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Abstract: Trimethyltin (TMT) is an irreversible neurotoxicant. Because prenatal TMT exposure has
been reported to induce behavioral changes, this study was conducted to observe gender differences
and epigenetic changes using a mouse model. In behavioral testing of offspring at 5 weeks of age,
the total times spent in the center, corner, or border zones in the male prenatal TMT-exposed mice
were less than those of control unexposed mice in the open-field test. Female TMT-exposed mice
scored lower on total numbers of arm entries and percentages of alternations than controls in the
Y-maze test with lower body weight. We found that only TMT-exposed males had fewer copies
of mtDNA in the hippocampus and prefrontal cortex region than controls. Additional epigenetic
changes, including increased 5-methyl cytosine/5-hydroxymethyl cytosine levels in the male TMT
hippocampus, were observed. After methylation binding domain (MBD) sequencing, multiple
signaling pathways related to metabolism and neurodevelopment, including FoxO signaling, were
identified by pathway analysis for differentially methylated regions (DMRs). Increased FOXO3 and
decreased ASCL1 expression were also observed in male TMT hippocampi. This study suggests that
sex differences and epigenetics should be more carefully considered in prenatal toxicology studies.
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1. Introduction

Trimethyltin (TMT) accumulates in the body after acute exposure [1]. Stannin (Snn) is
a highly conserved 88-residue protein that is localized to mitochondria and may mediate
the selective toxicity of TMT [2]. TMT exhibits neurotoxic effects that are localized in
the limbic system, particularly in the hippocampus, in both experimental animals and
accidentally exposed humans [3,4]. Behavioral tests have demonstrated that TMT exposure
damages the hippocampus, resulting in memory and learning deficits [5,6]. TMT-exposed
rats showed postnatal toxicity and decreased birth weights [7]. Several animal models
involving prenatal chemical exposure to substances including valproic acid and TMT
for neurodevelopmental disorders have been suggested [8,9]. Others have reported that
several human neurodevelopmental disorders, including autism spectrum disorder and
attention deficit hyperactivity disorder, show changes in peripheral mitochondrial DNA
copy number, which may be related to mitochondrial dysfunction [10–12].

Furthermore, it is suggested that in utero environmental stress exposure could result
in long-term epigenetic alterations, which induce consequences for development in the
offspring [13]. While there are multiple modes of epigenetic modulation, DNA methylation
is the most heavily studied and there is only limited work considering the effects of
prenatal substance exposure on differential microRNA or histone modifications. In addition,
depletion of mtDNA has been reported to cause significant changes in the methylation
patterns of multiple genes, providing the first direct evidence that mitochondria regulate
epigenetic modifications in the nucleus [14]. Several studies have identified possible effects
on reversible and irreversible changes in genomic DNA methylation profiles of the nuclear
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genome as a consequence of mitochondrial dysfunction [15]. It may be possible that
prenatal exposure to TMT induces epigenetic and signal transduction changes during
long-term neurodevelopment. However, sex differences in behavior and phenotypes were
not considered. Therefore, this study aimed to evaluate sex-specific behavioral effects and
the possibility of epigenetic modification of genes involved in nervous system development
by TMT exposure during the prenatal period.

2. Results
2.1. Prenatal TMT Exposure Induces Sex-Specific Behavioral Changes

Open-field testing showed no significant difference in distances traveled between
the TMT-treated group (TMT, n = 16) and the control (CON, n = 17) groups when males
and females were combined. The TMT group spent significantly less time in the center
(p = 0.015) and around the borders (p = 0.001), and significantly more time in the corners
than the CON group (p = 0.01). The data were reanalyzed for sex-specific differences.
There was no significant difference in the distance traveled between TMT and (n = 8) and
CON (n = 10) males. TMT males spent significantly less time in the center (p = 0.008) and
around the borders (p = 0.013), with significantly more time in the corners than CON males
(p = 0.002). On the other hand, the distances traveled by TMT females were significantly
less than those of the CON group (p = 0.049), but there were no differences in time spent in
the center, along the borders, or the corners. In addition, the total numbers of alternations
and the percentages of alternations per trial were not significantly different between TMT
and CON groups in the Y-maze test. However, the total number of arm entries (p = 0.036)
and the number of alternations (p = 0.003) exhibited by TMT females were less than those for
CON females (Table 1). Two-way ANOVA confirmed that gender-dependent interactions
occurred only for the time of stay in the corner of the open-field test (Table S1).

