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Abstract: Pancreatic cancer (PC) patients are highly prone to cachexia, a lethal wasting syndrome
featuring muscle wasting with an undefined etiology. Recent data indicate that certain murine cancer
cells induce muscle wasting by releasing Hsp70 and Hsp90 through extracellular vesicles (EVs) to
activate p38β MAPK-mediated catabolic pathways primarily through Toll-like receptor 4 (TLR4).
However, whether human PC induces cachexia through releasing Hsp70 and Hsp90 is undetermined.
Here, we investigated whether patient-derived PC cells induce muscle cell atrophy directly through
this mechanism. We compared cancer cells isolated from patient-derived xenografts (PDX) from
three PC patients who had cachexia (PCC) with those of three early-stage lung cancer patients without
cachexia (LCC) and two renal cancer patients who were not prone to cachexia (RCC). We observed
small increases of Hsp70 and Hsp90 released by LCC and RCC in comparison to non-cancer control
cells (NCC). However, PCC released markedly higher levels of Hsp70 and Hsp90 (~ 6-fold on average)
than LCC and RCC. In addition, PCC released similarly increased levels of Hsp70/90-containing EVs.
In contrast to RCC and LCC, PCC-conditioned media induced a potent catabolic response in C2C12
myotubes including the activation of p38 MAPK and transcription factor C/EBPβ, upregulation of
E3 ligases UBR2 and MAFbx, and increase of autophagy marker LC3-II, resulting in the loss of the
myosin heavy chain (MHC ~50%) and myotube diameter (~60%). Importantly, the catabolic response
was attenuated by Hsp70- and Hsp90-neutralizing antibodies in a dose-dependent manner. These
data suggest that human PC cells release high levels of Hsp70 and Hsp90 that induce muscle atrophy
through a direct action on muscle cells.

Keywords: pancreatic cancer; patient-derived xenografts; Hsp70; Hsp90; myotube atrophy

1. Introduction

Pancreatic cancer (PC) has the highest mortality rate of all cancers, with a 5-year
survival rate of 11% [1]. Nearly 80% of deaths in advanced PC are associated with cachexia,
a wasting syndrome that features a complex metabolic disorder with progressive weight
loss, muscle atrophy, fatigue, weakness, and significant loss of appetite [2–4]. The frequency
and severity of cachexia seen in PC patients are significantly higher than other cachexia-
prone cancers including lung, gastric, and colon cancer [5]. Loss of muscle mass accounts
for the bulk of the body weight loss, which is a powerful and independent predictor of
poor survival in PC [6]. Ameliorating muscle wasting could significantly improve cancer
survival [7]. However, an understanding of the highly complex etiology of PC-induced
muscle wasting remains limited.
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A primary cause of cancer-induced muscle wasting is accelerated myofibrillar protein
degradation [5]. Historically, the elevation of circulating inflammatory cytokines was
thought to be the major trigger of muscle mass loss in cancer [8]. IL-6 [9] and activin [10]
have been shown to stimulate muscle mass loss in murine PC models. However, recent
clinical data indicate that cachexia in PC patients is not necessarily associated with high
levels of classical cytokines including IL-6, TNFα, and IL-1β [11]. Similar data were
reported in patients with diverse gastrointestinal and genitourinary cancer [12]. On the
other hand, PC and other cancer patients display elevated serum Hsp70 and Hsp90 [12–15]
that are considered danger-associated molecular patterns (DAMPs) capable of inducing
systemic inflammation [16]. Elevated circulating Hsp70 and Hsp90 have been shown to be
responsible for muscle wasting in mice bearing Lewis lung carcinoma (LLC) or intestinal
adenocarcinoma secondary to the Apcmin/+ mutation through activating TLR4, which
induces muscle wasting directly and increases circulating cytokines, including IL-6 and
TNFα, to promote muscle wasting indirectly [17]. In muscle cells, the TLR4- or cytokine-
mediated activation of p38β MAPK is critical to murine tumor-induced muscle wasting
by stimulating protein degradation through the ubiquitin-proteasome and autophagy-
lysosome pathways [18–20]. In patients with gastrointestinal and genitourinary cancer,
p38β MAPK activity in skeletal muscle is increased, which correlates with body weight
loss [12]. In addition, immortalized human pancreatic cancer cell lines AsPC-1 and BxPC-3
constitutively release high levels of Hsp70 and Hsp90 through EVs and activate p38β
MAPK-mediated muscle wasting [21]. However, immortalized cancer cell lines generally
recapitulate limited features of human cancer cells, and it remains to be determined whether
human PC cells induce muscle wasting by releasing high levels of Hsp70 and Hsp90.
Primary human cancer cells display a higher fidelity to the original cells than cell lines and
are a preferred tool for identifying cancer-released cachectic factors. Unfortunately, direct
cell isolation and culture from human PC specimens are of extremely low efficiency. In
recent years patient-derived xenografts (PDXs) have been extensively used in translational
cancer research [22]. Isolating and culturing cancer cells from PDXs are highly efficient
and allow in vitro studies of cancer cells from diverse types of patients. PDX-derived
PC cells closely recapitulate human PC cells [23] and key aspects of cachexia [24]. The
current study aims to investigate whether PDX-derived PC cells directly induce muscle cell
atrophy by releasing Hsp70 and Hsp90. We examined the effect of conditioned media of
cultured human PC cells isolated from PDXs on protein catabolism in C2C12 myotubes.
Our data demonstrate that human PC cells release high levels of Hsp70 and Hsp90 that
induce myotube atrophy by activating p38β MAPK-mediated protein catabolism.

