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Abstract
In response priming experiments, a participant has to respond as quickly and as accurately as possible to a target stimulus
preceded by a prime. The prime and the target can either be mapped to the same response (consistent trial) or to different
responses (inconsistent trial). Here, we investigate the effects of two sequential primes (each one either consistent or inconsistent)
followed by one target in a response priming experiment. We employ discrete-time hazard functions of response occurrence and
conditional accuracy functions to explore the temporal dynamics of sequential motor activation. In two experiments (small-N
design, 12 participants, 100 trials per cell and subject), we find that (1) the earliest responses are controlled exclusively by the first
prime if primes are presented in quick succession, (2) intermediate responses reflect competition between primes, with the second
prime increasingly dominating the response as its time of onset is moved forward, and (3) only the slowest responses are clearly
controlled by the target. The current study provides evidence that sequential primes meet strict criteria for sequential response
activation.Moreover, it suggests that primes can influence responses out of a memory buffer when they are presented so early that
participants are forced to delay their responses.
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Priming paradigms are very popular in many fields of cogni-
tive psychology to study how exposure to a prime stimulus
influences the response to a subsequently presented target
stimulus. In general, the representations that mediate priming
can be located at perceptual (Wiggs & Martin, 1998),
conceptual/semantic (e.g., Schacter & Buckner, 1998), lexical
(e.g., Fernández-López, Marcet, & Perea, 2019), phonological
(e.g., Ferrand&Grainger, 1992), and/or motor response levels
(e.g., Rosenbaum, 1983). In this paper we focus on the so-
called response priming paradigm (Klotz & Neumann, 1999;
Klotz &Wolff, 1995; Vorberg, Mattler, Heinecke, Schmidt, &

Schwarzbach, 2003). In a typical response priming experi-
ment, a participant has to respond as quickly and as accurately
as possible to a target stimulus preceded by a (masked or
unmasked) prime stimulus. The prime and the target can either
be mapped to the same response (consistent trial) or to differ-
ent responses (inconsistent trial). While consistent trials typi-
cally show accelerated and more accurate responses, inconsis-
tent trials show decelerated and less accurate responses, re-
spectively. The differences between consistent and in-
consistent trials in both mean reaction times (RTs) and
overall error rates (ERs) define the response priming
effect. Characteristically, this priming effect increases
linearly with stimulus-onset asynchrony (SOA) for
SOAs of up to about 100 ms (Vorberg et al., 2003).
Response priming effects are believed to be mostly me-
d ia ted by motor response conf l ic t s (Schmidt ,
Haberkamp, & Schmidt, 2011; Schmidt, 2002). However,
how a rapid sequence of visual stimuli is processed and con-
verted into motor action is still under debate. In order to gain
insights into the covert temporal dynamics of our visual sys-
tem and the online transfer of visual signals into overt behav-
ior, we employ event history analysis, a longitudinal technique
to perform a distributional analysis.
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Multiple-prime paradigm

What if instead of only one prime, a sequence of primes is
preceding a target stimulus? A number of previous studies
have touched upon this question. Jaśkowski, Skalska, and
Verleger (2003) presented five pairs of squares sequentially,
with an SOA of 35 ms, so that each stimulus masked the
previous one via metacontrast. The last and largest pair was
the target, and observers had to decide whether the left or right
square contained a gap. The first four pairs could serve as
masked primes that contained a gap in the same (consistent)
or opposite (inconsistent) square as the target. They found that
the priming effect in mean correct RT increases with the num-
ber of primes presented in a sequence of successively masked
stimuli. Because all of the primes within a single trial were
either consistent or inconsistent to the target, this result would
be expected from the accumulation of prime information
(Miller, 1982). Jaśkowski et al. (2003) concluded that “motor
activation evoked by a series of primes does accumulate, fa-
cilitating or inhibiting motor responses to the target” (p. 913).

Similarly, Breitmeyer and Hanif (2008) showed that when
two successively presented prime stimuli are both consistent
to a target in terms of shape (square versus diamond), mean
RTs are faster than when only one of the two primes is con-
sistent. Furthermore, they found that the priming effects from
the second prime dominate over those of the first prime. That
is, if the first prime was consistent and the second inconsistent
to the target (condition “CI”), mean RT increased much more
than when the first prime was inconsistent and the second
consistent (condition “IC”). This contradicts the idea that
due to the longer Prime1-target SOA, the first prime should
cause a larger priming effect than the succeeding second
prime. They argue that the second prime instead updates and
overrides the effects of the first prime.

Grainger, Scharnowski, Schmidt, and Herzog (2013)
employed two 20-ms Vernier stimuli as primes. In a series of
experiments, they found that (1) two primes presented in im-
mediate succession at the same location integrate before acti-
vating a motor response, and do not cause sequential activa-
tion; (2) two identical primes yield larger priming effects than
single primes; (3) one consistent and one inconsistent prime
presented simultaneously at different locations cancel each
other’s effects. More importantly, in the varying-primes con-
dition of their Experiment 3, they presented two lateralized
Vernier primes and a central Vernier target, kept the Prime
1–target SOA constant at 200 ms, and varied the interprime
interval (and thus also Prime 2–target ISI). For interprime
intervals of 30 and 80 ms Prime 2 clearly dominated, but for
an interprime interval of 150 ms (and a corresponding Prime
2–target ISI of 30ms) Prime 1 dominated slightly. The authors
propose that all visual stimuli enter a time-selective buffer
stage, integrate, and only then initiate a motor response.
Instead of activating their associated responses in strict

sequence, their joint impact is determined by their relative
dominance in the motor buffer.

However, it has been suggested that—in the context of
response-conflict paradigms such as response priming and
flanker effects—sequential visual stimuli elicit sequential
feedforward sweeps (Bullier, 2001; Lamme & Roelfsema,
2000; VanRullen & Koch, 2003). These fast and bottom-up
processes can activate motor responses in a strictly sequential
manner (T. Schmidt et al., 2011). Moreover, since both prime
and target in a response priming paradigm activate their re-
spective motor responses, response conflict arises if prime and
target are inconsistent, thus leading to an increase in RT
(Schmidt, 2014). Several studies have demonstrated the exis-
tence of this feedforward and sequential activation, in both
neuronal activity, such as lateralized readiness potentials
(Eimer & Schlaghecken, 1998; Vath & Schmidt, 2007), and
overt behavior, such as the time course of pointingmovements
(Schmidt & Schmidt, 2010; Schmidt, 2002; Schmidt &
Schmidt, 2009) and response-time distributions (Panis &
Schmidt, 2016). In particular, these studies demonstrated that
the first responses are exclusively triggered by prime proper-
ties, independent of the target, whereas only later responses
are influenced by target properties.

Schmidt, Niehaus, and Nagel (2006) hence proposed a
chase theory of response priming in which they formulated
the chase criteria of such a feedforward system: (1) Prime
rather than target signals determine the onset and initial direc-
tion of the response; (2) target signals influence the response
before it is completed; (3) movement kinematics initially de-
pend on prime characteristics only and are independent of all
target characteristics (see Schmidt, 2014, for precise
definitions of criteria and predictions). Such a simple
feedforward-sweep model seems to account very well for re-
sponse priming effects at short SOAs (up to 100 ms), but
would predict unrealistically high error rates for longer
SOAs (because in inconsistent trials, the prime would always
have enough time to drive the wrong response to completion).
Therefore, priming effects at longer SOAs are more plausibly
carried by the content of a response buffer that carries infor-
mation from both primes, but is dominated by the second one
(Grainger et al., 2013). This buffer would allow participants to
delay their responses, waiting out the target.

Event history analysis

The aims of the current study were to trace sequential priming
effects over the time course of a trial to see (a) whether se-
quential primes actually initiate sequential response activa-
tion, (b) whether that sequence conforms to the chase criteria
at short SOAs, and (c) how the influence of the first prime
changes when the interprime interval is prolonged. In order to
investigate the temporal dynamics of response activation, one
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must take the passage of time into account when analyzing
behavioral output. Here, we make use of a relatively new
approach to analyze reaction time data: Event history analysis
(EHA: Allison, 1982, 2010; Luce, 1986; Panis & Schmidt,
2016; Singer & Willett, 2003). In EHA, it is assumed that
for each time point since target onset in each trial of an exper-
iment, there is a risk for the response to occur. The time after
target onset is subdivided into a series of nonoverlapping and
contiguous time bins indexed by t, t ∈ {1…n}, and for each
time bin, the discrete-time hazard probability of response oc-
currence is estimated. The hazard probability h(t) is defined as
the conditional probability that a response occurs sometime
within bin t given that no response has been emitted in previ-
ous bins: h(t) = P(T = t | T ≥ t) (Allison, 1982, 2010; Luce,
1986; Panis, Torfs, Gillebert, Wagemans, & Humphreys,
2017; Panis & Wagemans, 2009). The survival function S(t)
= P(T > t) estimates the probability that no response has been
emitted by the time Bin t is completed. In addition, P(t) = P(T
= t) gives the unconditional probability that a response (no
matter whether correct or incorrect) occurs within Bin t.1

Since correct and incorrect response occurrences are not inde-
pendent (Burle, Vidal, Tandonnet, & Hasbroucq, 2004;
Praamstra & Seiss, 2005), we calculate the conditional accu-
racy ca(t) = P(correct response | T = t), the probability that a
response emitted in time Bin t is correct. Together, h(t) and
ca(t) give an unbiased description of the time course of the
latency and accuracy of responses (Panis & Hermens, 2014;
Panis & Schmidt, 2016).

