activity, this will impact the 

final weighted average. This extra stringency enables us to produce predictive fits across 

each fold in our cross-validation procedure using a single model (the GP model), without 

requiring a complicated cross-validation procedure to coherently select a single best feature 

model and correctly evaluate withheld performance. We therefore expect that occasionally 

a single feature model will do better than the full-feature model in the limited data regime, 

but without knowing which features to select a priori the single-feature fits may be overly 

optimistic due to the problem of multiple comparisons.

We selected a subset of features, M, for a single GP regression, where feature is indexed by 

n = 1,2, …, N such that ℳ ⊆ {1, 2, …N}, ℳ ≠ 0, N = 8. The GP regression model for a single 

set of ℳ is:

yi ∣ fℳ ∼ N(fℳ(xi, ℳ), σ2) (Equation 1)

fℳ( ⋅ ) ∼ GP(μ, ω2κ(ℳ)(x, x′)) (Equation 2)

where f is a function that relates song features to spike rate and κ is the covariance function 

and defines how spike counts will correlate with one another in feature space. We used the 

commonly selected kernel function for κ,

κ(M)(x, x′) = exp − ‖xℳ − x′ℳ‖2

2I2 . (Equation 3)

ω2 is the GP variance term and specifies how strongly the spike counts vary as a function 

of the song features. σ2 is the variance term that describes noise in the spike count (i.e. the 

variation of spike counts at a single point in song feature space). The length scale, l, sets 

how close points must be in feature space to have correlated spike counts. In order to reduce 

computational complexity, we set l = 0.5, for all model fits and z-scored individual song 

features at each time step.

Although we do not observe f directly, the GP framework allows us to compute the 

marginal likelihood of the data with respect to the model parameters. The likelihood of 

all T renditions of spike count-song segment pairs is:

p y1:T ∣ x1:T , ℳ, I, σ2, ω2, μ = N [y1, y2, …, yT]T; [μ, μ, …, μ]T,
ω2K(ℳ) + σ2IT ;

(Equation 4)

K(ℳ) =
κ(ℳ)(x1, x1) ⋯ κ(ℳ)(x1, xT)

⋮ ⋱ ⋮
κ(ℳ)(xT , x1) ⋯ κ(ℳ)(xT , xT)

, (Equation 5)
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where IT is the identity matrix of dimension T.

The prediction mean-squared error for the GP model is:

MSEloo
(GP ) = 1

T ∑
i = 1

T
(yi − yi)2

(Equation 6)

yi = E yi ∣ x ∕ i, y ∕ i, xi (Equation 7)

where yi is the predicted spike count from the model for rendition i, and x/i and y/i are the 

song features and spike counts for all renditions except for the ith rendition.

We determined the predicted spike count by applying a Bayesian model averaging approach. 

We integrated over all possible values of ℳ and then weighted their predictions based on 

their posterior probability given observed spike counts (Hoeting et al., 1998):

E yi x ∕ i, y ∕ i, xi = ∑
ℳ ⊆ {1, 2, …N}, ℳ ≠ 0

∫
0

∞

E

yi ℳ, r, x ∕ i, y ∕ i, xi p ℳ, r x ∕ i, y ∕ i dr,

(Equation 8)

where r = α2/ω2 is the ratio of the GP variance to the observation noise. We then integrated 

over all possible values of ℳ and weighted their predictions according to their posterior 

probability given the observed spike counts.

E yi μ, ℳ, r, x ∕ i, y ∕ i, xi = K ∕ i, i
(ℳ)T K ∕ i, ∕ i

(ℳ) + rI(T − 1)
−1 y ∕ i − μ

+ μ .
(Equation 9)

In this way, we incorporated all possible combinations of song features into a single model 

prediction for each song-spike count pair. We re-parameterized (σ2, ω2) to (ψ2, r2) where ψ2 

is the total variance:

ψ2 = σ2 + ω2, (Equation 10)

σ2 = r
r + 1ψ2, ω2 = ψ2

r + 1 (Equation 11)