Table 1. Behavior test results of 5 week-old mice shows sex differences in prenatal TMT treatment.

Gender Test Variables CON TMT p-Value

Male

Open field test

Distance 3765.5 ± 891.8 3704.3 ± 1021.3 0.859 †

Center (s) 48.4 ± 36.2 17.3 ± 8.2 0.008 ‡

Corner (s) 333.5 ± 36.3 410.9 ± 36.8 0.002 ‡

Borders (s) 218.2 ± 31.9 171.7 ± 31.6 0.013 ‡

Y-maze
Total number 38.4 ± 8.5 43.4 ± 14.7 0.398 †

Alternation 22.9 ± 6.3 24.9 ± 8.6 0.532 †

Alternation % 0.63 ± 0.09 0.6 ± 0.06 0.654 †

Female

Open field test

Distance 3664.5 ± 641.1 3007.2 ± 520.9 0.049 ‡

Center (s) 25.6 ± 16.5 18.4 ± 11 0.487 †

Corner (s) 395.6 ± 35.4 413.1 ± 36.6 0.355 †

Borders (s) 178.8 ± 24 168.5 ± 35.1 0.487 †

Y-maze
Total number 45.1 ± 6 36.4 ± 8.2 0.036 ‡

Alternation 28.3 ± 3.1 20.1 ± 3.6 0.003 ‡

Alternation % 0.66 ± 0.05 0.6 ± 0.07 0.072 †

Male: CON (n = 10), TMT (n = 8), Female: CON (n = 7), TMT (n = 8), † Mann–Whitney U-test, ‡ Student t-test.

Body weight was analyzed according to sex and prenatal TMT exposure at 6 weeks
old. Although there were no differences in body weights between males in the TMT
group (19.9 ± 1.7 g) and males in the CON group (20.8 ± 1.9 g), females in the TMT
group (16.4 ± 0.9 g) had significantly lower body weight than females in the CON group
(17.9 ± 1.1 g) (p = 0.004). The mean body weight of the TMT group (18.3 ± 2.2 g) was
significantly lower than that of the CON group (19.7 ± 2.1 g) (p = 0.049).

2.2. Decreased Mitochondrial DNA Copy Numbers in Male Hippocampus and Prefrontal Cortex

The mtDNA copy number found in the hippocampus and prefrontal cortex of males
in the TMT group (n = 13) was smaller than that of males in the CON group (n = 13), but
there was no significant difference in the cerebellum. No significant differences in mtDNA
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copy number were found in the hippocampus, cerebellum, or prefrontal cortex between
CON and TMT groups of female (Table 2). If sex was not considered, the mtDNA copy
number in the hippocampus was significantly lower in the TMT group (n = 23) than in the
CON group (n = 21) (p = 0.049), but there were no significant differences between groups in
the cerebellum and prefrontal cortex. We also observed correlations between mtDNA and
behavior data from OFT and Y-maze with tissue and sex specificity (Tables S1 and S2).

Table 2. Prenatal TMT exposure alters male mitochondrial DNA copy numbers.

Sex Tissue CON TMT p-Value

Male
Hippocampus 2893.8 ± 687.4 2461.2 ± 869.8 0.045 ‡

Cerebellum 603.8 ± 259.4 752.5 ± 587.2 0.817 †

Prefrontal cortex 2641.8 ± 660.9 2047.6 ± 750.8 0.043 ‡

Female
Hippocampus 2610.6 ± 332.6 2784.8 ± 621.5 0.722 ‡

Cerebellum 433.6 ± 77.5 457.9 ± 193.7 0.657 †

Prefrontal cortex 2978.3 ± 711.3 3237.6 ± 690.4 0.286 †

CON, control, TMT, prenatal TMT treatment, Males: CON (n = 13), TMT (n = 13); Females: CON (n = 8),
TMT (n = 10). † Mann–Whitney U-test, ‡ Student t-test.

