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Abstract: In patients, endometrial hyperplasia (EH) is often accompanied by abnormal uterine
bleeding (AUB), which is prone to release large amounts of heme. However, the role of excess heme
in the migration and infiltration of immune cells in EH complicated by AUB remains unknown. In
this study, 45 patients with AUB were divided into three groups: a proliferative phase group (n = 15),
a secretory phase group (n = 15) and EH (n = 15). We observed that immune cell subpopulations
were significantly different among the three groups, as demonstrated by flow cytometry analysis.
Of note, there was a higher infiltration of total immune cells and macrophages in the endometrium
of patients with EH. Heme up-regulated the expression of heme oxygenase-1 (HO-1) and nuclear
factor erythroid-2-related factor 2 (Nrf2) in endometrial epithelial cells (EECs) in vitro, as well as
chemokine (e.g., CCL2, CCL3, CCL5, CXCL8) levels. Additionally, stimulation with heme led to the
increased recruitment of THP-1 cells in an indirect EEC-THP-1 co-culture unit. These data suggest
that sustained and excessive heme in patients with AUB may recruit macrophages by increasing the
levels of several chemokines, contributing to the accumulation and infiltration of macrophages in the
endometrium of EH patients, and the key molecules of heme metabolism, HO-1 and Nrf2, are also
involved in this regulatory process.

Keywords: endometrial hyperplasia; immune cells; macrophages; heme; abnormal uterine bleeding;
HO-1

1. Introduction

Endometrial hyperplasia is [1] one of the most common gynecological diseases in the
world, impacting many women’s lives [2]. EH is a morphological endometrial change in
which the ratio of endometrial stroma and glands is significantly higher than that in the
normal endometrium [3]. The high-risk factors for EH are highly similar to those associated
with endometrial cancer (EC) [4], which is also considered to be one of the precancer-
ous lesions that most commonly develop into EC. Abnormal endometrial hyperplasia is
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generally not easy to detect when asymptomatic, and patients generally have abnormal
menstruation—that is, abnormal uterine bleeding. Therefore, research on the pathogenesis
of EH is of great significance for the early prevention of EC.

The occurrence of EH is related to a variety of factors. Immune factors are also
involved. It has been reported that an imbalance between estrogen and progesterone may
lead to the abnormal proliferation of the endometrial glandular epithelium. In addition to
hormones, leukocytes producing molecules including cytokines (interleukin-1β (IL-1β),
IL-6, and tumor necrosis factor (TNF)-α), adhesion molecules and growth factor network
regulation have also been found to play an important role in the disease progression
of EH [4,5]. In addition, immune cells such as natural killer cells, T cells, macrophages
and neutrophils have been confirmed to be closely related to the occurrence of EH. In
particular, macrophages are considered to play key roles in the occurrence and development
of many gynecological diseases, due to their anti-inflammatory and pro-inflammatory
properties. However, the overall subpopulation characteristics of these immune cells in the
endometrium and their infiltrating and resident mechanisms remain unclear.

Abnormal uterine bleeding (AUB) is a common condition [6]. It may first occur at ado-
lescence, when menarche happens [7], but is notably prevalent in women of reproductive
age [8]. Approximately 3–30% of reproductive-age women suffer from this condition [9].
AUB is described as any difference from normal menstrual bleeding [10]. However, the
use of terminology and documentation of etiology of AUB show a lack of agreement.
In 2007 and 2011, the International Federation of Gynecology and Obstetrics [9] created
Systems 1 and 2 for AUB, respectively, providing clear terminology and nomenclature [9].
FIGO System 1 identified four defined criteria for menses: frequency, duration, regularity
and volume. FIGO System 2 systematically defined the potential causes of AUB, sum-
marized as the acronym “PALM-COEIN” (P—polyp[s], A—adenomyosis, L—leiomyoma,
M—malignancy, C—coagulopathy, O—ovulatory dysfunction, E—endometrial disorders,
I—iatrogenic and N—not yet classified) [11]. AUB is often the main manifestation in pa-
tients with endometrial dysplasia. However, the changes in immune cell subsets in AUB
caused by endometrial dysplasia and other causes are not clear.