Current study

Here, we investigate the effects of two sequential primes
followed by one target on response occurrence and accuracy
in a response priming experiment. Our goal was to investigate
(a) whether sequential primes actually initiate sequential re-
sponse activation, or integrate in a buffer before a response is
emitted, (b) whether that response activation sequence con-
forms to the rapid-chase criteria at short SOAs, and (c) how
the influence of the first prime changes when the SOAs are all
prolonged.

We designed a stimulus layout where two primes can be
presented in sequence without mutual interference and with-
out masking. Further, we varied the timing of the stimuli by
keeping the Prime 1 target (P1-T or SOA1) SOA fixed and
moving the onset of Prime 2, resulting in different combina-
tions of Prime 1–Prime 2 (P1–P2) and Prime 2–target (P2–T
or SOA2) SOAs. Each prime could either be consistent or
inconsistent to the target. In a first experiment we investigated
quick successions of primes and target, a second experiment
used prolonged stimulus-onset asynchronies. We reasoned
from the idea that when the P1–T SOA is short (Experiment
1), participants can rely on feedforward response activation

and give speeded responses without using the response buffer.
In contrast, when the P1–T SOA is long (Experiment 2), par-
ticipants are forced to withhold responses in order to avoid
errors triggered by inconsistent primes, and in that situation
the response buffer can influence the response.

Experiment 1

Method

We constructed a stimulus arrangement dubbed the ‘lollipop’
that allows us to present a sequence of primes and targets
without any spatial overlap or masking (see Fig. 1). The lolli-
pop consisted of a large circle subdivided into eight segments
that would contain the primes. A circle in the center of the
lollipop contained the target and served as fixation point.
Participants were instructed to give speeded responses to the
color of the target—red or green—with two successive primes
appearing prior to its onset. For the first prime, every other
lollipop segment briefly changed color simultaneously (all
either red or green). For the second prime, the previously
unoccupied segments all briefly turned red or green simulta-
neously, independent of the color of the first prime.

Participants

Twelve participants (seven female, ages 22–36 years, M =
28.2 years) were recruited out of the pool of students of the
University of Kaiserslautern. They participated in one 60-
minute session for each experiment and were rewarded with
course credits. All of them had normal or corrected-to-normal
vision (17% with correction). Each participant gave informed
consent and was treated in accordance with the ethical stan-
dards of the American Psychological Association.

Apparatus and stimuli

Participants sat comfortably on a chair in front of a 17-inch
VGA cathode-ray monitor (refresh rate of 75 Hz, resolution of
1,280 × 1,024) in a dimly lit room, such that their faces were at
a distance of roughly 80 cm from the screen. Responses were
collected with a USTC Response Time Box (Li, Liang,
Kleiner, & Lu, 2010). Microsoft Windows XP served as the
operating system and the experiments were written in
MATLAB, using the Psychophysics Toolbox extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Prime and target stimuli appeared inside the lollipop frame,
which was present throughout the trial (see Fig. 1). The frame
was shown in white (54.3 cd/m2, line width 2 pixels) against a
black background (0.03 cd/m2) and consisted of a central cir-
cle (Ø 0.8 cm, 0.57°) for the target and a larger circle (Ø 2.4
cm, 1.72°) for the primes. The large circle was subdivided into
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eight 45° segments by horizontal, vertical and diagonal lines.
The first prime (P1) was presented by filling-in four non-
contiguous segments with the same color (either red, 11.0
cd/m2, x = .45, y = .30, or green, 11.0 cd/m2, x = .24, y =
.40). The second prime (P2)was then presented in the remaining
segments. The two sets of segments were randomly assigned to
colors and primes. As a target stimulus (T), the inner small circle
of the frame was filled with either red or green color.

Procedure

Experiment 1 lasted 60 minutes. The experiment started with
one practice and two experimental blocks with 50 trials each
in which no prime [N] was displayed. This had the purpose to
accustom the participants to the procedure. After completion
of this task, prime conditions were administered to the partic-
ipants. Each prime could either be consistent (same color) or
inconsistent (different color) with the target. There were two
single-prime conditions, consistent [C] and inconsistent [I],
and four double-prime conditions, consistent–consistent
[CC], consistent–inconsistent [CI], inconsistent–consistent
[IC], and inconsistent–inconsistent [II]. (Throughout this pa-
per, we always code consistency relative to the target.) Again,
participants had to complete one practice block, this time
followed by 25 experimental blocks, with 56 trials each.
Each block contained eight single-prime trials and 48
double-prime trials. Altogether, this led to participants com-
pleting 100 trials each for the no-prime, two one-prime and
twelve double-prime (three SOA × four prime combinations)
conditions.2

Each trial began with the onset of the lollipop frame (see
Fig. 1). After 493 ms of fixation, P1 was presented in either

red or green for 13 ms, except for the no-prime trials during
which all segments remained black (such that the SOA struc-
ture was maintained even when one or both primes were ab-
sent). After a P1–P2 SOA of 27, 53, or 80 ms, either a red or
green P2 was presented for another 13 ms, except for the no-
prime and single-prime trials during which all segments
stayed black. Finally, after a P2–T SOA of 80, 53, or 27 ms,
a red or green target followed. As a result, the SOA between
P1 and Twas always 107 ms. The target stayed on-screen for
107 ms. Participants were instructed to fixate the target circle
at the center of the frame (see Fig. 1) and to respond to the
target color as quickly and accurately by pressing one of two
response buttons with their left or right index finger, while all
other stimuli were irrelevant. After detection of the manual
response, a feedback display was shown for 500 ms, followed
by a blank screen for 360 ms before the next trial started.
Participants received a “too slow” feedback message if their
RT was slower than 999 ms. During practice trials they re-
ceived an additional “wrong” feedback message if their re-
sponse was incorrect and “correct” if their response was cor-
rect. Additionally, after each block participants received feed-
back on their performance (percentage correct, number of er-
rors, mean reaction time) and could take a short rest if desired.
Color-to-button mapping was fixed for each participant and
counterbalanced across participants. All stimulus conditions,
except for the blocked no-prime condition, occurred randomly
and equiprobably over the course of a session.

Analysis of mean error rate and mean correct RT

In a first step, mean reaction times (RT) and error rates (ER)
were inspected.We performed two sets of analyses. First, one-

Fig. 1 Stimulus displays and design. After fixating the center of the white lollipop frame, a sequence of two primes and a target is presented, with SOA1–
SOA2 combinations of 27/80, 53/53, or 80/27
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way repeated-measures ANOVAs, with the factor consistency
(consistent, inconsistent, no prime), were performed for

single-prime and no-prime conditions, one for each of the
two dependent variables, RT and ER. A total of 3,600 trials

Table 1 Selected hazard model for Experiment 1

(175,200] (250,275] (300,325] (375,400]