2.3. DNA Methylation Levels and DNMT1 mRNA Expression Levels Are Altered in the Prenatal
TMT-Exposed Male Hippocampus

Global DNA methylation levels were not statistically significant in females, but a signifi-
cant increase was observed in the male TMT group only (Figure 1A). The 5-methylcytosine %
(mean ± standard deviation) was 1.35 ± 0.50 in the TMT group compared with 0.60 ± 0.26 the
CON group (p ≤ 0.001). The 5-hydroxymethylcytosine (mean% ± standard deviation) was
0.679 ± 0.23 in the TMT group compared with 0.30 ± 0.10 in the CON group (p < 0.001). To
analyze Dnmt gene expression changes, we performed qPCR for Dnmt1 and Dnmt3a on male
hippocampal RNA (Figure 1B). Although the relative mRNA expression of Dnmt3a was not
different between groups in males, the expression of Dnmt1 mRNA was significantly decreased
in the TMT prenatal male hippocampus (p = 0.048). We performed MBD-sequencing to select
candidate genomic regions of DNA methylation change by prenatal TMT exposure with
pooled genomic DNA extracted from each male hippocampus, since only male samples show
a statistically significant increase of DNA methylation level. After genome-wide distribution of
DMR analysis with fold change and statistical test, we identified 2809 hypermethylated regions
and 2778 hypomethylated regions in the CGI promoter. In addition, 2009 hypermethylated
regions and 2183 hypomethylated regions were identified in the non-CGI promoter (Table S3).
After gene network analysis of DMRs in promoters and exons, we observed several significant
enrichments for several gene ontology (GO) terms and KEGG/Reactome pathways for both
groups, including the metabolic and FOXO signaling pathways (Figure 2).
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Figure 1. Global DNA methylation and Dnmt gene expression in the hippocampi of mice prenatal 
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nomic DNA samples of control and TMT groups. (B) Relative mRNA expression of Dnmt1 and 
Dnmt3a, normalized to Gapdh as an internal control in the male hippocampus. * p < 0.05, *** p < 0.001 
compared to control (CON). Data are shown as means ± standard deviations (SD). 
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data from prenatal TMT exposed male hippocampus. (A) CGI promoter region. (B) Non-CGI pro-
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2.4. Prenatal TMT Exposure Induces Changes in the Expression of Mitochondria-Related Genes
and FOXO3 in the Male Hippocampus

To confirm the reliability of the GO analysis of the DMR data, we selected the
mitochondria-related Tfam gene for the metabolism pathway, Foxo3 gene for the FOXO
signaling pathway and the Ascl1 gene was additionally selected and evaluated their mRNA
expression by qPCR. Although there was no change in mRNA expression of Tfam and
Ascl1, an increase in the mRNA expression level of Foxo3 gene in TMT male hippocampus
(p = 0.039) can be observed. In the Western blot analysis (Figure 3), though there was no
difference between CON and TMT groups in the female hippocampus, TFAM expression
was increased in the TMT-exposed male hippocampus (p < 0.001). An increasing FOXO3
expression in male hippocampus exposed to prenatal TMT (p = 0.041) was also observed.
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In addition, we observed a decreased expression of ASCL1, which has been reported to be
a crucial regulator of multiple aspects of neurogenesis and shares common targets with
FOXO3 in the male hippocampus (p = 0.024).
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compared to control (CON). Data are shown as means ± standard deviations (SD).