There might be a large amount of heme release in the uterus of a patient with abnormal
uterine bleeding. Heme is produced from the breakdown of hemoglobin in the blood
and is thought to be responsible for many types of inflammatory and oxidative damage.
Under normal physiological conditions, heme is catabolized by the key enzyme heme
oxygenase-1 (HO-1). Under pathological conditions, the body’s ability to process heme
reaches saturation, resulting in the excessive accumulation of heme, leading to body
damage and disease [12]. Existing studies have shown that heme may affect the function of
various immune cells, including macrophages, and promote the recruitment and activation
of immune cells such as neutrophils and macrophages by regulating some chemokines
and adhesion molecules, and it may ultimately affect the occurrence and development
of diseases [12,13]. However, the possible roles of heme in EH, and whether it plays a
role by regulating the infiltration and function of immune cells such as macrophages, are
currently unclear.

In this study, we investigated the changes in immunocyte subsets in different phases
of the menstrual cycle in women with AUB and in the endometrial tissue of patients
with EH, as well as the role of heme in the migration and recruitment of macrophages by
endometrial cells.

2. Materials and Methods
2.1. Patients

The study was approved by the Human Research Ethics Committee of the Obstetrics
& Gynecology Hospital of Fudan University, and carried out at the Obstetrics & Gynecol-
ogy Hospital of Fudan University. Informed consent was obtained from all participants.
Forty-five cases who underwent dilatation and curettage due to abnormal uterine bleeding
and reported to display the “proliferative phase of the menstrual cycle”, “secretory phase
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of the menstrual cycle” or “endometrial hyperplasia” according to pathology results were
recruited for the study. Based on the pathology reports, three groups were created: prolifer-
ative phase (n = 15), secretory phase (n = 15) and endometrial hyperplasia (n = 15) (Table 1).
All the samples were transported to the laboratory on ice in Dulbecco’s modified Eagle’s
medium (DMEM)/F-12 (Gibco) for further study.

Table 1. Baseline Characteristics.

Proliferative Phase Secretory Phase Endometrial Hyperplasia

Cases 15 15 15

Pathology reports Proliferative period of the
menstrual cycle

Secretory phase of the
menstrual cycle Endometrial hyperplasia

Age (years) 35.40 ± 6.98 39.0 ± 12.10 36.78 ± 2.83

Endometrial thickness (mm) 9.2 ± 4.96 8.2 ± 1.48 13.56 ± 1.06

Clinical symptoms AUB AUB AUB

Polycystic Ovary Syndrome (PCOS) Without Without Without

Glucose level Normal Normal Normal

Insulin level Normal Normal Normal

The data are shown as mean ± SEM; one-way ANOVA with a Bonferroni multiple-comparisons test was used
to compare data available in groups and there was no significant difference among the three groups in age and
endometrial thickness (mm); AUB: abnormal uterus bleeding.

2.2. Sample Preparation and Immunocyte Isolation

To wash away the remaining blood, the endometrial tissue samples were washed
with ice-cold phosphate-buffered saline (PBS). Then, the tissue samples were minced into
2 mm pieces on ice and subsequently digested with 10% collagenase type IV (0.1%; Sigma,
SL, MO, USA) for 35 min at 37 ◦C, with constant agitation to isolate immunocytes. To
remove cellular debris, the tissue pieces were later filtered through a 70 µm nylon cell
strainer (Falcon, Corning, NY, USA), followed by centrifugation at 400× g for 8 min for
the collection of all types of cells. Then, 15 mL red blood cell lysis buffer was added into
the pellet for 15 min on ice for the removal of remaining erythrocytes. Later, the cells were
resuspended in DMEM/F-12 containing 10% fetal bovine serum (FBS; Hyclone, Logan, UT,
USA), plated on culture flasks and incubated in a humidified incubator with 5% CO2 at
37 ◦C. Finally, after 24 h, the supernatant was removed and centrifuged at 400× g at 4 ◦C
for flow cytometry analysis.

2.3. Flow Cytometry Analysis (FCM)

FCM was used to identify different subsets of immunocytes. All antibodies were from
Biolegend, San Diego, CA, USA (detailed antibody information listed in Table 2). Different
antibodies aimed at different cell surface markers. All antibodies (5 µL separately) were
used for staining at room temperature for 30 min in the dark. In the flow cytometry, Human
Trustain FcX (422301, Biolegend) was first used to block Fc receptors. Later, cells were
washed twice and resuspended in PBS for FCM analysis. Samples were analyzed with a
CytoFLEX flow cytometer (Beckman Coulter, Inc., Brea, CA, USA) using FlowJo software
(version 10.07, Becton Dickinson, Inc., Franklin Lakes, NJ, USA).