And evaluated the posterior over model parameters using Bayes’ rule:

p ℳ, r x ∕ i, y ∕ i

= p y ∕ i ∣ r, ℳ, x ∕ i p(ℳ, r)
∑ℳ∗ ⊆ {1, 2, …N} p(ℳ∗)∫0

∞p y ∕ i ∣ r∗, ℳ∗, x ∕ i p(ℳ∗, r∗)dP (r∗)
. (Equation 12)
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We again applied Bayes’ rule to compute the likelihood term in Equation 12:

p y ∕ i ∣ r, ℳ, x ∕ i = p y ∕ i ∣ μ, ψ2, r, ℳ, x ∕ i p(μ, ψ2)
p(μ, ψ2 ∣ r, μ, x ∕ i, ψ2, ℳ)

. (Equation 13)

The likelihood term is computed as in Equation 4. We again used Bayes’ rule to compute the 

posterior over μ and ψ2 :

p(μ, ψ2 ∣ r, μ, x ∕ i, ψ2, ℳ) ∝ p y ∕ i ∣ μ, ψ2, r, ℳ, x ∕ i p(μ, ψ2) . (Equation 14)

We placed a conjugate normal-inverse gamma prior over μ and ψ2 :

(μ, ψ2) ∼ N_Γ−1(μ0, λ0, α0, β0) (Equation 15)

where,

μ0 = 0; λ0 = 1; α0 = 10; β0 = α0 + 1 . (Equation 16)

Thus,

(μ, ψ2 ∣ r, μ, ψ2, ℳ, x ∕ i) ∼ N_Γ−1 μpost
(i) , λpost

(i) , αpost
(i) , βpost

(i) , (Equation 17)

where,

μpost
(i) = b(i)

a(i) , (Equation 18)

λpost
(i) = a(i), (Equation 19)

αpost
(i) = α0 + T − 1

2 , (Equation 20)

βpost
(i) = 1

2 c(i) − b(i)

a(i) , (Equation 21)

a(i) = (r + 1)1T K ∕ i, ∕ i
(ℳ) + rI −11 + λ0, (Equation 22)

b(i) = (r + 1)1T K ∕ i, ∕ i
(ℳ) + rI −1y ∕ i, (Equation 23)
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c(i) = (r + 1)1T K ∕ i, ∕ i
(ℳ) + rI −1y ∕ i + 2β0, (Equation 24)

where 1 is a vector of ones. With this, we compute the terms in Equation 13.

The integral over Equation 12 is over one dimension and therefore tractable to compute. We 

selected a discrete distribution for the prior P(r) to improve computation speed:

P (r) = Uniform({3, 4, 5.67, 9}), (Equation 25)

such that the GP model could account for 25%, 20%, 15% or 10% of the total variance.

We set a truncated binomial prior over the number of included features that privileged 

models with fewer features (i.e., sparse models):

p(ℳ) = 1
1 − (1 − p)N

N
∣ ℳ ∣ p ∣ ℳ ∣ (1 − p)N − ∣ ℳ ∣ . (Equation 26)

We set p = 0.1 such that approximately 2/3 of the prior probability mass rests on single-

feature models. We could integrate over a sparse prior in our model, rather than a shrinkage 

prior such as the Lasso, because we considered only a small (N = 8) set of features (Park and 

Casella, 2012). Using this normal inverse-gamma description of the posterior, we can then 

compute the prediction of yi, given ℳ and r:

E yi ℳ, r, x ∕ i, y ∕ i, xi = E E yi μ, ℳ, r, x ∕ i, y ∕ i, xi ℳ, r, x ∕ i,
y ∕ i, xi , (Equation 27)

= K ∕ i, i
(ℳ)T K ∕ i, ∕ i

(ℳ) + rI(T − 1)
−1 y ∕ i − μpost

(i) + μpost
(i) . (Equation 28)

We then insert Equation 28 and Equation 12 into Equation 8 to obtain the prediction of yi.