3. Discussion

In this study, we observed the sex-specific effects of prenatal TMT exposure on be-
havior, suggesting a role in neuropsychiatric disorders. In general, toxicity is observed as
weight loss in addition to hyperexcitability, convulsions, and posterior paresis [16]. In most
previous studies using the prenatal stress model, only males were selected for study [6,9].
The open-field test, which is most commonly used for animal behavioral testing, was used
to evaluate locomotor activity and anxiety [17]. In this study, TMT-exposed males spent
less time in the center and along the borders and more time in the corners during the open-
field test. These results are suggestive of anxiety, a neurotoxic effect of TMT, and appear
predominantly in male mice [18]. However, a limitation of this study is that the sample
sizes of both sexes in the behavior tests were dissimilar. Several hypotheses have been
proposed to explain sex differences in response to the same environmental exposure during
the perinatal period, such as sex hormones and placental protein expression differences,
but these suggestions have not been rigorously explored [19]. Therefore, it is necessary to
consider sex differences in further studies of animal prenatal stress models.

We also observed that a single prenatal exposure to the minimum toxic dose of TMT
caused a decrease in the mtDNA copy numbers in the hippocampus and prefrontal cortex



Int. J. Mol. Sci. 2021, 22, 8009 6 of 11

of males, but not in females. Mitochondria exert multiple functions in cellular metabolism
and redox homeostasis and are known as the powerhouses of the cell. They have been
increasingly revealed to be crucial for a broad range of neural processes and general brain
function. There is increasing evidence of a role for mitochondria in the etiology of neu-
ropsychiatric disorders [20,21]. Oxidative stress caused by mitochondrial dysfunction due
to TMT exposure may contribute to behavioral disorders or neurological disease [22,23].
It has also been suggested that brain mitochondrial dysfunction may be associated with
behavioral abnormalities including anxiety and depressive-like behavior. Several animal
studies have reported anxiety-like behaviors and physiological responses to stress change
accompanied by variations in mtDNA [24]. Mitochondrial biogenesis, which responds to
cellular energy following starvation or oxidative stress, is indirectly measured by mtDNA
copy number. Decreased mtDNA copy numbers at six weeks may represent brain mito-
chondrial dysfunction and oxidative stress [25]. Several studies have consistently shown
alterations in mtDNA copy number in peripheral samples from psychiatric patients with
neurodevelopmental disorders such as ASD (Autism Spectrum Disorder) [11]. Although
we observed that the expression level of Tfam was increased in the male hippocampus, the
mtDNA copy number was decreased. Since the mtDNA copy number can be changed
by the expression of multiple genes including Tfam, complex etiology such as epigenetic
factors can be inferred, but this study could not clearly elucidate them.

Multiple prenatal factors affect neurodevelopment. Similarly, several prenatal chemi-
cal injection animal models have been used to study neuropsychiatric defects. For example,
nicotine is the most common substance used during pregnancy, with ADHD (Attention
Deficit Hyperactivity Disorder) known to be more prevalent in children exposed prenatally
to tobacco [26]. This may be a better representation of the environmental/epigenetic factors
than genetic factors using transgenic models with mutations in single risk genes [27]. In
particular, in utero exposure to VPA in rodents has been used as a model for ASD with
predictive validity [28]. In addition, several prenatal immune challenge models have been
introduced in the case of schizophrenia, which shares the symptoms of ASD [29]. Epige-
netic mechanisms, such as DNA methylation and histone modification, may be key factors
in explaining these neurodevelopmental animal models. Increased DNA methylation
was observed only in the male hippocampus in this study. It has also been suggested
that FOXO signaling can be affected by DNA methylation through gene network analysis
by MBD-seq and qPCR. Mammals have four FOXO proteins, 1, 3, 4, and 6, which show
a high sequence similarity. It has been suggested that the activation of FOXO3, which
is mainly expressed in mitochondria, can induce specific sets of nuclear genes, includ-
ing cell-cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers,
autophagy effectors, gluconeogenic enzymes, and others depending on context [30]. In
addition, several groups have reported that FOXO3 activates not only the repression of
a large number of nuclear-encoded genes with mitochondrial function, but also inhibits
pro-neuronal bHLH transcription factor ASCL1-dependent neurogenesis [31]. In addition,
it can be considered that prenatal substance exposure may share other epigenetic mecha-
nisms such as histone modification, and microRNA, since there were gender differences in
FOXO3 gene expression levels in this study. Furthermore, although there was no change in
mRNA expression, increased expression of TFAM and ASCL1 was observed in this study.
Therefore, the possibility that the increase expression of TFAM and ASCL1 was caused by
post-transcriptional post-translational regulation cannot be excluded.