2. Materials and Methods
2.1. Cell Cultures

Three lines of previously established PC cells derived from PDX of patients with
cachexia (PCC G46, G68 and G87) [23] were cultured in advanced Dulbecco’s Modified
Eagle Medium with nutrient mixture F12, 10% fetal bovine serum (10437028, ThermoFisher
Scientific, Waltham, MA, USA), 6 mmol/L glutamine (35050-061, ThermoFisher Scien-
tific, Waltham, MA, USA), 1% of penicillin/streptomycin (SV30010, Cytiva, Marlborough,
MA, USA), and 20 ng/mL EGF (PHG0311, Invitrogen, Waltham, MA, USA), at a den-
sity of 105 cells/mL. For a comparison with cancer cells from patients without cachexia,
two lines of previously established renal cancer cells from PDXs of renal cancer patients
(RCC 11 and 15) [25] were cultured in Dulbecco’s Modified Eagle Medium supplemented
with 10% fetal bovine serum. In addition, previously established lung cancer cells derived
from PDXs of Stage I/II non-small cell lung cancer patients without weight loss [26,27]
were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. Non-
tumorigenic human pancreatic ductal epithelial cells (HPDE, American Type Culture Col-
lection) were cultured in Keratinocyte Serum-Free Medium supplemented with 20 ng/mL
EGF, bovine pituitary extract (Invitrogen, 17005042, Waltham, MA, USA), and 1x antibiotic-
antimycotic (Gibco, 15240-062, Waltham, MA, USA), and NL20 (human lung epithelial cells,
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American Type Culture Collection) were cultured in Dulbecco’s Modified Eagle Medium
supplemented with 10% fetal bovine serum. Conditioned medium from 48-h cultures
of the above cells was collected and centrifuged (1000 × g for 5 min) for the treatment
of C2C12 myotubes (25% final volume in fresh medium) when indicated and replaced
every 24 hrs. C2C12 myoblasts (American Type Culture Collection, ATCC) were grown in
growth medium (DMEM supplemented with 10% fetal bovine serum). Myoblast differenti-
ation was induced at 85% confluence with differentiation medium (DMEM supplemented
with 4% heat-inactivated horse serum) for 96 hrs. All cultured cells were maintained at
37 ◦C with 95% humidity and 5% CO2. When indicated, cancer cell-conditioned media
were treated with antibodies to Hsp70 (ADI-SPA-810) and Hsp90 (ADI-SPA-830, Enzo Life
Technology, Farmingdale, NY, USA) prior to treatment for myotubes at 0.5 or 1 mg/mL.
Pre-immune IgG (Millipore Sigma, Burlington, MA, USA) was used as the control for the
antibody treatment. The cell culture-based experiments were replicated independently at
least three times.