Effect PE p PE SE t p PE p PE p

1 Intercept −4.650 0.0000*** −2.361 0.260 −9.084 0.0000*** −1.318 0.0000*** −0.620 0.0000***

2 TIME 0.637 0.039 16.504 0.0000***

3 TIME2 −0.054 0.004 −14.811 0.0000***

4 TIME3 −0.003 0.001 −3.114 0.0018**

5 TIME4 0.000 0.000 3.366 0.0008***

6 TRIAL −0.003 0.5553 0.005 0.003 1.919 0.0549 0.011 0.0000*** 0.019 0.0000***

7 TIME:TRIAL 0.003 0.001 3.418 0.0006***

8 C 0.179 0.1651 0.729 0.055 13.260 0.0000*** 0.549 0.0000*** −0.029 0.6932

9 TIME:C −0.006 0.025 −0.252 0.8007

10 TIME2:C −0.050 0.009 −5.615 0.0000***

11 TIME3:C 0.004 0.002 2.820 0.0048**

12 I 0.113 0.3951 −0.506 0.070 −7.242 0.0000*** −0.688 0.0000*** −0.308 0.0000***

13 TIME:I −0.196 0.041 −4.785 0.0000***

14 TIME2:I 0.042 0.010 4.291 0.0000***

15 TIME3:I 0.008 0.003 2.915 0.0036**

16 TIME4:I −0.001 0.000 −3.736 0.0002***

17 N 0.666 0.0000*** 0.476 0.061 7.775 0.0000*** 0.050 0.3661 −0.355 0.0000***

18 TIME:N −0.187 0.024 −7.732 0.0000***

19 TIME2:N −0.024 0.007 −3.373 0.0007***

20 TIME3:N 0.006 0.001 4.673 0.0000***

21 II 0.285 0.0012** −0.403 0.054 −7.423 0.0000*** −0.623 0.0000*** −0.396 0.0000***

22 TIME:II −0.193 0.025 −7.688 0.0000***

23 TIME2:II 0.035 0.006 5.714 0.0000***

24 TIME3:II 0.005 0.002 3.146 0.0017**

25 TIME4:II −0.001 0.000 −3.747 0.0002***

26 CC 0.389 0.0000*** 0.627 0.049 12.860 0.0000*** 0.407 0.0000*** −0.084 0.1254

27 TIME:CC −0.054 0.016 −3.404 0.0007***

28 TIME2:CC −0.034 0.005 −6.597 0.0000***

29 TIME3:CC 0.003 0.001 3.835 0.0001***

30 CI −0.256 0.0000*** −0.256 0.032 −8.003 0.0000*** −0.256 0.0000*** −0.256 0.0000***

31 SOA_53_53 −0.191 0.0000*** −0.191 0.032 −5.985 0.0000*** −0.191 0.0000*** −0.191 0.0000***

32 SOA_80_27 −0.223 0.0027** −0.327 0.046 −7.053 0.0000*** −0.336 0.0000*** −0.261 0.0000***

33 TIME:SOA_80_27 −0.017 0.012 −1.359 0.1742

34 TIME2:SOA_80_27 0.006 0.002 2.585 0.0097**

35 II:SOA_53_53 0.124 0.0267* 0.124 0.056 2.216 0.0267* 0.124 0.0267* 0.124 0.0267*

36 II:SOA_80_27 0.245 0.0001*** 0.245 0.062 3.928 0.0001*** 0.245 0.0001*** 0.245 0.0001***

37 CC:SOA_53_53 0.167 0.0021** 0.167 0.054 3.078 0.0021** 0.167 0.0021** 0.167 0.0021**

38 CC:SOA_80_27 0.287 0.0000*** 0.287 0.061 4.693 0.0000*** 0.287 0.0000*** 0.287 0.0000***

39 CI:SOA_80_27 0.212 0.0001*** 0.212 0.055 3.845 0.0001*** 0.212 0.0001*** 0.212 0.0001***

SD Intercept 1.122 .892 .679 .431

SD TIME .124 .124 .124 .123

Correlation −.937 −.899 −.818 −.427

Note. Parameter estimates (PE) and test statistics. During model selection, TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 200, 325, and 400, respectively. SD = standard deviation
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Table 2 Selected ca(t) model for Experiment 1. Parameter estimates (PE) and test statistics

(150,175] (200,225] (250,275] (375,400]

Effect PE p PE p PE SE t p PE p

1 Intercept −2.379 0.0000*** −0.076 0.7026 1.918 0.157 12.187 0.0000*** 3.229 0.0000***

2 TIME 0.797 0.062 12.806 0.0000***

3 TIME2 −0.118 0.015 −7.696 0.0000***

4 TIME3 −0.006 0.003 −1.993 0.0463*

5 TIME4 0.002 0.000 4.087 0.0000***

6 C 5.213 0.0000*** 2.906 0.0000*** 1.339 0.232 5.764 0.0000*** 0.659 0.1446

7 TIME:C −0.599 0.109 −5.516 0.0000***

8 TIME2:C 0.093 0.027 3.369 0.0008***

9 I 0.407 0.5240 −2.040 0.0000*** −2.405 0.188 −12.783 0.0000*** −0.126 0.6165

10 TIME:I 0.188 0.088 2.139 0.0324*

11 TIME2:I 0.148 0.025 5.903 0.0000***

12 TIME3:I −0.019 0.004 −4.559 0.0000***

13 N 3.456 0.0000*** 1.421 0.0000*** 0.112 0.178 0.629 0.5292 0.013 0.9667

14 TIME:N −0.473 0.072 −6.584 0.0000***

15 TIME2:N 0.091 0.018 5.130 0.0000***

16 II −0.900 0.1208 −2.376 0.0000*** −2.438 0.146 −16.694 0.0000*** −0.139 0.4832

17 TIME:II 0.227 0.073 3.108 0.0019**

18 TIME2:II 0.106 0.021 4.951 0.0000***

19 TIME3:II −0.012 0.003 −3.655 0.0003***

20 CC 5.349 0.0000*** 3.189 0.0000*** 1.624 0.175 9.269 0.0000*** 0.309 0.2298

21 TIME:CC −0.634 0.074 −8.596 0.0000***

22 TIME2:CC 0.074 0.016 4.659 0.0000***

23 CI 4.742 0.0000*** 0.487 0.0502 −1.440 0.164 −8.805 0.0000*** −0.471 0.0513

24 TIME:CI −0.494 0.070 −7.041 0.0000***

25 TIME2:CI 0.207 0.024 8.478 0.0000***

26 TIME3:CI −0.014 0.004 −3.927 0.0001***

27 SOA_53_53 −0.461 0.0553 −0.391 0.0226* −0.320 0.115 −2.780 0.0054** −0.144 0.3858

28 TIME:SOA_53_53 0.035 0.039 0.893 0.3717

29 SOA_80_27 −1.177 0.0179* −1.246 0.0000*** −1.137 0.168 −6.750 0.0000*** −0.091 0.7183

30 TIME:SOA_80_27 0.099 0.075 1.322 0.1862

31 TIME2:SOA_80_27 0.022 0.013 1.736 0.0826

32 II:SOA_80_27 −0.367 0.6955 0.626 0.1782 1.074 0.234 4.595 0.0000*** −0.190 0.5370

33 TIME:II:SOA_80_27 0.088 0.133 0.661 0.5085

34 TIME2:II:SOA_80_27 −0.068 0.023 −2.928 0.0034**

35 CC:SOA_80_27 2.505 0.0002*** 1.928 0.0001*** 1.351 0.322 4.199 0.0000*** −0.092 0.8261

36 TIME:CC:SOA_80_
27

−0.289 0.105 −2.750 0.0060**

37 CI:SOA_53_53 1.327 0.0015** 0.957 0.0013** 0.587 0.195 3.012 0.0026** −0.339 0.2108

38 TIME:CI:SOA_53_53 −0.185 0.068 −2.733 0.0063**

39 CI:SOA_80_27 4.495 0.0000*** 3.388 0.0000*** 2.281 0.256 8.911 0.0000*** −0.486 0.1392

40 TIME:CI:SOA_80_27 −0.553 0.085 −6.521 0.0000***

SD Intercept .373 .324 .353 .353

SD TIME .081 .081 .081 .081

Correlation −.496 −.068 .398 .406

Note.During model selection TIMEwas centered on bin 275. The selected model was refitted three times with TIME centered on bin 175, 225, and 400,
respectively
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were initially available for analysis. Trials with reaction times
faster than 100 ms or slower than 999 ms (0.5%) were exclud-
ed from the analysis. Further, error trials (10.92%) were ex-
cluded from RT analysis.

Second, two 3 (SOA) × 4 (consistency) repeated-measures
ANOVAs were performed for all double-prime conditions,
one each for RT and ER. A total of 14,400 trials were initially
available for analysis. Trials with reaction times faster than
100 ms or slower than 999 ms (0.53%) were excluded from
the analysis. In addition, error trials (13.53%) were excluded
from RT analysis. To follow up significant interaction effects,
one-way repeated-measures ANOVAs, with the four-level fac-
tor consistency (CC, CI, IC, II) were performed separately for
each SOA condition. Greenhouse–Geisser-corrected p values
were used. To satisfy ANOVA requirements error rates were
arcsine transformed. Additional within-subjects contrasts
were calculated to further investigate significant main effects.

Event history analysis

Sample-based descriptive estimates of hazard function h(t),
survival function S(t), probability function P(t), and
conditional-accuracy function ca(t) were calculated for each
combination of condition. For the purpose of visually
inspecting the descriptive functions data was pooled across
participants to reduce noise, after checking that each partici-
pant showed similarly timed effects. A censoring time
of 600 ms was used because only a limited amount of
responses occurred afterwards. To provide a high tem-
poral resolution and still obtain stable estimates a bin
size of 25 ms was used. In other words, the first 600 ms
after target onset were divided into 24 time bins of 25 ms
indexed by t = 1 to 24. Trials with RTs longer than 600 ms
were treated as right-censored observations. Time bins are
denoted by the endpoint of the interval they span, such that
Bin 11 = Bin 275 = (250,275].

Next, discrete-time hazard models and conditional accura-
cy models were estimated by computing linear mixed-effects
regression models in R (R Core Team, 2014; function
glmmPQL3 of package MASS; see also Panis & Schmidt,
2016). For the hazard models we used the complementary
log-log (cloglog) link.4 An example discrete-time hazard
model with three predictors can be written as follows:
cloglog[h(t)] = ln(−ln[1 − h(t)]) = [α0ONE + α1(TIME − 1)
+ α2(TIME −1)2 + α3(TIME − 1)3] + [β1X1 + β2X2 +
β3X2(TIME − 1)]. The main predictor variable TIME is the
time bin index t which is centered on value 1 in this example.
The first set of terms within brackets, the alpha parameters
multiplied by their polynomial specifications of (centered)
time, represents the shape of the baseline cloglog-hazard func-
tion (i.e., when all predictors Xi take on a value of zero). The
second set of terms (the beta parameters) represents the verti-
cal shift in the baseline cloglog-hazard for a 1 unit increase in
the respective predictor. For example, the effect of a 1 unit
increase in X1 is to vertically shift the whole baseline cloglog-
hazard function with β1 cloglog-hazard units. However, if the
predictor interacts linearly with time (see X2 in the example),
then the effect of a 1 unit increase in X2 is to vertically shift the
predicted cloglog-hazard in Bin 1 with β2 cloglog-hazard
units (when TIME − 1 = 0), in Bin 2 with β2 + β3 cloglog-
hazard units (when TIME − 1 = 1), and so forth. To interpret
the effects of the predictors, the parameter estimates are
antilogged, resulting in a hazard ratio.