Multiple studies have implicated disruption of signaling in neurodevelopmental dis-
orders [32,33]. Therefore, exposure to TMT during the developmental phase may induce
neurodevelopmental abnormalities through changes in signal transduction. Microarray-
based, genome-wide expression analysis has been used to investigate the molecular changes
occurring in the TMT-injured brain, suggesting a critical role for mitochondrial dysfunction
and disruption of calcium homeostasis in the early phase of TMT-induced neurotoxic-
ity [34]. It is suggested that there is a possible role of Snn in several key signaling systems,
including activation of the p38-ERK cascade, p53-dependent pathways, and 14-3-3x protein-
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mediated processes [35]. Moreover, it may be possible that the difference of Snn expression
level by sex or substance exposure may affect signaling changes. However, we cannot
observe any difference in Snn mRNA expression between sex and TMT exposure (data not
shown). TMT-treated isolated mitochondria showed a time-dependent inhibition of ADP-
stimulated oxygen consumption using succinate or glutamate/malate as substrates [36].
Mitochondrial dysfunction can cause cytotoxicity and apoptosis, including activation of the
caspase8/caspase 3 pathway in primary cultured neuronal cells after TMT exposure [37].
Several signaling pathways that have been previously studied in TMT neurotoxicity have
also been identified in gene network analyses. For example, Kim et al. reported the in-
volvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell
degeneration and dysfunction [38]. Moreover, Qing et al. reported that crosstalk between
nuclear factor (NF-κB) and mitogen-activated protein kinase (MAPK) may be involved in
TMT-induced apoptosis [39].

4. Materials and Methods
4.1. Animal Model

Seven-week-old male and female mice (C57BL/6) were purchased from Samtako
Osan (Korea). In a one-week familiarization, mice were maintained at a temperature of
22 ± 2 ◦C, under a 12-h light/dark cycle (on 7:00 to 19:00) at 50 ± 10% relative humidity at
with food and tap water available ad libitum. After environmental adaptation, 2 female
mice and 1 male mouse were mated in one cage. After the pregnancy was confirmed,
female mice were placed in each individual cage. We confirmed that the gestation period
under these conditions was 22 ± 1 days. Pregnant C57BL/6 mice were once intraperitoneal
injected with TMT (2.3 mg/kg) in saline (10 µL/g) or the same volume of saline alone
(CON) 12.5 days after mating. At birth, newborns was counted and natural breastfeeding
was maintained for approximately three weeks. Males and females were segregated after
four weeks. There were more than 4 pregnant mice per group, and the survival days of
the offspring was the same, although not all became pregnant at the same time. None of
the offspring died shortly after birth or before sacrifice, all male and female mice within
a same litter were used in the study. A total of 44 male (n = 26) and female (n = 18) mice
were assigned to CON and TMT groups. Behavior tests were conducted at 5 weeks of age.
Animals were sacrificed by inhalation anesthesia at six weeks after birth and samples were
taken from the hippocampus, cerebellum, and prefrontal cortex of the brain. This study
was approved by the Institutional Animal Care and Use Committee of Eulji University
(EUIACUC 17-12).