CONSTRUCTION OF THE LATENCY DISTRIBUTION

We defined the latency distribution as the set of all latencies between spike bins and song 

feature windows in which there was a predictive relationship (r2 > 0) within the GP model.

CHARACTERIZING TUNING CURVES OF CELL RESPONSES

The GP model is flexible: it will fit any relationship between the independent and dependent 

variables and additionally is computationally efficient. However, the GP model provides no 

easily interpretable means of characterizing the shape of the fit. To characterize the form of 

the spike-count to song relationships across many fits, we needed an automated method to 

categorize the shapes of the tuning curves.

To do this, we applied a generalized linear model (GLM) with (q-GLM) and without 

(l-GLM) a quadratic transformation of the song features (Park et al., 2013). A GLM is 
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comprised of a stimulus filter, an invertible non-linearity (the link function) and a stochastic 

exponential non-linearity, such as a Poisson process:

y ∣ x ∼ Poiss(f(Q(x))) (Equation 29)

Q(x) = ax2 + bx + c, (Equation 30)

where y is the spike count, x is the stimulus, f is the inverse link function and Q is a 

quadratic function of x with coefficients a, b, c. We considered song features separately in 

this tuning curve analysis, so dim (x) = 1, and the quadratic coefficients were scalars (a, b, 

c). We chose the link function to be an exponential and the noise process to be Poisson. We 

fit the quadratic coefficients by maximizing the log-likelihood:

log P (Y ∣ X, a, b, c) = ∑
i = 1

N
[ − exp(Q(xi)) + a ∗ yixi2 + b ∗ yixi + c − log

(yi!)],
(Equation 31)

We maximized the log-likelihood numerically using conjugate gradient methods. The sign 

of the quadratic coefficient, a, of this model specifies whether the data is better fit by an 

upwards-facing, quadratic basis in which the data is double-peaked, or a downwards-facing 

quadratic basis in which the data is single-peaked. We compared this model to a nested 

model fit where the quadratic term is set to zero (l-GLM).

We compared the performance of the two models using the Akaike information criterion 

(AIC) (Akaike, 1974). The AIC metric is defined as:

AIC = 2k − 2 lnℒ, (Equation 32)

ℒ = argmaxa, b, c log P (Y ∣ X, a, b, c), (Equation 33)

where ℒ is the maximum of the log-likelihood function for a given model and k is the 

number of estimated parameters in the model. This metric incorporates both goodness of 

fit and model complexity. A lower AIC metric indicates better performance. Therefore, the 

difference in the AIC metrics of two models denotes the relative success of one model 

over another, adjusting for differences in model complexity (Akaike, 1974; Raftery, 1995). 

We can then ask, when the quadratic model (q-GLM) is a better fit than the linear model 

(l-GLM), does the tuning curve form of spike counts to song features have a positive or 

negative curvature?

We compared the q-GLM and l-GLM models on all GP model fits with r2>0 for all song 

features which individually had predictive fits within the multi-dimensional model. In this 

model comparison, ΔAIC = −2 is the lower bound of the metric and indicates that the 

quadratic term of the q-GLM = 0. Thus, no improvement in fit was gained by the quadratic 

complexity. ΔAIC >0 indicates that the q-GLM outperforms the l-GLM, taking into account 

both the goodness of fit and the added complexity of the extra model parameter. We used 
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this comparison to identify potential curvature in the spike-song feature relationship. Note, 

that when the AIC metric is used in model selection, ΔAIC >10 is the standard threshold for 

significance. However, we are using this metric not to make a model selection, but rather to 

identify instances of possible curvature in the data. Thus, we use ΔAIC >0 as our threshold. 