For our data we centered TIME on Bin 275 during model
selection. TRIAL number was included as a predictor (cen-
tered on Trial 1,000, rescaled by dividing by 100), in order to
account for across-trial learning effects in h(t). The intercept
and the linear effect of TIMEwere treated as random effects to
deal with the correlated data resulting from the repeated mea-
sures on the same subjects.5 The IC-27/80 condition (P1: in-
consistent, P2: consistent, SOA1: 27 ms, SOA2: 80 ms) was

Fig. 2 Mean correct RT results for Experiment 1. No and single-prime
conditions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes

Fig. 3 Mean ER results for Experiment 1. No and single-prime condi-
tions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes
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chosen as a baseline condition. Because TIME and TRIAL are
centered, the intercept of the hazard regression model refers to
Bin 275 in Trial 1,000 of the IC-27/80 condition.

To estimate the parameters of an h(t) model, wemust create
a dataset where each row corresponds to a time bin of a trial of
a participant (a subject-trial-bin oriented data set).
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Specifically, each time bin that was at risk for event occur-
rence in a trial was scored on the dependent variable EVENT
(0 = no response occurred; 1 = response occurred), the cen-
tered covariates TIME, TRIAL, the variable SUBJECT, and
the dummy-coded dichotomous experimental predictor vari-
ables (C, I, N, II, CC, CI, SOA_53_53, SOA_80_27). Only
the time range between 125 and 450mswas modeled, because
most responses occurred in this range. Trials with RTs longer
than 450 ms were treated as right-censored observations, and
trials with RT smaller or equal to 125 ms were discarded. The
expanded (subject-trial-bin oriented) data set contained
157,656 rows.

For ca(t) modeling, the original dataset was used where
each row corresponds to one trial of one participant (1,500 ×
12 = 18,000 trials). We used the same model but applied the
logit link6, and included only those trials with an observed
response between 125 and 450 ms in the data set. In other
words, trials with RT shorter than 125 ms and longer than
450 ms were discarded (11.63 % of the 18,000 trials).

For bothmodels, we started with a full model containing all
fixed effects of interest (main and interaction effects of the
dichotomous predictors), and their interactions with TIME
(linear, quadratic, cubic, and quartic). In a step-by-step back-
ward selection procedure, this full model was reduced to the
final, selected model. More precisely, in each iteration, the
effect with the largest p > .05 that was not part of any higher
order effect left the model before the next fit. Finally,
after model selection, we refitted the selected model a
number of times with TIME centered each time on an-
other bin, to see explicitly what values the parameter
estimates take on according to the final model in these
other bins, and whether they represent a significant effect (see
Tables 1 and 2). This way, it becomes more explicit what the
interaction effects including TIME imply, because we are able
to study the effect of the various predictor variables at different
time points.

Predictions

We expected primes to have sequential effects that are trace-
able over time in the conditional accuracy functions. Because

P1–T SOAs in Experiment 1 are short, the sequence of re-
sponse activations should conform to the chase criteria, so that
the earliest responses are controlled exclusively by the first
prime, while later responses are consecutively controlled by
the second prime, and the slowest responses by the target. The
earliest responses should therefore be correct whenever P1 is
consistent with the target and incorrect whenever it is incon-
sistent. In contrast, the slowest responses should be controlled
mainly by the target and thus all be correct. Intermediate re-
sponses should be influenced by the second prime.
From previous data, we expected that the second prime
would dominate the response at the shortest P1–P2 SOA
(i.e., the longest P2–T SOA), and this dominance of the
second prime should decrease with increasing P1–P2
SOA because the first prime has progressively more time to
activate a response before the second prime occurs, while the
second prime has progressively less time before the target
occurs (Grainger et al., 2013).

Results

Analysis of mean error rate and mean correct RT

An analysis of the single prime conditions showed that re-
sponses were faster and more accurate when primes were
consistent rather than inconsistent, with the no-prime condi-
tion in between (see Figs. 2 and 3, left panel). One-way re-
peated-measures ANOVAs showed significant differences in
RT, F(1.45, 15.90) = 33.39, p < .001, as well as error rates,
F(1.84, 20.25) = 35.56, p < .001. In RTs as well as error rates,
all means were significantly different from each other, all p ≤
.001, except for the RT difference between consistent and no-
prime conditions (p = .061).

In a next step, double-prime conditions were analyzed.
RTs and error rates showed a similar overall pattern:
Responses were fastest and most accurate for two consis-
tent primes, slowest and least accurate for two inconsistent
primes, and in between when primes were mixed (condi-
tions CI and IC). In RTs, a two-way repeated-measures
ANOVA showed a significant main effect of consistency
(with levels CC, CI, IC, II), F(2.09, 22.98) = 64.94, p <
.001, a significant main effect of SOA F(1.85, 20.35) =
10.43, p = .001, and a significant interaction, F(4.00,
44.04) = 7.86, p < .001 (see Fig. 2, right panel). This pattern
was broken down into two separate ANOVAs, one for iden-
tical (CC, II) and one for different primes (CI, IC). The first
one (CC versus II) only showed a significant main effect of
consistency, F(1.00, 11.00) = 113.30, p < .001. This effect
was constant across SOA, with no main effect of SOA or an
interaction. The second test (CI versus IC) showed that RT
increased with SOA, F(1.78, 19.32) = 27.76, p < .001.
There was no main effect of consistency, but a significant
interaction, F(1.46, 16.10) = 12.69, p = .001. IC was faster

Fig. 4 Sample-based estimates of h(t), S(t), P(t), and ca(t) aggregated
across all participants in Experiment 1, for the first 24 bins (or 600 ms)
after target onset. Bin width equals 25 ms. First column: Black lines
represent the no-prime condition, green lines the consistent single-prime
condition, and red lines the inconsistent single-prime condition. Second
to last column: Each column represents a different SOA condition. Green
lines represent consistent–consistent conditions, cyan lines inconsistent–
consistent conditions, orange lines consistent–inconsistent conditions, red
lines inconsistent–inconsistent conditions. Black vertical lines highlight
bins at ~250–275ms after onset of P1, grey vertical lines after onset of P2.
Note that we only plotted a ca(t) estimate if the corresponding hazard for
that bin was larger than .005. For better visibility only every second error
bar is depicted

R
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than CI when the first SOA was short, but slower when
it was long.

This pattern was even clearer (and almost perfectly sym-
metrical) in the error rates. An ANOVA of all double-prime

Fig. 5 Model predictions. Predicted hazard (first row), cloglog[h(t)] (second row), logit[ca(t)] (third row), and conditional accuracy functions (fourth
row) for trial 1,000 of Experiment 1. Again, black vertical lines highlight bins at ~250–275 ms after onset of P1, grey vertical lines after onset of P2
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conditions showed no main effect of SOA, but a significant
main effect of consistency, F(1.73, 19.07) = 37.84, p < .001,
and a significant interaction F(3.38, 37.18) = 5.61, p = .002.
The follow-up analysis of CC versus II conditions only
showed a main effect of consistency, F(1.00, 11.00) = 59.40,
p < .001, but no SOA or interaction effects. The follow-up
analysis of CI versus IC conditions only showed an interac-
tion, F(1.98, 21.74) = 13.87, p < .001, but no main effects: IC
was more accurate than CI when the first SOAwas short, but
less accurate when it was long.

Event history analysis: Descriptive statistics

In the single-prime conditions (see the first column in Fig. 4),
the fastest responses occurred around 150 ms after target on-
set. Thereafter, we saw a steady increase in response hazards,
which was delayed for inconsistent compared with consistent
primes. This led to a marked priming effect in h(t) of about
150 ms duration, and also in median RT (i.e., when the survi-
vor function crosses .5) and mean RT. When most responses
had occurred and the survival probability was low, response
hazard was still at a high constant level. Strikingly, early re-
sponses were virtually always correct whenever the prime was
consistent, but incorrect whenever it was inconsistent, show-
ing that responses were exclusively determined by the prime,
not the target. In inconsistent trials, conditional accuracy then
quickly increased from almost zero to almost one, showing
how the target took control over the response.7

Let us now take a look at the double-prime conditions
where the P1–P2 SOAwas short and the P2–T SOAwas long
(27/80’ see the second column in Fig. 4), so that the impact of
the second prime should be high relative to the first prime.
Again, the fastest responses occurred around the same time in
all priming conditions, around 150 ms after target onset or
about 250 ms after P1 onset. However, initial response haz-
ards in CI and IC conditions were lower than in CC and II
conditions around 150–200 ms. This likely reflected early
response competition due to conflicting prime information,
as both primes activated opposite responses. After about
250 ms without response occurrence, the hazard functions
began to differentiate and followed the order observed in
mean RTs: CC was fastest, followed by IC, CI, II. This was
evident in the hazard, survivor, and probability mass func-
tions. The most diagnostic information, however, was in the
conditional accuracy functions. Not surprisingly, the earliest
responses were virtually all correct when both primes were
consistent and all incorrect when both primes were inconsis-
tent, which again showed that the first prime determined the
earliest responses. In the II condition, conditional accuracy
then quickly increased as the target took control over the re-
sponse. This also occurred in the IC condition, demonstrating
that the first prime alone controlled the earliest responses; but
the following increase in accuracy occurred earlier than in the

II condition, demonstrating that the consistent second prime
influenced the response as well. Exactly the reverse process
occurred in the CI condition. Here, response accuracy was
nearly perfect at first because of the consistent first prime, then
decreased as the inconsistent second prime became effective,
and then increased again as the target finally took control over
the response.