2.4. Cells

The human endometrium epithelial cell line (EEC, WHELAB C1225) was kindly
provided by SHANGHAI WHELAB BIOSCIENCE LIMITED, and U937 (human monocyte
cell line) cells were purchased from the American Type Culture Collection. EEC and
U937 cells were cultured in MEM or RPMI 1640 (HyClone Laboratories, Logan, UT, USA)
containing 10% FBS (Gibco Cell Culture, Carlsbad, CA, USA) and 1% antibiotic–antimycotic
solution (Gibco Cell Culture, Carlsbad, CA, USA), respectively.
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Table 2. Antibodies for Flow Cytometry.

Antibody Manufacturer Cat No.

Allophycocyanin/Cyanine 7 (APC/Cy7) Anti-human CD45 BioLegend 368515
Phycoerythrin (PE)/ Cy7 Anti-human CD14 BioLegend 982510
Brilliant violent (BV) 605 Anti-human CD56 BioLegend 362537

Fluorescein isothiocyanate (FITC) Anti-human CD3 BioLegend 981002
PE Anti-human CD16 BioLegend 980102
PE Anti-human CD4 BioLegend 980804

PE Anti-human CD11b BioLegend 982606
PE/ Cy7 Anti-human CD8 BioLegend 980910
PE/Cy7 Anti-human CD15 BioLegend 301923

Anti-CD45 antibodies, anti-CD3 antibodies, anti-CD4 antibodies and anti-CD8 antibodies were used to identify T
cells, CD4+ T cells and CD8+ T cells. Anti-CD45 antibodies, anti-CD3 antibodies, anti-CD56 antibodies, anti-CD14
antibodies and anti-CD16 antibodies were used to identify macrophages, NK cells and NKT cells. Anti-CD45
antibodies, anti-CD11b antibodies and anti-CD15 antibodies were used to identify neutrophils.

2.5. The Treatment of Heme and HO-1 Inhibitor and Nrf2 Inhibitor

EEC cells were treated with 0, 12.5 or 25 µM heme (H8130, Solarbio, Beijing, China),
and the relevant cells were collected after 48 h. EEC cells were treated with HO-1 inhibitor
(Zinc Protoporphyrin, 5 µM, HY-101193, MedChem Express, NJ, USA) or Nrf2 inhibitor
(ML385, 5 µM, HY-100523, MedChem Express, NJ, USA), and the relevant cells were
collected after 24 h.

2.6. Polymerase Chain Reaction (PCR)

Total RNA was extracted from cells using RNAiso Plus reagent (TaKaRa Biotechnol-
ogy, Kusatsu, Japan), according to the manufacturer’s protocol. Total RNA was reverse-
transcribed into first-stand cDNA (RR036A, TaKaRa Biotechnology), following the man-
ufacturer’s protocol. cDNA was subsequently amplified with specific primers (detailed
sequences listed in Table 3) (Sangon Biotech, Shanghai, China). The PCR reaction system
(10 µL) was as follows: 1 µL cDNA + 5 µL PCR mix + 0.4 µL pre-primer + 0.4 µL post-primer
+ 3.2 µL RNase Free ddH2O. PCR was performed using the following conditions: 95 ◦C
30 s→(95 ◦C 5 s→60 ◦C 34 s) × 40 Cycle→95 ◦C for 15 s→60 ◦C for 1 min→95 ◦C for 15 s.
Data were analyzed using the 2−∆∆Ct method.

Table 3. Gene primers for PCR.

Gene Sequence (5′→3′)

ACTB
Forwards: GCCGACAGGATGCAGAAGGAGATCA

Reverse: AAGCATTTGCGGTGGACGATGGA

CCL2
Forwards: TCGCTCAGCCAGATGCAATCAATG

Reverse: AGATCACAGCTTCTTTGGGACACTTG

CCL3
Forwards: CATGGCTCTCTGCAACCAGTTCTC
Reverse: CTGGCTGCTCGTCTCAAAGTAGTC

CCL5
Forwards: CTCGCTGTCATCCTCATTGCTACTG

Reverse: TTGCCACTGGTGTAGAAATACTCCTTG

CXCL8
Forwards: CTCTCTTGGCAGCCTTCCTGATTTC

Reverse: TTTGGGGTGGAAAGGTTTGGAGTATG

HO-1
Forwards: TGCCAGTGCCACCAAGTTCAAG
Reverse: TGTTGAGCAGGAACGCAGTCTTG

Nrf2 Forwards: AGTCCAGAAGCCAAACTGACAGAAG
Reverse: GGAGAGGATGCTGCTGAAGGAATC

2.7. Integration Analysis of the Protein–Protein Interaction (PPI) Network

The STRING database (available online: http://string-db.org, 10 October 2021) was
used for protein–protein interaction network prediction.