In our data at ΔAIC >10, 90% of our fits have a negative, quadratic coefficient. However, 

because our data is noisy, this accounts for only 2% of our data. We calculated the fraction 

of fits with the quadratic coefficient, a <0, as a function of the ΔAIC metric:

ΔAIC ≡ 2klinear − 2 lnℒlinear − 2kquad + 2 lnℒquad . (Equation 34)

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluating the Gaussian process model performance—To evaluate the GP model 

performance we estimated the mean-squared prediction error for new observations using a 

leave-one-out cross validation method as in (Vehtari et al., 2017):

MSEloo
(GP ) = 1

T ∑
i = 1

T
(yi − yi)2, (Equation 35)

yi = E yi x ∕ i, y ∕ i, xi , (Equation 36)

where yi is the model prediction spike count for rendition ‘i’, and x/i and y/i are the song 

features and spike counts of all renditions excluding the ith rendition. We then compared the 

GP model to a model with constant mean firing rate equal to the mean spike count over all 

renditions excluding the ith rendition:

y(i) ∼ N(α, τ2) . (Equation 37)

The predictive mean-squared error of this model is:

MSEloo
(null) = 1

T ∑
i = 1

T
yi − y ∕ i

2
(Equation 38)

where,

y ∕ i = 1
T − 1 ∑

j ≠ i
yj . (Equation 39)

The cross-validated r2 value is:

r2 = 1 −
MSEloo

(GP )

MSEloo
(null) . (Equation 40)
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An r2 > 0 indicates that the model predicts new observations better than simply using the 

mean to predict new observations. The maximum value the r2 can take is one—this indicates 

perfect model prediction and, in practice, is never reached. The r2 value is our measure of 

model performance.

Bootstrapping to assess population-level significance—Evaluating the 

significance of the model predictions must be done on a population level for this analysis. 

We computed model fits to hundreds of song segment-spike count pairs for each syllable. 

Simply by chance, some of these fits would generate a predictive r2> 0 value.

In addition, spike-song pairs are correlated, not just because spike counts and song segment 

windows overlap but also because of possible underlying correlations in the song and 

spike fluctuations across the song. To address this, we randomized the relationship between 

full spike trains and song renditions and then re-fit our model on the randomized, spike 

count-song segment pairs. By leaving the timing of the song and spiking activity intact and 

only randomizing the relationship between them, we constructed a randomized population 

of fits for each cell-syllable pair, which retained whatever underlying temporal structure was 

present in the spike trains and song (Tusher et al., 2001). We then repeated this process 100 

times for the VTAerror cell population and 100 times for the VTAother cell population.

From this distribution of coherently randomized cell sets, we computed bootstrap test, p 

value assessments of the r2 values of the individual spike count-song segment model fits as 

well as on population measures of significance in the VTAerror and VTAother cell populations 

independently. We assessed four population measures:

The number of predictive signals across the whole cell population: An r2>0 indicates 

that the model predicts the data better than an estimate based solely on the mean spike count, 

and we label this a ‘predictive signal’. We therefore computed the significance of the total 

number of r2>0 song segment-spike count fits within the PPE latency window for both the 

VTAerror (p < 0.01) population and VTAother (p < 0.01) population of syllable-cell pairs with 

a one-sided bootstrap test.

The distribution of the predictive signal across the cell population: We asked whether a 

small number of cell-syllable pairs contained the majority of the positive r2 values or if the 

signal appeared across multiple cell-syllable pairs in the population. To answer this, we first 

labeled each cell-syllable pair as ‘significant’ if the number of fits with positive r2 values 

within the PPE latency window (0–150 ms) had a single-tailed p < 0.05. We then computed 

the single-tailed p value for the number of significant cell-syllable pairs across each cell 

population (VTAerror population: one-sided bootstrap test: p < 0.01; VTAother population: 

one-sided bootstrap test: p < 0.01).

The magnitude of the peak in signal occurrence within the PPE latency window across 
the cell population: We computed latency distributions as the latencies of the full set of 

spike-count song feature pairs that resulted in GP model fits with r2 > 0. We compared the 

variance within the latency distributions of the randomized populations to the magnitude 

of the peak we found in the actual data. We computed the single-tailed p value for the 
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maximum fluctuation of a latency distribution at any point in the latency domain. Thus, 

we tested the significance not only of finding a peak of that size in the data at the PPE 

window but of finding a peak of that size anywhere in the latency distribution. The VTAerror 

population latency distribution had a peak within the expected PPE latency region (Figure 

3C). This peak was 3.74 standard deviations from the mean. The variance in relation to the 

maximum variance in randomized latency distributions was significant (one-sided bootstrap 

test: p < 0.01). The time-bin of this latency distribution was 25 ms. The VTAother population 

latency distribution had a peak 2.30 standard deviations from the mean (Figure 3D). This 

variance was not significant (one-sided bootstrap test: p = 0.21). The time-bin of this latency 

distribution was 25 ms.