What happened when the SOAs shifted first to 53/53 and
then to 80/27? The overall pattern in ca(t) remained the same:
CC was always fastest with near-perfect accuracy, II was al-
ways slowest with conditional accuracy rising from very low
to very high values, IC always showed an earlier increase in
conditional accuracy, time-locked to the second prime’s
appearance. The most important change occurred in the
CI condition. As the P1–P2 SOA became larger and the
P2–T SOA became correspondingly shorter, the influ-
ence of the inconsistent second prime diminished, and
the temporary drop in conditional accuracy became
smaller. As with the effects observed in IC, this nadir in con-
ditional accuracy was time locked to the second prime’s
presentation.

Event history analysis: Inferential statistics

To see whether these observed differences are significant we
fitted hazard and conditional accuracy models to the aggregat-
ed data. Table 1 shows the selected hazard model, and Table 2
the selected ca(t) model. Figure 5 shows predicted (i.e., mod-
el-based) hazard cloglog[h(t)], logit[ca(t)], and conditional ac-
curacy functions for Trial 1,000 (note that choosing another
trial number would not change the priming effects because we
did not include interaction effects including TRIAL). The first
five parameters in Table 1 model the shape of the cloglog[h(t)]
function in the baseline condition, IC-27/80 in Trial 1,000 (see
Fig. 5, row 2, column 2, blue line). The intercept of −2.361
cloglog-hazard units corresponds to an estimated hazard of .09
in Bin 275. This intercept increases over time in a linear,
quadratic, cubic and quartic fashion (see the Parameters 2 to
5 in Table 1), so that the intercept changes from −4.65 in Bin
200 to −.62 in Bin 400 (see row 1 in Table 1).

Most importantly, compared with condition IC, changing
to CC increases the estimated cloglog-hazard in Bin 275 by
.627 units (Parameter 26), changing to CI decreases it by
.256 units (Parameter 30), and changing to II decreases it by
.403 units (Parameter 21; all p < .0001). While the main
effects of CC and II in Bin 275 change in magnitude over
time (parameter estimates in rows 27–29, 22–25), the effect
of CI is time invariant. For example, note that in Bin 200
conditions, II and CC have positive parameter estimates that
significantly differ from condition IC (see the parameter
estimates in rows 21 and 26 in Table 1, column 3). This
means that the hazard of response occurrence is lower in
Bin 200 in mixed prime conditions.
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The effect of changing the SOA combination from 27/80 to
53/53 is to decrease the estimated cloglog-hazard by.191 units
in all bins (Parameter 31). The estimated cloglog-hazard de-
creases even further when SOA combination is changed to 80/
27 (Parameters 32–34). In other words, response occurrence
slows down with decreasing P2–T SOA for condition IC.
However, this effect is much smaller or absent for CC and II
due to interactions with 53/53 (Parameters 35 and 37) and 80/
27 (Parameters 36 and 38). Furthermore, with SOA combina-
tion 80/27 the difference between CI and IC is gone (due to
Parameter 39 neutralizing the effect of Parameter 30).
Finally, the hazard model also shows a significant effect
of TRIAL on the estimated cloglog-hazard in bins after
275 ms after target onset.

The first five parameters in Table 2 model the shape
of the logit[ca(t)] function in the baseline condition, IC-
27/80 in Trial 1,000 (see Fig. 5, row 3, column 2, blue
line). The intercept of 1.918 corresponds to an estimated
ca(t) of .87 in Bin 275. This intercept increases over
time in a linear, quadratic, cubic and quartic fashion
(Parameters 2–5).

Most importantly, compared with condition IC, changing
to CC increases the estimated logit-ca(t) in Bin 275 by 1.624
units (Parameter 20), changing to CI decreases it by 1.44 units
(Parameter 23), and changing to II decreases it by 2.438 units
(Parameter 16; all ps < .0001). Themain effects of CC, CI, and
II in Bin 275 change over time (Parameters 16–26), so that
relative to IC, the positive effect of CC decreases over time,
the negative effect of II first increases and then decreases, and
the effect of CI shifts from positive to negative to zero. For
example, note that in Bin 175 conditions CC and CI have
positive parameter estimates that significantly differ from

condition IC while II is not significantly different (compare
rows 20 and 23 with row 16 in Table 2, column 3). This means
that the conditional accuracy of these early responses is almost
zero for II and IC, and almost one for CI and CC, thus
reflecting first prime identity (see Fig. 5, row 4).

Increasing the P1–P2 SOA leads to a decrease in the esti-
mated logit-ca(t) in each bin (Parameters 27–31). Confirming
the change in the temporary drop in conditional accura-
cy for condition CI in Fig. 4 are the (early and positive)
interactions between CI, SOA combination, and TIME
(Parameters 37–40).

Summary

As expected, mean RT and mean ER analyses of the single-
prime and no-prime conditions revealed that the stimulus-set
used was sufficient to produce the common finding in re-
sponse priming experiments: faster and more accurate re-
sponses in consistent trials and slower and less accurate re-
sponses in inconsistent trials. Similarly, when two primes
were presented, responses were fastest and most accurate for
two consistent primes, slowest and least accurate for two in-
consistent primes, and in between when primes were mixed.
The event history analysis showed that sequential primes in
fact initiate sequential response activation: (1) earliest
responses were controlled exclusively by the first prime, (2)
intermediate responses reflected competition between the
primes where the identity of the second prime increasingly
dominated the response as P2–T SOA increased, (3) this latter
effect was tracking the onset of the second prime, both in
magnitude and timing, and (4) only the slowest responses
were clearly controlled by the target.

Fig. 6 Stimulus displays and design. After fixating the center of the white lollipop frame a sequence of two primes and a target is presented, with SOA1–
SOA2 combinations of 80/187, 133/133, or 187/80
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Experiment 2

Method

Participants

All participants from the first experiment also took part in the
second experiment (see Participants section for Experiment
1). Experiment order was counterbalanced.

Apparatus and stimuli

The same apparatus and stimuli were employed (see
Apparatus and Stimuli section in Experiment 1).

Procedure

Again, each trial began with the onset of the lollipop frame
(see Fig. 6). This time, after 333 ms of fixation, P1 was

Table 3 Selected hazard model for Experiment 2

(150,175] (250,275] (300,325] (375,400]

effect PE p PE SE t p PE p PE p

1 Intercept −5.941 0.0000*** −2.162 0.259 −8.355 0.0000*** −1.190 0.0000*** −0.843 0.0000***

2 TIME 0.666 0.037 18.245 0.0000***

3 TIME2 −0.089 0.004 −23.066 0.0000***

4 TIME3 −0.002 0.001 −2.467 0.0136*

5 TIME4 0.001 0.000 6.131 0.0000***

6 TRIAL 0.008 0.0000*** 0.008 0.002 4.099 0.0000*** 0.008 0.0000*** 0.008 0.0000***

7 C 0.128 0.4836 0.315 0.050 6.343 0.0000*** 0.268 0.0000*** 0.022 0.7489
8 TIME:C 0.000 0.026 −0.001 0.9995
9 TIME2:C −0.012 0.005 −2.337 0.0194*

10 I −0.279 0.1733 −0.442 0.056 −7.876 0.0000*** −0.383 0.0000*** −0.118 0.0377*

11 TIME:I 0.006 0.029 0.217 0.8282
12 TIME2:I 0.012 0.005 2.409 0.0160*

13 N 1.282 0.0000*** 0.337 0.053 6.368 0.0000*** 0.034 0.5100 −0.208 0.0024**

14 TIME:N −0.180 0.022 −8.171 0.0000***

15 TIME2:N 0.014 0.004 3.248 0.0012**

16 II 1.188 0.0000*** −0.569 0.059 −9.696 0.0000*** −0.790 0.0000*** −0.394 0.0000***

17 TIME:II −0.236 0.028 −8.398 0.0000***

18 TIME2:II 0.063 0.006 10.072 0.0000***

19 TIME3:II 0.001 0.001 0.662 0.5082
20 TIME4:II −0.001 0.000 −2.521 0.0117*

21 CC 0.754 0.0000*** 0.335 0.038 8.733 0.0000*** 0.194 0.0000*** 0.069 0.1961
22 TIME:CC −0.082 0.019 −4.397 0.0000***

23 TIME2:CC 0.006 0.004 1.522 0.1281
24 CI −0.100 0.5469 −0.529 0.047 −11.279 0.0000*** −0.599 0.0000*** −0.358 0.0000***