http://string-db.org


Biomolecules 2022, 12, 849 5 of 16

2.8. Chemotaxis Assay

We collected EEC cells and seeded them in 24-well plates. EEC cells were treated with
0, 12.5 and 25 µM heme for 48 h, and the relevant cells were collected and seeded in the
lower chamber of the transwell. We collected U937 cells, stained them with Cell Tracker Red
CMTPX dye, seeded them in the upper chamber of the transwell and co-cultured them with
EEC cells. After 24 h of chemotaxis, the chemotaxis of macrophages was photographed
using a fluorescence microscope.

2.9. Statistical Analysis

For the three groups, a one-way ANOVA with a Bonferroni multiple-comparisons test
was used for continuous variables that fit a normal distribution, and the results were presented
as mean ± SEM. A Kruskal–Wallis H test with Dunn’s multiple-comparisons test was used
for continuous variables that fit a non-normal distribution, and the results were presented
as the median and interquartile range. In addition, continuous variables were analyzed by
t test for normal data or Mann–Whitney U test for non-normally distributed data between
two groups. All analyses were conducted using the SPSS 20.0 Statistical Package for the Social
Sciences software. A statistically significant difference was considered at p < 0.05.

3. Results
3.1. Baseline Characteristics

The characteristics of the women in this study are shown in Table 1. All the women
had the clinical symptoms of AUB. Based on the pathological diagnosis of the endometrium,
participants were divided into three groups: (1) proliferative phase of the menstrual cycle,
(2) secretory phase of the menstrual cycle and (3) EH. The age and endometrial thickness
of participants were similar in the three groups. Moreover, none of the participants had a
history of polycystic ovary syndrome (PCOS) or an abnormal level of glucose or insulin.

3.2. The Infiltration and Accumulation of CD45+ Immune Cells Are Increased in Endometrium
from Patients with EH

To investigate the general proportions of immunocytes in the endometrium of the
three groups, flow cytometry analysis was used. As shown, the ratio of immunocytes in
both the proliferative phase and EH was higher than that in the secretory phase (p < 0.05,
p < 0.0001). In addition, the percentage of CD45+ immunocytes in EH patients was the
highest among the three groups, up to 81.13% (Figure 1A,B) (Table 4). However, there was
no significant difference in the proportion of neutrophils in the endometrium of the three
groups (Figure 2A,B). These data suggest that the greater infiltration and accumulation of
CD45+ immune cells occur in the endometrium in patients with EH.

Table 4. The proportion changes in immunocyte subtypes in different groups.

Immunocytes Subsets Proliferative Phase Secretory Phase Endometrial
Hyperplasia

Immunocytes +++ +++ ↓ * ++++ ↑ **
Macrophages +++ ++++ ↑ * ++++ ↑ ****
T cells total + + ns + ns

CD4+ ++ + ↓ *** ++ ↑ #

CD8+ + + ↓ $ ++ ↑ **
CD4− CD8− +++ ++++ ↑ *** +++ ↑ **

NK −/+ −/+ ↓ ** −/+ ↓ ****
NKT − − ↓ *** − ↓ ##

Neutrophils − − ns − ns

The summary of the proportion changes in main immunocyte subtypes in three groups of AUB patients. The data
are expressed as the mean ± standard error of the mean or the median and the interquartile range. Statistical
significance (one-way ANOVA with a Bonferroni multiple-comparisons test or Kruskal–Wallis test with Dunn’s
multiple-comparison test): Percentage—mean percentage <5%, −/+: 5–10%, +: 10–20%, ++: 20–40%, +++: 40–60%,
++++: >60%. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. the proliferative phase group; # p < 0.05, ## p < 0.01
vs. the secretory phase group; $ p < 0.05 vs. the endometrial hyperplasia group. ns, no significant difference.
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hyperplasia endometrium of AUB patients. (B) The proportion of CD45+ cells in whole cells. Data 
are presented as the median and the interquartile range. Statistical significance (Kruskal–Wallis test 
with Dunn’s multiple-comparison test): * p < 0.05, ** p < 0.01, **** p < 0.0001. 