The curvature of tuning curves we find via our GLM parameterization technique: We 

computed the two-sided bootstrap test p value of the fraction of tuning curves with a 

negative quadratic coefficient in the population data relative to the randomized populations 

(Figure 4E legend and main text).

Note that the goal of this significance strategy allows us to assess the VTAerror cell activity 

as a population, not the significance of particular song segment-spike count pairs. In this 

framework, we do not require that a single feature or even song-spike pattern be significant. 

More data are needed for this level of specificity.

Assessing natural song relationship to distorted auditory feedback—We have 

been unable to find any impact of the presence or absence of a distortion event in other 

portions of the song. As reported in Gadagkar et al., (2016), there is no significant 

correlation between VTA spiking activity and the distortion event outside of a 0–150 ms 

lag. We additionally looked for correlations between the distortion event and natural song 

fluctuations in the syllable immediately following the distortion event (when the greatest 

impact might be expected) and found no significant correlations there either.

As an additional control, we re-performed the analyses presented in Figures 3 and 4 on 

only the sections of song which occurred before the distorted auditory feedback across all 

error cells. During this portion of the behavior, it is unknown whether a distortion will 

occur later in the song, and thus, no hidden correlations can exist between song fluctuations 

and distortion events. In this subset of the data, we find a robust recapitulation of our 

original results: there is a highly significant peak in the latency distribution of predictive 

relationships between spike counts and song with the expected RPE timing latency (0–150 

ms) (p value < 0.01) and a highly significant number of predictive relationships (p value < 

0.01), repeating results in Figure 3. Additionally, there is a significant over-representation of 

stabilizing tuning curve relationships between DA neurons and song fluctuations (p value < 

0.02), again recapitulating the results of Figure 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Songbird dopamine activity correlates with natural song fluctuations

• The form and timing of the dopamine activity is consistent with song 

evaluation
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Figure 1. Experimental identification of performance error in VTA DA neurons in singing birds
(A) Evaluation of auditory feedback during singing is thought to produce an error signal for 

song learning (reproduced from Gadagkar et al., 2016, with the permission of AAAS).

(B) Basal ganglia (Area X)-projecting DA neurons from VTA were antidromically identified 

(reproduced from Gadagkar et al., 2016, with the permission of AAAS).

(C) Example of DAF. The target syllable was randomly distorted across motifs. All other 

syllables (labeled “Natural”) were left undisturbed (reproduced from Gadagkar et al., 2016, 

with the permission of AAAS).

(D) (Left, top to bottom) Example spectrograms of renditions with the target syllable 

undistorted (enclosed in blue box) and distorted (enclosed in red box); rate histogram of 

distorted and undistorted renditions (the horizontal bar indicates significant deviations from 

baseline [p < 0.05, z test; see STAR Methods]); (Right) Normalized response to target 

syllable in VTAerror and VTAother neurons (mean ± SEM; see STAR Methods) (reproduced 

from Gadagkar et al., 2016, with the permission of AAAS).

(E) The experimental results suggest a hypothesis that fluctuations in natural song should 

also result in VTAerror responses.
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Figure 2. A Gaussian process model approach reveals song-spike relationships
(A) Natural song was parameterized into eight time-varying song features.

(B) Schematic of fitting song fluctuations to spike counts within specific time windows. 

Local feature averages (one feature shown for illustration) were used to predict local spike 

counts using a GP model.