2.2. Quantification of Extracellular Hsp70 and Hsp90

The Hsp70 and Hsp90α levels in cell-conditioned medium (concentrated 20-fold
by centrifugation with 10K filters from Millipore) were analyzed by enzyme-linked im-
munosorbent assay (ELISA) according to the manufacturer’s instructions (Enzo Life Sci-
ences, Plymouth, PA, USA). Hsp70 and Hsp90α in the culture medium from fetal bovine
serum supplement were also measured and subtracted from the total Hsp70 and Hsp90α
levels measured in cell-conditioned media.

2.3. Extracellular Vesicle (EV) Isolation and Quantitation

Hsp70/90-containing EVs in concentrated cell-conditioned media were isolated using
the ExoQuickTM kit (System Biosciences, Mountain View, Palo Alto, CA, USA) [28] and
quantified by measuring the activity of acetylcholinesterase (AchE), as described previ-
ously [17]. Hsp70/90-containing EVs from fetal bovine serum supplement in the culture
medium were also measured and subtracted from the total Hsp70/90-carrying EV levels
measured in cell-conditioned media.

2.4. Western Blot Analysis

Western blot analysis was carried out as previously described [12]. Due to the limited
lane number available on PAGE gel, the analyzed LCC were reduced to two lines. Anti-
bodies to AchE (SC-11409, 1:1000), TSG101 (sc-7964, 1:1000), CD81 (sc-166029, 1:1000), and
Hsp70 (SC-24, 1:1000) were from Santa Cruz Biotechnology. Antibody to Hsp90 (13171-1-
AP, 2:1000) was from Proteintech. Antibody to CD63 (A5271, 1:1000) was from ABclonal
(Woburn, MA, USA). Antibodies to total (9212L, 1:2000) and phosphorylated p38 MAPK
(4511S, 1:1000) were from Cell Signaling Technology (Danvers, MA, USA). Antibodies for
MHC (MF20, 1:5000) were from Developmental Studies Hybridoma Bank at the University
of Iowa, Iowa City, IA. Antibody for Atrogin1/MAFbx (1:2000) was custom-generated
by Pocono Rabbit Farm & Laboratory and verified previously (Zhang et al., 2021). Anti-
bodies for UBR2 (NBP1-45243, 1:1000) and LC3 (NB100-2220, 1:1000) were from Novus
Biologicals (Littleton, CO, USA). Antibodies for total C/EBPβ (3082S, 1:1000) and C/EBPβ
phosphorylated on Thr-235 (3084, 1:1000) were from Cell Signaling Technology (Danvers,
MA, USA). Antibody for β-actin (sc-47778, 1:5000) was from Santa Cruz Biotechnology
(Dallas, TX, USA). The optical densities of the detected bands were normalized to loading
control β-actin or Ponceau S-stained proteins, except for LC3-II, which was normalized
to LC3-I.

2.5. Immunoprecipitation

Immunoprecipitation was conducted as previously described [29]. Briefly, conditioned
medium was concentrated 10-fold and incubated with Hsp70- and Hsp90-neutralizing
antibodies (ADI-SPA-810 and ADI-SPA-830, Enzo Life Technology) or mouse IgG (12-371,
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Sigma-Aldrich, St. Louis, MO, USA) overnight at 4 ◦C. The antibodies were collected using
Protein A/G agarose beads (20421, ThermoScientific, Waltham, MA, USA). The resulting
supernatant and pellet were analyzed by Western blotting.