25 TIME:CI −0.095 0.027 −3.494 0.0005***

26 TIME2:CI 0.026 0.006 4.155 0.0000***

27 TIME3:CI 0.003 0.002 1.769 0.0769
28 TIME4:CI −0.001 0.000 −2.630 0.0085**

29 SOA_80_187 0.780 0.0000*** 0.350 0.049 7.174 0.0000*** 0.200 0.0000*** 0.056 0.3904
30 TIME:SOA_80_187 −0.086 0.020 −4.252 0.0000***

31 TIME2:SOA_80_187 0.005 0.003 1.621 0.1050
32 SOA_133_133 0.275 0.0000*** 0.160 0.032 5.045 0.0000*** 0.103 0.0000*** 0.018 0.6524
33 TIME:SOA_133_133 −0.029 0.010 −2.884 0.0039**

34 II:SOA_80_187 −0.933 0.0000*** −0.080 0.078 −1.025 0.3055 0.137 0.0550 0.202 0.0222*

35 TIME:II:SOA_80_187 0.143 0.030 4.809 0.0000***

36 TIME2:II:SOA_80_187 −0.017 0.005 −3.336 0.0008***

37 II:SOA_133_133 −0.381 0.0028** −0.169 0.068 −2.496 0.0126* −0.063 0.2253 0.096 0.1665
38 TIME:II:SOA_133_133 0.053 0.018 2.925 0.0034**

39 CC:SOA_80_187 −0.818 0.0000*** −0.127 0.064 −1.982 0.0474* −0.007 0.9181 −0.107 0.2798
40 TIME:CC:SOA_80_187 0.098 0.029 3.364 0.0008***

41 TIME2:CC:SOA_80_187 −0.019 0.006 −3.154 0.0016**

42 CI:SOA_80_187 −0.268 0.0534 −0.093 0.069 −1.337 0.1811 −0.005 0.9291 0.127 0.1213
43 TIME:CI:SOA_80_187 0.044 0.021 2.082 0.0374*

SD Intercept 1.301 .888 .696 .460
SD TIME .111 .111 .111 .111
Correlation −.954 −.898 −.828 −.528

Note. Parameter estimates (PE) and test statistics. During model selection TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 175, 325, and 400, respectively
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presented in either red or green for 27 ms, except for the no-
prime trials, during which all segments remained black. After

a P1–P2 SOA of 80, 133, or 187 ms, either a red or green P2
was presented for 27 ms, except for the no-prime and single-

Table 4 Selected ca(t) model for Experiment 2

(175,200] (250,275] (300,325] (375,400]

Effect PE p PE SE t p PE p PE p

1 Intercept 1.861 0.0000*** 2.827 0.176 16.059 0.0000*** 3.139 0.0000*** 3.603 0.0000***

2 TIME 0.188 0.054 3.499 0.0005***

3 TIME2 −0.025 0.013 −1.968 0.0491**

4 TIME3 0.005 0.003 1.877 0.0605

5 TIME4 0.000 0.000 −0.784 0.4328

6 C 0.700 0.0378* 0.223 0.207 1.079 0.2807 −0.095 0.5991 −0.573 0.0359*

7 TIME:C −0.159 0.061 −2.599 0.0094**

8 I −3.641 0.0000*** −1.287 0.193 −6.660 0.0000*** −0.322 0.1310 0.218 0.4510

9 TIME:I 0.603 0.095 6.345 0.0000***

10 TIME2:I −0.060 0.020 −2.998 0.0027**

11 N −0.723 0.0000*** −0.723 0.158 −4.584 0.0000*** −0.723 0.0000*** −0.723 0.0000***

12 II −6.031 0.0000*** −2.997 0.173 −17.332 0.0000*** −1.590 0.0000*** −0.402 0.0576

13 TIME:II 0.827 0.064 12.927 0.0000***

14 TIME2:II −0.062 0.013 −4.679 0.0000***

15 CC 0.961 0.0011** 0.111 0.151 0.731 0.4645 0.229 0.1297 0.313 0.1589

16 TIME:CC −0.022 0.073 −0.298 0.7660

17 TIME2:CC 0.059 0.019 3.039 0.0024**

18 TIME3:CC −0.009 0.004 −2.637 0.0084**

19 CI −3.660 0.0000*** −3.678 0.188 −19.545 0.0000*** −2.233 0.0000*** −1.129 0.0000***

20 TIME:CI 0.721 0.103 7.017 0.0000***

21 TIME2:CI 0.072 0.025 2.823 0.0048**

22 TIME3:CI −0.044 0.006 −6.856 0.0000***

23 TIME4:CI 0.004 0.001 4.837 0.0000***

24 SOA_80_187 0.972 0.0034** −0.013 0.170 −0.076 0.9396 −0.386 0.0178* −0.574 0.0081**

25 TIME:SOA_80_187 −0.240 0.065 −3.706 0.0002***

26 TIME2:SOA_80_187 0.028 0.022 1.291 0.1967

27 TIME3:SOA_80_187 0.000 0.004 −0.128 0.8984

28 SOA_133_133 −0.097 0.7321 0.051 0.162 0.317 0.7513 0.034 0.8416 −0.166 0.4399

29 TIME:SOA_133_133 0.015 0.056 0.260 0.7949

30 TIME2:SOA_133_133 −0.012 0.012 −0.978 0.3280

31 II:SOA_80_187 1.084 0.0000*** 1.084 0.207 5.239 0.0000*** 1.084 0.0000*** 1.084 0.0000***

32 II:SOA_133_133 0.724 0.0008*** 0.724 0.215 3.365 0.0008*** 0.724 0.0008*** 0.724 0.0008***

33 CI:SOA_80_187 −1.783 0.0058** 1.598 0.254 6.289 0.0000*** 1.640 0.0000*** 0.281 0.3841

34 TIME:CI:SOA_80_187 0.369 0.119 3.089 0.0020**

35 TIME2:CI:SOA_80_187 −0.205 0.040 −5.113 0.0000***

36 TIME3:CI:SOA_80_187 0.016 0.006 2.538 0.0112*

37 CI:SOA_133_133 −0.146 0.7966 0.672 0.230 2.922 0.0035** 0.769 0.0010** 0.242 0.4493

38 TIME:CI:SOA_133_133 0.138 0.111 1.242 0.2142

39 TIME2:CI:SOA_133_133 −0.045 0.023 −1.987 0.0470*

SD Intercept .231 .390 .496 .655

SD TIME .053 .053 .053 .053

Correlation .988 .996 .998 .999

Note. Parameter estimates (PE) and test statistics. During model selection TIME was centered on bin 275. The selected model was refitted three times
with TIME centered on bin 200, 325, and 400, respectively
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prime trials, during which all segments remained black. After
a P2–T SOA of 187, 133, or 80ms, respectively, a red or green
target was presented. In this experiment, P1–P2 and P2–T
SOAs always added up to a P1–T SOA of 267 ms. The target
stayed on-screen for 107 ms.

Analysis of mean error rate and mean correct RT

In a first step, two sets of analyses were performed.
First, one-way repeated-measures ANOVAs, with the
factor consistency (consistent, inconsistent, no prime),
were performed for single-prime and no-prime condi-
tions, one for each of the two dependent variables, RT
and ER. A total of 3,600 trials were initially available
for analysis. Trials with reaction times faster than
100 ms or slower than 999 ms (0.58%) were excluded from
the analysis. Further, error trials (then 8.16%) were excluded
from RT analysis.

Second, two 3 (SOA) × 4 (consistency) repeated-
measures ANOVAs were performed for all double-
prime conditions, one each for RT and ER. Initially, a
total of 14,400 trials were available for analysis. Trials
with reaction times faster than 100 ms or slower than
999 ms (0.93%) were excluded from the analysis.
Further, error trials (then 12.88%) were excluded from
RT analysis. To follow up on significant interaction ef-
fects, one-way repeated-measures ANOVAs, with the
four-level factor consistency, were performed separately
for each SOA condition.

Greenhouse–Geisser-corrected p values were used.
To satisfy ANOVA requirements, error rates were arc-
sine transformed. Additional within-subjects contrasts
were calculated to further investigate significant main
effects.

Event history analysis

First, descriptive statistics were calculated as in Experiment 1
(see Event History Analysis section in Experiment 1). Next,
for hazard modeling purposes, we censored the trials at
450 ms after target onset, and discarded the first five bins,
since the most informative events occurred within 125 to
450 ms. The final data set for fitting h(t) models contained
153,286 rows.

Finally, for ca(t) modeling, the original data set was used
where each row corresponds to one trial of one participant
(1,500 × 12 = 18,000 trials). Trials with a response latency
below 125 ms or above 450 ms were deleted (12.36% of the
data), in order to avoid problems of linear separability during
model fitting. The final data set for the ca(t) model contained
15,775 rows.