Table 4. The proportion changes in immunocyte subtypes in different groups. 
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Figure 1. The numbers of local immunocytes were different in proliferative phase, secretory phase and
endometrial hyperplasia endometrium of AUB patients. (A) Using flow cytometry gating strategy
to distinguish CD45+ cells in proliferative phase, secretory phase and endometrial hyperplasia
endometrium of AUB patients. (B) The proportion of CD45+ cells in whole cells. Data are presented
as the median and the interquartile range. Statistical significance (Kruskal–Wallis test with Dunn’s
multiple-comparison test): * p < 0.05, ** p < 0.01, **** p < 0.0001.
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proportions of effective CD4+ T cells in the endometrium of proliferative phase and EH 
patients were higher than that in the secretory phase endometrium (p < 0.001, p < 0.05) 
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Figure 2. The proportion of neutrophils in proliferative phase, secretory phase and endometrial
hyperplasia endometrium of AUB patients. (A,B) Gating strategy was used to distinguish neutrophils.



Biomolecules 2022, 12, 849 7 of 16

CD45+ gate was first used to gate cells, followed by CD11b and CD15 gates. Graph shows the propor-
tion of total CD45+CD11b+CD15+ neutrophils in proliferative phase, secretory phase and endometrial
hyperplasia groups. Data are presented as the median and the interquartile range. Statistical signifi-
cance (Kruskal–Wallis test with Dunn’s multiple-comparison test): ns, no significant difference.

3.3. There Are Increased Ratios of CD8+ Cells and Macrophages, and Decreased NK Cells in
Endometrium from EH Patients

As shown, the total T cell proportions were similar in the three groups. The proportions
of effective CD4+ T cells in the endometrium of proliferative phase and EH patients were
higher than that in the secretory phase endometrium (p < 0.001, p < 0.05) (Figure 3 A–C);
however, there was no significant difference in the proportion of CD4+ T cells between the
proliferative phase and EH groups (Figure 3A–C). Interestingly, EH patients had the highest
proportion of CD8+ cells, and proliferative phase patients had the lowest proportion of
CD4−CD8− T cells (p < 0.001, p < 0.01) (Figure 3A–C).
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tinguish T cells. (B) Gating strategy was used to distinguish CD4+ T cells, CD8+ T cells and
CD4−CD8− T cells. (C) Graph shows the proportion of total T cells, CD4+ T cells, CD8+ T cells and
CD4−CD8− T cells in proliferative phase, secretory phase endometrium and endometrial hyperplasia
endometrium of AUB patients. Data are presented as the mean ± standard error of the mean (C.i), or
the median and the interquartile range (C.ii–C.iv). Statistical significance (one-way ANOVA with a
Bonferroni multiple-comparisons test (C.i) or Kruskal–Wallis test with Dunn’s multiple-comparisons
test (C.ii–C.iv)):, * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significant difference.

Subsequently, we found that the patients in the proliferative phase had higher numbers
of CD3+CD56−NK cells than patients in the secretory phase (p < 0.01) and EH groups
(p < 0.0001) (Figure 4A,B), and the patients in the secretory phase group had the lowest
populations of CD3+CD56+NKT cells in the endometrium (p < 0.001, p <0.01) (Figure 4A,B).
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multiple-comparisons test (B.i) or Kruskal–Wallis test with Dunn’s multiple-comparisons test (B.ii)):
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, no significant difference.

3.4. Macrophages Are Largely Infiltrated and Increased in Endometrium from EH Patients

In the normal proliferative phase, immune cells are scarcely infiltrated and most of
them are macrophages. It was reported that the number of macrophages was elevated
significantly in the endometria of both EH and EC patients [4,14]. In order to identify
the changes in macrophages, we performed FCM analysis. Of note, we observed that EH
patients had the highest levels of CD14+ macrophages (nearly 80%), followed by patients in
the secretory phase group (Figure 5A,B). These results suggest that macrophages represent
the largest population of immune cells in the endometria of patients with EH.
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Figure 5. The proportion of macrophages in proliferative phase, secretory phase and endometrial
hyperplasia endometrium of AUB patients. (A) CD45+ gate, followed by CD14+ gate, was used to
distinguish monocytes. (B) Graph shows the proportions of general monocytes in three groups. Data
are presented as the median and the interquartile range. Statistical significance (Kruskal–Wallis test
with Dunn’s multiple-comparison test): * p < 0.05, **** p < 0.0001.