2.6. Fluorescence Microscopy

C2C12 myotubes were stained with anti-MHC antibody (MF-20, Development Studies
Hybridoma Bank at the University of Iowa, Iowa City, IA) and FITC-conjugated secondary
antibody, and examined using an Olympus BX60 microscope at 40×. Photographs were
taken by a camera operated with DP controller software (Olympus, Shinjuku City, Tokyo,
Japan). The MHC-stained myotube diameter was measured as previously described [30].
Briefly, the diameters were measured from a total of 200 myotubes from ≥10 random fields
using computerized image analysis (Scion Image, Frederick, MD, USA). The diameters
were measured at three points along the myotube length to obtain the averages.

2.7. Statistical Analyses

Data were analyzed with a one-way analysis of variance combined with Bonferroni’s
multiple comparison test using the GraphPad software, as indicated. When applicable,
control samples from independent experiments were normalized to a value of 1. All data
were expressed as means ± standard deviation. Statistical significance was accepted at
p < 0.05, as indicated by * or #.

3. Results

The conditioned media of human PC cells derived from three previously established
PDX lines of patients with cachexia (PCC G46, G68, and G87) [23] were analyzed for levels
of Hsp70 and Hsp90α with ELISA. For a comparison with human cancer cells that did
not induce cachexia, the conditioned medium of three lines of PDX-derived lung cancer
cells [31] from Stage I/II lung cancer patients who did not have cachexia (LCC 250, 429,
and 464) and two lines of PDX-derived renal cancer cells that were not prone to cachexia
(RCC 11 and 15) were analyzed in parallel. The conditioned medium of non-tumorigenic
human pancreatic ductal endothelial cell line HPDE, which does not release an elevated
level of Hsp70 and Hsp90 [17], was analyzed as a non-cancer control (NCC). We observed
that NCC released minimum levels of Hsp70 and Hsp90α, while LCC and RCC released
either similar or modestly increased levels of Hsp70 and Hsp90α. However, PCC released
markedly higher levels of both Hsp70 and Hsp90α than RCC or LCC (average ~6-fold,
Figure 1). Given that cancer cells are known to release Hsp70 and Hsp90 as membrane
proteins on EVs [17,32,33], we examined whether PCC released higher levels of Hsp70-
and Hsp90-containing EVs. Due to the heterogeneity of EVs and the fact that Hsp70-
and Hsp90-containing EVs are associated with AchE, a non-generic marker of EVs that
is associated with a subset of EVs [34], Hsp70/90-containing EVs can be quantified by
measuring AchE activity in isolated EVs with a higher accuracy [17]. We verified the
presence of Hsp70, Hsp90, AchE, and generic EV marker CD63, CD81, and TSG101 in
EVs isolated from the conditioned medium of PCC with Western blotting (Figure 2A), and
quantified Hsp70/90-containing EVs present in the conditioned media of tested cells by
determining the AchE activity (Figure 2B). This revealed that NCC released essentially no
Hsp70/90-containing EVs, whereas LLC and RCC released relatively low levels of such
EVs. In contrast, PCC released markedly higher levels of Hsp70/90-containing EVs than
LCC or RCC (~ 10-fold on average, Figure 2). These data indicate that PCC constitutively
release much higher levels of Hsp70 and Hsp90 through EVs than LCC and RCC do.
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one-way ANOVA followed by Bonferroni’s multiple comparison test. # denotes difference from NCC,
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Figure 2. PCC releases markedly higher levels of Hsp70- and Hsp90-carrying EVs than LLC and
RCC. (A) EVs isolated from PCC-conditioned medium were analyzed for Hsp70/90 and protein
markers with Western blotting. (B) Hsp70/90-containing EVs were quantified by AchE activity in
isolated EVs. Data from 3 independent experiments were analyzed by one-way ANOVA followed by
Bonferroni’s multiple comparison test. ## denotes difference from NCC at p < 0.01, and *** denotes
difference from LCC and RCC at p < 0.001.