The estimation procedures were the same for both
models as in Experiment 1, except that now the IC-
187/80 condition (P1: inconsistent, P2: consistent, P1–
P2 SOA: 187 ms, P2–T SOA: 80 ms) was chosen as a
baseline condition. In summary, with all effects set to
zero, the h(t) model’s intercept refers to the estimated
cloglog[h(t)], and the ca(t) model’s intercept to the es-
timated logit[ca(t)], for bin 275 in Trial 1,000 of the IC-
187/80 condition. Again, we refitted the selected model
a number of times, with TIME centered each time on
another bin (see Tables 3 and 4).

Predictions

Because P1–T SOAs in Experiment 2 are long, responses are
no longer expected to conform to the chase criteria because
participants have to wait out the target in order to safeguard
against errors provoked by the primes, so that early primes can
influence responses only out of the memory buffer that carries
information from both primes but is dominated by the second

Fig. 8 Mean ER results for Experiment 2. No and single-prime condi-
tions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes

Fig. 7 Mean correct RT results for Experiment 2. No and single-prime
conditions: Left panel, error bars resemble the standard error of the mean,
consistency conditions on the x-axes. Double-prime conditions: Right
panel, error bars resemble the standard error of the mean, separate lines
for consistency conditions, SOA conditions on the x-axes
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one (Grainger et al., 2013). Therefore, we expected that early
responses would no longer be controlled exclusively by the
first prime, but jointly by both primes, with the second prime

becoming more dominant as the P2–T SOA increased. The
latest responses should be controlled mainly by the target and
thus all be correct.
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Results

Analysis of mean error rate and mean correct RT

Analysis of the single prime conditions showed that responses
were faster and more accurate when primes were consistent
rather than inconsistent. The no-prime condition was interme-
diate in response times, but higher than the other two in error
rate (see Figs. 7 and 8, left panel). One-way repeated-mea-
sures ANOVAs showed significant differences in RT,
F(1.34, 14.75) = 12.60, p = .002, as well as error rates,
F(1.82, 20.02) = 3.95, p = .039. In RTs, the differences be-
tween all means were significant, all ps ≤ .002, except
the one between consistent and no primes. In ER, only
the difference between consistent and no primes was
significant, p = .035.

In a next step, double-prime conditions were analyzed (see
Figs. 7 and 8, right panel). Responses were fastest and most
accurate for two consistent primes and slowest and less accu-
rate for two inconsistent primes. The CI condition was virtu-
ally identical to the II condition in response times, but slightly
higher in error rate. The IC condition was similar to the CC
condition in error rates, but slower in terms of response times.
In RTs, a two-way repeated-measures ANOVA showed a sig-
nificant main effect of consistency (with levels CC, CI, IC, II),
F(1.55, 17.00) = 59.88, p < .001, a significant main effect of
SOA, F(1.62, 17.83) = 87.63, p < .001, and a significant
interaction, F(3.35, 36.88) = 3.66, p = .018, that seems to be
based on the less steep increase in RT with SOA in the CC
condition. We broke down this pattern post hoc into two sep-
arate ANOVAs, one for inconsistent and one for consistent
second primes. The first one (II versus CI) only showed that
response time increased with SOA, F(1.73, 19.01) = 87.91, p
< .001. The second test (CC versus IC) showed that responses
were faster for CC than for IC, F(1.00, 11.00) = 15.44, p =
.002, that RT increased with SOA, F(1.66, 18.30) = 15.66, p <
.001, and that the increase was steeper for IC than for CC,
F(1.68, 18.46) = 6.11, p = .012.

The same strategy was used for the error rates. An ANOVA
of all dual-prime conditions showed no main effect of SOA,
but a significant main effect of consistency, F(1.83, 20.08) =
45.15, p < .001, and an interaction effect, F(4.26, 46.82) =

2.55, p = .048. The analysis of CC versus IC conditions gave
no significant effects, and neither did the analysis of II versus
CI conditions.

Event history analysis: Descriptive statistics

In the single-prime conditions (first column in Fig. 9), the first
responses occur after about 200 ms, which is a bit later
than in Experiment 1 and in line with the prediction
that participants have to safeguard against errors. After
that, there is an increase in response hazards that is
steeper for consistent than for inconsistent primes, lead-
ing to an advantage in mean and median RT. Again,
around 400 ms after target onset, this priming effect is
gone. As in Experiment 1, early responses are mostly correct
when the single prime is consistent, but incorrect when it is
inconsistent, showing that early responses are still determined
by the prime, not the target.8

Let us now look at the double-prime conditions where the
P1–P2 SOA is short and the P2–T SOA is long (80/187,
second column in Fig. 9), so that the impact of the second
prime should be high relative to the first prime. Again, al-
though the very earliest responses occur around the same time
in all priming conditions, initial response hazards in CI and IC
conditions are lower than in CC and II conditions, reflecting
early response competition between both prime-triggered re-
sponses (see also the survivor functions). After about 250 ms,
both groups begin to differentiate and now follow the order
observed in mean RTs: CC, IC, and then CI and II. Again, the
most diagnostic information is in the conditional accuracy
functions, which show a markedly different pattern than in
Experiment 1. The earliest responses are still predominantly
correct when both primes are consistent and predominantly
incorrect when both primes are inconsistent, showing that
the earliest responses are not determined by the target,
but by information in the primes. However, conditional
accuracy functions for CC and IC are virtually identical,
as are those of II and CI. In other words, the earliest
systematic responses reflect only the second prime and
not the first, probably because the P1–T SOA is too
long. However, if observers would respond faster, we believe
that the very first responses would reflect the first prime, just
as in Experiment 1.

Although these early effects seem to be driven largely by
the second prime, comparison with the 133/133 and 187/80
SOA conditions shows that the effects on hazard cannot be
attributed to the second prime alone. While the CC, CI, and II
condition show highly similar time courses in every condition,
this is not true for the IC condition: The longer the first SOA
and the shorter the second one, the more delay appears in
condition IC compared with CC (the same effect that is evi-
dent in average RT). This effect shows that the first prime has
an influence on the timing of the response. Moreover, it

Fig. 9 Sample-based estimates of h(t), S(t), P(t), and ca(t) aggregated
across all participants in Experiment 2, for the first 24 bins (or 600 ms)
after target onset. Bin width equals 25 ms. (First column) Black lines
represent the no-prime condition, green lines the consistent single-prime
condition, and red lines the inconsistent single-prime condition. (Second
to last column) Each column represents a different SOA condition. Green
lines represent consistent-consistent conditions, cyan lines inconsistent-
consistent conditions, orange lines consistent-inconsistent conditions, red
lines inconsistent–inconsistent conditions. Black vertical lines highlight
bins at ~275–300 ms after onset of P2. Note that we only plotted a ca(t)
estimate if the corresponding hazard for that bin was larger than .003. For
better visibility only every second error bar is depicted

R
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appears that with shorter P2–T SOA, effects of the second
prime become visible in the conditional accuracy functions.

Earliest responses are increasingly more incorrect in the IC
condition and increasingly more accurate in the CI condition.

Fig. 10 Model predictions. Predicted hazard (first row), cloglog[h(t)] (second row), logit[ca(t)] (third row), and conditional accuracy functions (fourth
row) for trial 1,000 of Experiment 2. Black vertical lines highlight bins at ~275–300 ms after onset of P2
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Event history analysis: Inferential statistics

Table 3 shows the selected hazard model, and Table 4 the
selected ca(t) model. Figure 10 shows predicted (i.e., model-
based hazard) cloglog[h(t)], logit[ca(t)] and conditional accu-
racy functions for Trial 1,000. The first five parameters in
Table 3 model the shape of the cloglog[h(t)] function in the
baseline condition, IC-187/80 in Trial 1,000 (see Fig. 10, row
2, column 4, blue line). Most importantly, compared with
condition IC, changing to CC increases the estimated
cloglog-hazard in Bin 275 by .335 units (Parameter 21),
changing to CI decreases it by .529 units (Parameter 24),
and changing to II decreases it by .569 units (Parameter 16;
all ps < .0001). While the main effect of CC in Bin 275 de-
creases over time, the main effects of II and CI increase over
time initially (Parameters 17–20, 25–28). Similar to Bin 200
in Experiment 1, in Bin 175 the estimated cloglog-hazard is
higher for CC and II than the mixed conditions IC and CI.

The effect of changing the SOA combination from 187/80
to 133/133 is to increase the estimated cloglog-hazard in the
early bins (Parameters 32–33). The estimated cloglog-hazard
in these bins increases even further when SOA combination is
changed to 80/187 (Parameters 29–31). In other words, re-
sponse occurrence speeds up with increasing P2–T SOA.
The remaining interactions between dual-prime (II, CC, CI),
SOA, and TIME (Parameters 34–43) mainly reflect a lower
cloglog-hazard in Bin 175, especially for SOA combination
80/187.

The first five parameters in Table 4 model the shape of the
logit-ca(t) function in the baseline condition, IC-187/80 in
Trial 1,000 (see Fig. 10, row 3, column 4, blue line). Most
importantly, compared with condition IC, changing to CC
increases the estimated logit-ca(t) in Bin 275 by .111 units
(Parameter 15; p = .4645), changing to CI decreases it by
3.678 units (Parameter 19; p < .0001), and changing to II
decreases it by 2.997 units (Parameter 12; p < .0001). These
main effects of CC, CI, and II in Bin 275 decrease in magni-
tude over time (Parameters 12–23).