3.5. HO-1 and Nrf2 Inhibitors Increase the Expression of Chemokines in Endometrial Epithelial
Cells (EEC)

The Nrf2/HO-1 axis is closely associated with multiple gynecological cancers, such as
ovarian cancer and endometrial cancer [15], due to its regulation of cell proliferation, metas-
tasis, the immune response, etc. To explore the role of the Nrf2/HO-1 axis, we firstly ana-
lyzed the protein–protein interaction (PPI) network across chemokines, adhesion molecules
and heme metabolism-related factors on the basis of the STRING database (Figure 6A).
Among the related molecules in the PPI network, HMOX1/HO-1 and NFE2L2/Nrf2 might
be important regulators for chemokines. As shown, stimulation with heme significantly
up-regulated the mRNA levels of HO-1 and Nrf2 in EECs, suggesting that supplementation
with heme can activate heme metabolism by increasing the expression of HO-1 and Nrf2
in EECs, especially at 25 µM (Figure 6B). To further analyze the potential role of heme
metabolism in EECs, EEC cells were treated with a HO-1 inhibitor (Zinc Protoporphyrin)
at 5 µM or a Nrf2 inhibitor (ML385) at 5 µM for 24 h, respectively, and then chemokines
in EECs were detected by RT-PCR. We observed that the expression of CCL2, CCL3 and
CXCL8 was increased in EECs treated with the HO-1 inhibitor (Zinc Protoporphyrin), and
the expression of CCL3, CCL5 and CXCL8 was increased in those treated with the Nrf2
inhibitor (ML385) (Figure 6C,D).
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Figure 6. Blocking HO-1 and Nrf2 leads to an increase in chemokines by EECs. (A) The PPI network
of chemokines, adhesion molecules and heme metabolism-related factors. (B) Relative mRNA
expression of HO-1 and Nrf2 in EECs treated with Hemin at a concentration of 0 µM, 12.5 µM and
25 µM for 48 h. (C) Relative mRNA expression of CCL2, CCL3, CCL5, CXCL8 in EECs treated with HO-
1 inhibitor (Zinc Protoporphyrin) at the concentration of 5 µM for 24 h. (D) Relative mRNA expression
of CCL2, CCL3, CCL5, CXCL8 in EECs treated with Nrf2 inhibitor (ML385) at the concentration of
5 µM for 24 h. Data are presented as the mean± standard error of the mean (B.i,B.ii,C.i,D.ii,D.iii), or
the median and the interquartile range (C.ii–C.iv,D.i,D.iv). Statistical significance (one-way ANOVA
with a Bonferroni multiple-comparisons test for three groups (B.i,B.ii), and t test (C.i,D.ii,D.iii)
or Mann–Whitney U test (C.ii–C.iv,D.i,D.iv) for two groups): * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, ns: no significance.

3.6. Excess Heme Increases the Expression of Chemokines in EECs and Migration of Macrophages
in Co-Culture System

Heme is involved in the differentiation and inflammatory activation of macrophages [16].
To investigate whether an increase in heme concentration would promote the expression of
chemokines in EEC cells and the infiltration of macrophages, we treated EECs with 0, 12.5
and 25 µM of heme for 48 h, and then detected the expression of chemokines by PCR. As
shown, the levels of CCL2, CCL3, CCL5 and CXCL8 were significantly increased after the
treatment with heme at the concentration of 25 µM. Moreover, the expression of CCL2 and
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CXCL8 was raised when treated with 12.5 µM of heme (Figure 7A). In addition, EECs were
pre-treated with 0, 12.5 and 25 µM of heme for 48 h and then co-cultured with macrophages
for 24 h. In the chemotaxis assay, we found that EECs pre-treated with 12.5 and 25 µM of
heme may increase the infiltration of macrophages (Figure 7B).
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tive mRNA expression of CCL2, CCL3, CCL5, CXCL8 in EECs treated with Hemin at the concentration
of 12.5 µM and 25 µM for 48 h. (B) We illustrate the recruitment of macrophages co-cultured with
EECs, which were untreated or treated with Hemin at the concentration of 12.5 µM or 25 µM for 48 h;
we counted the number of recruited macrophages. Data are presented as the mean ± standard error
of the mean (A.i,A.iii,A.iv,B), or the median and the interquartile range (A.ii). Statistical significance
(one-way ANOVA with a Bonferroni multiple-comparisons test (A.i,A.iii,A.iv,B) or Kruskal–Wallis
test with Dunn’s multiple-comparisons test (A.ii)): * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,
ns: no significance.