To determine whether PCC-released Hsp70 and Hsp90 are responsible for activating
the p38 MAPK-mediated catabolic pathway in muscle cells, C2C12 myotubes were treated
with the conditioned media of PCC, LCC, and RCC to compare their catabolic activity
and determine whether neutralizing Hsp70 and Hsp90 antagonizes the catabolic activity
of PCC. The conditioned medium of non-tumorigenic human lung endothelial cell line
NL20, which does not release an elevated level of Hsp70 and Hsp90 [17], was used as
a non-cancer control (NCC). The effect of the neutralizing antibodies on the depletion
of Hsp70 and Hsp90 in PCC-conditioned medium was verified by immunoprecipitating
Hsp70 and Hsp90 from the medium. Figure 3A shows that Hsp70/90 were enriched
in the pellet and reduced in the supernatant. The catabolic activity of PCC-conditioned
medium on C2C12 myotubes was evaluated by a Western blot analysis of the catabolic
pathway activated by Hsp70/90 [17], as shown in Figure 3B. PCC-conditioned medium
activated p38β MAPK and its effector C/EBPβ through the phosphorylation of Thr-188
of C/EBPβ [35] in one hour, upregulated C/EBPβ-responsive E3 ligases UBR2 [36] and
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MAFbx [29], increased autophagy marker LC3-II, which was mediated by C/EBPβ as well
as p38β MAPK [18], in eight hours, and caused the loss of MHC in 72 h. These data are very
similar to previous observations from murine cancer cells [17] and immortalized human
PC cells [21]. In contrast, LCC and RCC did not have these catabolic effects on myotubes.
Further, neutralizing antibodies for Hsp70 and Hsp90 (0.5 and 1.0 µg/mL each) attenuated
the catabolic response induced by PCC in a dose-dependent manner. To assess the PCC
effect on myotube atrophy, myotubes were stained for MHC using immunofluorescence,
and the myotube diameters were measured. As shown in Figure 4, LCC and RCC did
not reduce the myotube diameter when compared with the conditioned medium of NCC.
However, PCC reduced the myotube diameter by ~60%. Pretreatment of PCC-conditioned
media with neutralizing antibodies for Hsp70 and Hsp90 attenuated the PCC-induced loss
of the myotube diameter in a dose-dependent manner. These data support the notion that
PCC induces myotube atrophy directly by releasing Hsp70 and Hsp90.
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Figure 3. PCC activates p38β MAPK-mediated catabolic pathways in myotubes by releasing Hsp70
and Hsp90. C2C12 myotubes were treated with conditioned medium of PPC cells (68, 87, and 46),
LCC cells (464 and 250), and RCC cells (11 and 15) for a comparison with NCC. The media were
supplemented with either neutralizing antibodies against Hsp70 and Hsp90 (0.5 and 1.0 µg/mL
each) or pre-immune IgG (control), as indicated. (A) Binding of neutralizing antibodies to Hsp70
and Hsp90 present in conditioned medium was verified by immunoprecipitation. Hsp70 and Hsp90
contents in resulting pellet and supernatant were analyzed by Western blotting. (B) Catabolic activity
of cancer cell-conditioned media on C2C12 myotubes was monitored by Western blot analysis of
the activation of p38 MAPK and C/EBPβ by specific site phosphorylation at 1 h, levels of E3 ligases
(UBR2 and MAFbx) and LC3-II at 8 h, and levels of MHC at 72 h. Three independent experiments
(n = 3) were carried out. Data were analyzed by one-way ANOVA followed by Bonferroni’s multiple
comparison test. # denotes difference from NCC, and * denotes difference from LCC and RCC at
p < 0.05. ## denotes difference from NCC at p < 0.01.
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Figure 4. Conditioned medium of PCC causes myotube atrophy in an Hsp70- and Hsp90-dependent
manner. C2C12 myotubes were treated as described in Figure 3 for 72 h. Myotubes were subjected to
immunofluorescence staining of MHC. The myotube diameter was measured. Bar = 100 µm. Three
independent experiments (n = 3) were carried out. Data were analyzed by one-way ANOVA followed
by Bonferroni’s multiple comparison test. * denotes p < 0.05, ** denotes p < 0.01 and *** denotes
p < 0.001.