4.2. Behavioral Testing

All behavioral experiments were conducted between 9:00 am and 12:00 pm in consid-
eration of murine circadian rhythms (at 5 weeks of age). Open-field tests were performed in
a soundproof experimental room using a white open field (the dimensions of 30 × 30 cm 2,
walls 40 cm high). Initially, mice were gently placed in the center of the arena and allowed
to explore. Motor activity was assessed in 5-min sessions, recorded using a video camera
(LG, LS903N-B, Seoul, Korea), and scored using video tracking software (Noldus EthoVi-
sion, Wageningen, The Netherlands). Total distances and times spent in different zones
of the field were recorded and analyzed. The Y-maze was a closed three-arm maze with
equal angles between all arms 30 cm long, 5 cm wide, and 12 cm high. Mice were placed at
the center of the arms and allowed to move freely through the maze during an 8-min test
period. The percentage of trials in which mice entered all three arms was recorded as one
alternation. This was used as an estimate of short-term memory. Total numbers and series
of arm entries were recorded. The number of maximum alternations was therefore the total
number of arm entries minus two, and the percentage of alternations was calculated as
(actual alternations/maximum alternations) × 100.
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4.3. Mitochondrial DNA (mtDNA) Copy Number and DNA Methylation Assays

Total genomic DNA was isolated using a DNeasy blood and tissue kit (Qiagen, Hilden,
Germany). Mitochondrial DNA copy number was assessed using quantitative real time
polymerase chain reactions (qRT-PCR) and calculated by the 2−∆∆CT method [40], using the
equation: mtDNA copy number = 2−∆Ct, where ∆Ct = Ctmitochondria − Ctnuclear. The β-actin
(Actb) nuclear gene and genes from mtDNA were amplified by qRT-PCR using iQTM
SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA) in a CFX96TM Real-Time system
(Bio-Rad, Hercules, CA, USA). To prepare PCR samples, 3 µL of genomic DNA (5 ng/µL)
was mixed with 2 µL of each primer (10 pmol/µL), and 5 µL of SYBR supermix. A global
DNA methylation assay kit (Abcam, Cambridge, UK) was used to quantify the global
hippocampal genomic DNA methylation according to the manufacturer’s instructions.

4.4. Real-Time Quantitative Polymerase Chain Reaction

Total RNA was extracted using the miRNeasy Mini Kit (Qiagen, Hilden, Germany).
DNA was stored at −80 ◦C until use. For relative mRNA expression analysis, cDNA
was synthesized using an RT2 first strand kit (Qiagen, Hilden, Germany) from total RNA
and PCR was performed using the same PCR premix and instrument described above.
Expression was normalized to Gapdh gene expression and was assessed using the 2−∆∆Ct

method. Primer sequences and PCR conditions are listed in Table S4.

4.5. MDB Sequencing

Methylated DNA was isolated using the MethylMiner Methylated DNA Enrichment
Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Briefly,
fragmentation of 1ug of pooled genomic DNA from each group was performed using
adaptive focused acoustic technology (AFA; Covaris) and captured by MBD proteins,
then eluted in a high-salt buffer. DNA in each eluate was precipitated with glycogen,
sodium acetate, and ethanol, then resuspended in DNase-free water. This DNA was used
to generate libraries following the standard protocols provided with the TruSeq Nano DNA
Library Prep Kit (Illumina, San Diego, CA, USA). The eluted DNA was repaired, an Ais
ligated to the 3 end, Truseq adapters are then ligated to the fragments. Once ligation had
been assessed, the adapter-ligated product was PCR amplified. The final purified product
was then quantified by qPCR according to the qPCR Quantification Protocol Guide and
qualified using the Agilent Technologies 4200 TapeStation software (Agilent Technologies,
Santa Clara, CA, USA). We then sequenced using the HiSeq™ 2500 platform (Illumina, San
Diego, CA, USA).

4.6. Data Processing and Methylation Profile Calling

Paired-end sequencing reads (101 bp) generated from MBD sequencing were verified
using FastQC (version 0.10.0). Before starting analysis, Trimmomatic (version 0.32) was
used to remove adapter sequences and bases with base qualities lower than 3 from the end
reads. Using the sliding window trim method, bases that did not qualify for window size 4
and mean quality 15 were removed. Afterwards, reads with a minimum length of 36 bp
were removed.