4. Discussion

Endometrial hyperplasia is a common gynecological disease [1], complicated by AUB.
In our study, we found that the proportions of immune cell subsets in the endometria of EH
patients with AUB were abnormal, especially regarding macrophages. Other diseases caus-
ing AUB, as outlined in the FIGO 2 classification system, are also related to macrophages.
For example, a strong association between an increase in macrophages and adenomyosis
has been demonstrated in the literature [17], despite there being no strong association
between adenomyosis and EH/EC [18]. Moreover, it is reported that there is increased
infiltration of macrophages in myoma, especially submucosal myoma [19]. This is possibly
due to excess heme increasing the expression of chemokines and promoting the migration
of macrophages.

The increasing population of immune cells may result in local tissue inflammation
and is associated with the transformation of healthy tissue into cancerous tissue (such as
EH, gastric cancer) [20]. In the normal endometrium, CD45+ leukocytes comprise up to
40% of the total cells in the pre-menstrual phase of the menstrual cycle [21]. It is noted that
leukocytes increase in the secretory phase in preparation for the occurrence of menstruation,
which is referred to as endometrial leukocyte infiltration [22,23]. Some evidence has
suggested that some diseases complicated by AUB may be related to immunological
disturbances, including EH [21]. Immune cell populations play complex roles in EH, which
needs further study.
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T cell subsets mainly include CD4+ T cells, CD8+ T cells, CD4−CD8− T cells and
NKT cells. CD3+ T cells can be detected throughout the menstrual cycle, but they only
account for 1–2% of the total lymphomyeloid cells [24]. However, in our previous study,
the proportion of CD3+ T cells in the endometria of EH patients was up to 12.5%, and
the numbers of CD4+ T cells and CD8+ T cells also increased [4]. CD8+T cells are a key
component of tumor-infiltrating cytotoxic lymphocytes (CTLs), regarded as a hallmark
of the tumor immune response. NKT cells contain both markers of NK and T cells [25],
identified as CD3+ CD56+. NKT cells produce IFN-γ to activate NK cells, T cells and
macrophages, consequently of vital importance in regulating different immune responses
and in protection from tumor growth and metastasis [26]. Consistent with previous studies,
we found that the numbers of CD4+ T cells and NKT cells in proliferative phase patients
and in EH patients were higher than those in the secretory phase, whereas the number of
CD8+ T cells in EH was higher than that in the proliferative phase or secretory phase. It
can be speculated that with the progression of EH, the abnormal immune environment
led to the rise in the proportions of cytotoxic CD8+ T cells and helper CD4+ T cells, further
resulting in the imbalance of T cells and accelerating the progression to EH.

Natural killer (NK) cells in the endometrium are called endometrial granular lym-
phocytes (EGL) [27], identified as CD56+ CD16− [28]. It has been reported that NK cells
are involved in irregular bleeding through destroying the integrity of blood vessels in the
endometrium and altering its functions [29]. In this study, NK cells displayed different
and varying trends from the proliferative phase to the secretory phase in AUB patients. In
contrast, there was a reduction in EH. It was reported that NK cells differentiated toward
a killer phenotype (CD56+ CD16+) by the stimulation of high levels of progestin in the
study of Witkiewicz et al. [30], whereas NK cells were stimulated by high estrogen and low
progestin in EH, possibly contributing to the reduction in NK cells.

Neutrophils are rarely tested in the normal endometrium. Only at the time prior to
menstruation do the populations rapidly rise to 6–15% of the total cells [23]. Neutrophils
play an important role in endometrial repair [31]. Although there is no marked difference in
number during the proliferative phase or secretory phase in normal women [21], similarly
to women with AUB or EH with AUB, their roles should not be ignored.