4. Discussion

The current study demonstrates that human PC cells release high levels of Hsp70 and
Hsp90 to directly activate the skeletal muscle cell catabolism independently of the systemic
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host response to cancer. These data support the concept that extracellular Hsp70 and Hsp90
are biomarkers and therapeutic targets of PC-induced cachexia.

The elevation of circulating Hsp70 and Hsp90 has been reported in various cancer
patients including cachexia-prone lung, colon, and PC patients [12–15]. In addition, cir-
culating Hsp70 and Hsp90 in lung cancer patients correlate with the development of the
pathological grade and clinical stage [15,37,38], as well as mortality [14]. Whether the
increase in circulating Hsp70 and Hsp90 correlates with cachexia is yet to be established.
Our findings that PCC releases dramatically higher levels of Hsp70 and Hsp90 than non-
cachectic LCC and RCC to induce muscle atrophy support the concept that extracellular
Hsp70 and Hsp90 are biomarkers and key mediators of PC-induced cancer cachexia. On
the other hand, LCC and RCC released modestly increased levels of Hsp70 and Hsp90 over
NCC without causing myotube atrophy, suggesting that these levels of Hsp70 and Hsp90
are below the threshold for inducing the catabolic response in muscle cells.

Our data demonstrate that neutralizing extracellular Hsp70 and Hsp90 attenuates
PCC-induced myotube atrophy in a dose-dependent manner, supporting the notion that
elevated extracellular Hsp70 and Hsp90 are key inducers of muscle catabolism by PCC.
PCC-conditioned medium activated p38 MAPK and p38β MAPK effector C/EBPβ in
one hour, consistent with previous findings from immortalized cancer cells [21,29,35],
suggesting that this action involved Hsp70 and Hsp90 receptor TLR4-mediated post-
transcriptional modifications independently of the cancer-induced systemic increase of
inflammatory cytokines [17,19] that can activate p38 MAPK including IL-6 [39], TNFα [40],
IL-1 [41], and activin [10,20]. In addition, the IL-6 stimulation of muscle mass loss may also
involve STAT3-mediated signaling [9]. On the other hand, due to that circulating Hsp70
and Hsp90 increase with disease progression [15,37,38], in more advanced cancer patients,
higher levels of circulating Hsp70 and Hsp90 may further increase circulating cytokines
that exacerbate cachexia.

Extracellular Hsp70 and Hsp90 induce muscle wasting by activating TLR4 [17]. TLR4
activation increases the cellular generation of ROS [42], which stimulates cancer-induced
muscle wasting [43]. TLR4-mediated muscle wasting can be ameliorated by the antioxidant
agent curcumin [44]. As TLR4 effectors, the p38 MAPK family in skeletal muscle is activated
by ROS and ROS-generating cytokines such as TNFα [40,45]. Thus, antioxidants may be
useful in ameliorating PC-induced muscle wasting by antagonizing the Hsp70/90-induced
activation of p38β MAPK, and they thus warrant future investigations.

In conclusion: the current in vitro study suggests that human PC cells release high
levels of Hsp70 and Hsp90 to activate p38β MAPK-mediated muscle mass loss directly.
Future in vivo and patient studies are warranted in order to determine whether circulating
Hsp70 and Hsp90 are indeed biomarkers and therapeutic targets of PC-induced cancer
cachexia.
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