There is no significant main effect of decreasing the P1–P2
SOA from 187 to 133 (Parameters 28–30), but decreasing it to
80 ms increases the estimated logit-ca(t) in Bin 200 and de-
creases the estimated logit-ca(t) for bins >300 ms (Parameters
24–27). Finally, there are time-invariant interactions between
II and SOA combinations (Parameters 31–32), and time-
varying interactions between CI and SOA combinations
(Parameters 33–39), which all increase the estimated logit-
ca(t) in at least some of the bins.

Summary

Overall, even with a long P1–T SOA, single-prime conditions
produced the common finding in response priming experi-
ments: faster and more accurate responses in consistent trials

and slower and less accurate responses in inconsistent trials.
Again, when two primes were presented, responses were
fastest and most accurate for two consistent primes, and
slowest and least accurate for two inconsistent primes.
However, under the SOA conditions of Experiment 2, when
primes were mixed, we found a clear dominance of the second
prime. In particular, CI was almost identical to II, in both
response times and error rates. Similarly, IC was almost iden-
tical to CC in error rate, but slightly slower. In other words, in
both RT and ER the second prime seemed to dominate the
response, yet an inconsistent first prime could still slow down
response times. This might reflect early response competition
due to conflicting prime information in mixed prime
conditions.

Again, in order to investigate the temporal dynamics of
sequential motor activation, we performed an event history
analysis. Altogether, the findings suggest that with prolonged
SOAs: (1) The earliest systematic responses were predomi-
nantly controlled by the second prime, (2) the slowest re-
sponses were controlled by the target, (3) overt responses to
the first prime were extremely rare; however, (4) the first
prime was able to slow down initial response hazards in mixed
prime conditions compared with conditions with identical
primes.

General discussion

The goal of the current study was to investigate (a) whether
sequential primes initiate immediate sequential response acti-
vation or integrate in a buffer before a response is emitted, (b)
whether sequential response activation at short SOAs con-
forms to the rapid-chase criteria, and (c) how the influence
of the first prime changes when the SOAs are prolonged so
that participants have to safeguard against early errors from
inconsistent primes.

Event history analysis provides substantial evidence that
sequential primes initiate strictly sequential response activa-
tion at short SOAs (Experiment 1). First, we found that earliest
responses were exclusively controlled by the first prime irre-
spective of the identity or onset time of the second prime, that
intermediate responses were influenced by the second prime
(with the magnitude and timing of this effect depending on the
second prime’s onset time), and that only late responses were
controlled by the actual target. This strongly supports the no-
tion of feedforward and sequential activation, and is in line
with previous findings that first responses are exclusively trig-
gered by prime properties, independent of the target, and only
later responses are influenced by target properties (Eimer &
Schlaghecken, 1998; Grainger et al., 2013; Schmidt &
Schmidt, 2010; Schmidt, 2002; Schmidt & Schmidt, 2009;
Vath & Schmidt, 2007). Thus, the data adhere to the chase
criteria proposed by T. Schmidt (2014): (1) The first prime
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rather than the target or subsequent prime signals determine
the onset and initial direction of the response; (2) target and
second prime influence the response before it is completed;
(3) movement kinematics initially depend on characteristics of
the first prime only and are independent of all characteristics
of target and subsequent prime signals.

Second, as mentioned before (see Multiple-Prime
Paradigm section), a simple feedforward-sweep model seems
to account very well for response priming effects at short
SOAs (up to 100 ms). However, priming effects at longer
SOAs are more plausibly carried by the content of a response
buffer that carries information from both primes but is domi-
nated by the second one (Grainger et al., 2013). This notion is
supported by our findings. When SOAs were long
(Experiment 2), we found that early systematic responses
were predominantly triggered by the second prime’s identity
and that later responses were triggered by the target’s identity.
In contrast to the first experiment, we found that overt re-
sponses to the first prime were extremely rare, but we identi-
fied an indirect, covert influence of the first prime’s identity on
motor response activation, as there were signs of response
competition due to conflicting prime information in mixed
prime conditions. This strongly suggests that information of
a first prime was indeed maintained in a memory buffer and
could influence the response that is otherwise dominated by
the second prime. Future computational models of decision-
making (cf. Mattler & Palmer, 2012; Schmidt & Schmidt,
2018; Schubert, Palazova, & Hutt, 2013; Ulrich, Schröter,
Leuthold, & Birngruber, 2015; Vorberg et al., 2003) should
test whether the observed hazard and conditional accuracy
functions can be simulated with or without a memory buffer.

It is important to point to the different insights that can be
gained from an ANOVA on mean correct RT, versus an event
history analysis. First, in accordance with the conclusions from
previous findings (Breitmeyer & Hanif, 2008; Grainger et al.,
2013), a second prime dominates the priming effect in mean
correct RTs and ER, at least for short interprime intervals.
However, the event history analysis showed that the first prime
dominated themotor response in the earliest bins (Experiment 1).
Thus, in contrast to Breitmeyer and Hanif (2008), this suggests
that the second prime does not update and override the effects of
the first prime, but that both prime-triggered motor responses are
competing in mixed conditions, and under the right SOA setup,
even the first prime is able to dominate the motor response.

Second, when SOAs were long (Experiment 2), we found
an even clearer dominance of the second prime since partici-
pants seemed to safeguard against early errors provoked by
the first prime by waiting out the target. Although response
accuracy was entirely dominated by the second prime, RT
analysis revealed that an inconsistent first prime in IC condi-
tions could still slow down responses compared with
consistent-only conditions. The event history analysis con-
firmed that early hazards were lower in mixed prime

conditions compared with identical prime conditions. We pro-
pose that this is due to response competition created by con-
flicting prime information. Further, this effect increased with
prolonged SOAs between primes, again reflecting a reduced
dominance of the second prime due to an increase of the first
prime’s effect. Thus, the first prime can still influence the
motor response with long SOAs. Note that these systematic
differences between SOA ranges imply that long and short
SOAs should not be mixed within the same experiment, since
the presence of long SOAswould enforce a strategy of waiting
out the target even in trials where the SOA is short (Schmidt,
Haberkamp, & Schmidt, 2011).

When we compare SOA combination 187/80 of
Experiment 2 with SOA combination 27/80 of Experiment
1, we see that P2 dominated behavior more in the former than
in the latter condition. Therefore, in line with Grainger et al.
(2013), we propose that the first prime can influence the re-
sponse only out of a memory buffer in Experiment 2, since
prime information seemed to be kept active for a prolonged
period of time without activating a response on its own.

Importantly, we designed our lollipop stimulus in such a way
as to minimize masking effects (no spatial overlap) and Simon/
flanker effects (prime information is presented at both sides of the
target). However, it is unclear if active response inhibition was
playing a role in the generation of the behavior in Experiment 2.
Panis and Schmidt (2016) and Schmidt, Hauch, and Schmidt
(2015) showed that a second stimulus can trigger active and
selective inhibition of the response triggered by a first stimulus,
within about 360 ms. For example, for SOA combinations 133/
133 and 187/80 we see that CI has a lower conditional accuracy
than II for bins after 225 ms. This might be caused by active
inhibition of the first compatible response, creating an even stron-
ger activation of the incompatible response channel in condition
CI than in II. Future modeling studies should investigate this
issue further.

More generally, the information obtained from an event his-
tory analysis can provide strong constraints for computational
models of the underlying sensory integration, decision, and cog-
nitive control processes (Panis, Moran, Wolkersdorfer, &
Schmidt, 2020). For example, existing models differ in (a)
whether sensory integration is perfect (e.g., the drift-diffusion
model; Ratcliff & Rouder, 1998) or leaky (e.g., the leaky
competing accumulator model of Usher & McClelland, 2001),
(b) whether the response criterion is fixed (e.g., Poisson
accumulator models; Schmidt & Schmidt, 2018; Schubert
et al., 2013; Vorberg et al., 2003) or variable (the urgency gating
model of Cisek, Puskas, & El-Murr, 2009), and (c) whether clas-
sic computational principles (e.g., the Bayesian reader model of
Norris, 2006) or dynamic principles (e.g., the dynamic field
theory of Schöner, Spencer,, & The DFT Research Group,
2016) are used (e.g., see Carland, Thura, & Cisek, 2019, for a
discussion of these issues). Comparing empirical and simulated
data from such models using event history analysis will allow
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future studies to better select between and validate the different
computational models available in the literature.

While behavioral experiments are informative, they allow
only indirect inferences about the underlying neural correlates.
Ultimately, one wants to complement the behavioral data with
physiological data such as EEG, fMRI, single-cell data, and so
forth. Note that hazard modeling allows incorporating time-
varying explanatory covariates such as heart rate, EEG signal
amplitude, and gaze location (Allison, 2010), which is useful
for cognitive psychophysiology (Meyer, Osman, Irwin, &
Yantis, 1988).

In summary, the current study provides substantial evi-
dence that sequential primes actually initiate sequential re-
sponse activation, and that this sequence conforms to the
chase criteria at short SOAs. However, when SOAs are
prolonged participants have to delay their responses, the first
prime seems to influence responses out of a memory buffer.
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