In the normal endometrium, T cells and NK cells represent the majority of leukocytes,
followed by macrophages [32,33]. Macrophages can be detected throughout the menstrual
cycle, with an increase in number starting from the proliferative phase [34], for the promo-
tion of inflammatory endometrial destruction, repair and regeneration [23,35]. Resident
immune cells, including macrophages, play a key role in immunity and homoeostasis in the
endometrium [36]. The results of this study showed that the population of macrophages
was the highest in EH. The activation of macrophages may be accompanied by the increased
secretion of different inflammatory mediators and cytokines, such as tumor necrosis factor-
a, interleukins (IL)-1 [37], platelet activating factors, vascular endothelial growth factor and
angiogenesis factor, which may be associated with the development of EH, thus attracting
our attention [38]. Therefore, in EH, the migration and differentiation of macrophages may
also be changed by environmental factors and play a certain role in the occurrence and
development of EH.

The main characteristic of EH is the irregular proliferation of endometrial epithelium
cells, which is caused by the continuous stimulation of unopposed estrogen, which is me-
diated by inflammation and oxidative stress [39]. HO-1 is able to respond to electrophilic
stimuli, including oxidative stress, which plays a key role in the pathogenesis of EH [40].
HO-1 may be involved in the growth, angiogenesis and metastasis of cancer cells, such as
ovarian cancer and endometrial cancer [15]. HO-1 inhibitors, such as Zinc Protoporphyrin,
have been confirmed to possess efficacy against cancer [41]. Nrf2 is the most essential
activator of HO-1. Oxidative stress induces Nrf2 activation from resting conditions, and
stimulates the Nrf2/antioxidant-responsive element (ARE)/HO-1 signaling pathway [42].
HO-1 is a rate-limiting enzyme in the breakdown of heme, the degradation of which pro-
duces biliverdin, carbon monoxide (CO) and iron (ferrous iron, Fe2+). Heme and heme
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metabolites participate in anti-apoptotic effects, promoting oxidation and inflammation,
which lead to the development of EC [43]. However, some studies reported that HO-1
can ameliorate the EH induced by estrogen [44]. In this study, heme may have been a
risk factor in EH patients with AUB, which may rely on macrophage infiltration. Existing
studies have shown that heme may affect the functions of various immune cells, includ-
ing macrophages [45,46]. Heme can induce pro-inflammatory cytokines or chemokines,
possibly leading to neutrophil migration, macrophage infiltration and more. In addition,
the CC chemokine receptors CCR2 and CCR5, and their cognate ligands (such as CCL2,
CCL7 and CCL8 of CCR2, CCL5, CCL3 or CCL4 of CCR5), have been shown to regulate
the recruitment of phagocytes in a variety of inflammatory diseases [47]. Heme can po-
larize macrophages either to the M1 subtype, via acting as TLR-4 and leading to TNF-α
and IL-6 expression [16], or to the M2 subtype, via interacting with CD163 to induce
an anti-inflammatory protective phenotype [48]; consequently, macrophages participate
in the development of EH, as mentioned above. According to our data, heme-induced
macrophage recruitment may be blocked by the use of inhibitors of HO-1 or Nrf2. These
data suggest that targeting the heme/HO-1/Nrf2 axis may be a potential therapeutic strat-
egy for EH and EC, and this type of therapy was shown to be successful in several animal
models [45,49].

In conclusion, in the endometria of AUB patients, there are differences in the infiltration
and residence of immune cells according to the physiological conditions, and there are
more macrophages in the endometria of AUB patients with EH. AUB can lead to an
increase in heme, causing oxidative stress damage by HO-1 and Nrf2, further promoting the
transcription of chemokines such as CCL2, CCL3, CCL5, CXCL8, etc., and the recruitment
of macrophages, and thus eventually exacerbating the progression of the disease (Figure 8).
This provides potential early warning molecules and intervention targets for the treatment
of EH. However, more intensive studies are still required to explore and demonstrate the
involved mechanisms in greater detail. For example, the regulatory mechanism of heme
metabolism and the detailed mechanism of heme involved in chemokine secretion still
need to be studied.
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Figure 8. A schematic chart of excess heme in the migration and infiltration of macrophages from AUB
patients with EH. In endometria of patients with EH complicated by abnormal uterine bleeding, there
should be massive heme release. A certain level of heme activates the Nrf2/HO-1 axis, and further
promotes heme metabolism. However, excess heme stimulates EECs to produce more chemokines
(e.g., CCL2, CCL3, CCL5), possibly leading to the migration and infiltration of macrophages in the
endometrium and accelerating the development of EH.
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