(C) Schematic of fitting a single, multivariate model using multiple song features. The 

multi-dimensional model takes a weighted average of the model predictions from every 

combination of eight song features (two shown here for illustration). The middle column 

shows the three feature combinations for two example features (t-b): pitch only; pitch and 

entropy; entropy only. The model’s goodness of fit was quantified by the cross-validated 

r2 calculated from the final, weighted average model (see STAR Methods). The cyan dot 

indicates an example held out data point in the cross-validation procedure.

(D) Schematic of modeling technique shown in (B and C) now extended across a range of 

song windows and song-spike latencies, thus building a matrix of r2 values. The top panels 

show a sliding window along the song (single feature shown for illustration). The bottom 

panels show the time-aligned spiking activity across renditions in a raster plot. Each entry 

in the r2 matrix (middle panels) represents the fit between one song window and one spike 

window, shown here connected with red lines.
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Figure 3. Timing of song-spike relationships for VTAerror neurons suggests an evaluative process
(A) Spectrogram of example syllable (top left). Heatmap of r2 values for fitted relationships 

between local song feature averages and binned spike counts (top right). r2> 0 indicates 

a predictive relationship. The pink box indicates the region where the latency matches the 

hypothesized response for a PPE, 0–150 ms. The lower heatmap shows an r2 matrix for a 

shuffled version of the data (see STAR Methods).

(B) Histogram of latencies for predictive fits shown in (A).

(C) Latency distribution of predictive fits over all VTAerror neurons (n = 22) showed a 

significant peak in the number of responses in the expected PPE time window (**p < 0.01; 

see STAR Methods).

(D) Same as in (C), but for the VTAother neuron population (n = 23).
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Figure 4. The form of the predominant song-spike relationship for VTAerror neurons is 
consistent with song maintenance
(A) The form of a song-spike relationship determines how the song is being reinforced. α 
and β correspond to the quadratic and linear coefficients in the GLM shown in (B).

(B) Schematic of the nested GLM fitting process to quantify tuning curve shape for VTAerror 

neuron activity to natural song fluctuations.

(C) Example tuning curves obtained with the GP model, l-GLM, and q-GLM between 

single song features and spike counts for a selection of song-spike model fits. Each point 

on each plot represents a single rendition. Pink shapes denote fit locations marked in (D). 

The r2 values for each example fit, l-r are: 0.13, 0.27, 0.13, 0.24. Additional, single-feature 

examples are given in Figure S4.

(D) The quadratic coefficient for q-GLM model fits to predictive song-spike relationships 

(defined within the GP model) as a function of ΔAIC values in the GLM model comparison 

within the PPE latency range. Each point represents one q-GLM fit to a significant song 

feature-spike count pair. Pink shapes denote fits shown in (C). The fraction of total data 

points in each quadrant about the [0,0] origin, clockwise from top left is: 0.24, 0.09, 0.32, 

0.34. This plot zooms in on 99.5% of data. Outlier points follow the same trend but increase 

scale and obscure visualization. All data are used in analysis.
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(E) Fraction of stabilizing fits (negative quadratic coefficient) for all fits better described 

as quadratic than linear (ΔAIC > 0) compared with shuffled population fractions. The 

blue point is the data and each value in the gray histogram is a single fraction from an 

independent population shuffle (see STAR Methods). The data showed a greater fraction 

of stabilizing fits than expected by chance (two-sided bootstrap test: p < 0.02; see STAR 

Methods). Inset: same distribution but now shown for both the binned ΔAIC > 0 group and 

ΔAIC ∈[−2, 0]. The blue point is the true fraction and gray points are fractions from shuffled 

populations (see STAR Methods).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Tyrosine Hydroxylase antibody Millipore Cat#AB152; RRID:AB_390204

Dextran, Alexa Fluor™ 488 Invitrogen Cat#D22910

Experimental models: Organisms/strains

Zebra Finch (Taeniopygia guttata) Magnolia Bird Farm, Anaheim CA N/A

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

Sound Analysis Pro Tchernichovski et al., 2000 http://soundanalysispro.com

Original analysis scripts This paper https://doi.org/10.6084/m9.figshare.15019380
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