The cleaned reads were aligned to the human genome (UCSC mm10) using Bowtie
(version 1.1.2 parameter set-n2-m1-X 700), allowing up to 2 nucleotide mismatches to the
reference genome per seed and returning only uniquely mapped reads. Mapped data (SAM
file format) were sorted and indexed using SAMtools (version 0.1.19). PCR duplicates were
removed using Picard Mark Duplicates version 1.118.

Analysis of MBD data was performed using the MEDIPS package (version 1.16.0).
For each sample, aligned reads were extended in the sequencing direction to a length of
W300 nucleotides. The sequencing read coverage of the extended reads was calculated
using a genome-wide, 250-bp window size. Subsequently, the resulting coverage profiles
(read count, RPKM, and RMS) for each genomic bin were calculated. Each DMR was
annotated using the table browser function of the UCSC genome browser. Annotation
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included gene structures, transcripts, promoter regions (defined as −2 kb upstream of the
transcription start site), exons, introns, and CpG islands.

4.7. Identification of Differentially Methylated Regions (DMRs)

Read counts for each genomic bin were normalized with TMM (trimmed mean of
M-value normalization) in edgeR. We applied an exact test to assess the significance of
methylation differences between groups using edgeR. Differentially methylated regions
(DMRs) were determined by filtering for each region associated with |log2FC| ≥ 1 and
exact test p-values < 0.05. Hierarchical clustering analysis also was performed using com-
plete linkage and Euclidean distance as a measure of similarity to display the methylation
patterns of DMRs, which were satisfied with |log2FC| ≥ 1 and p-values < 0.05 at least one
more comparison pairs exact test. Gene-enrichment and functional annotation analysis for
the significant gene list was performed using Gene Ontology (www.geneontology.org/,
26 May 2021) and pathway analysis for the DMR was performed based on the KEGG
pathway (http://www.genome.jp/kegg/pathway.html, 26 May 2021). All data analy-
sis and visualization of differentially methylated results were conducted using R 3.0.2
(www.r-project.org, 26 May 2021).

4.8. Western Blotting

Tissues (male hippocampus) were homogenized in RIPA buffer (ATTO, Tokyo, Japan)
with proteinase and phosphatase inhibitors (ATTO, Tokyo, Japan). Antibodies against
β-actin (Cell Signaling, Danvers, MA USA), FOXO3 (Cell Signaling, Danvers, MA, USA),
ASCL1 (Abcam, Cambridge, UK), and TFAM (Millipore, Burlington, MA, USA) were
used as primary antibodies. After conventional Western blotting, bands were visualized
using the PierceTM ECL western blotting substrate (Thermo Scientific, Waltham, MA,
USA). Protein expression levels were calculated using ImageJ software (NIH, Bethesda,
MD, USA).

4.9. Statistical Analysis

All data, including qPCR and Western blotting, are expressed as means ± standard
deviations. Statistical analysis was performed using SPSS version 20.0 (IBM Co., Armonk,
NY, USA). The statistical significance of differences between groups was evaluated using
a two-tailed Student’s t-test. The Mann–Whitney U-test was used for data that were not
normally distributed. In addition, a two-way ANOVA was used to confirm the differences
according to gender. Correlations between mtDNA copy numbers and behavioral variables
were calculated using Pearson’s correlation analysis. A p-value less than 0.05 was consid-
ered statistically significant, and significance is denoted in graphs as: * p < 0.05, ** p < 0.01,
and *** p < 0.001.

5. Conclusions

Our data suggest that prenatal TMT exposure induces epigenetic changes, which may
affect neurodevelopmental changes in the male hippocampus by altering mitochondrial
and FOXO signaling. There is a limit to determine the precise mechanism of FOXO3
gene expression changes for DNA methylation and the effects for mitochondrial DNA
copy number with brain region/sex specificity by prenatal TMT exposure, since only the
hippocampal region has been studied and the cause of the gender differences and specific
valid target genes which are regulated by DNA methylation was not identified in this study.
Therefore, it will need additional studies with further animals and human subjects.
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