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a b s t r a c t 

The genome-wide association study (GWAS) aims to detect associations between individual single nucleotide 

polymorphisms (SNPs) or SNP interactions and phenotypes to decipher the genetic mechanism. Existing GWAS 

analysis tools have different focuses and advantages, but suffer a series of tedious and heterogeneous configu- 

rations for computation. It is inconvenient for researchers to simply choose and apply these tools, statistically 

and biologically analyze their results for different usages. To address these issues, we develop a user friendly 

web pipeline GWASTool for detecting associations, which includes simulation data generation, associated loci 

detection, result visualization, analysis and comparison. GWASTool provides a unified and plugin-able framework 

to encapsulate the heterogeneity of GWAS algorithms, simplifies the analysis steps and energizes GWAS tasks. 

GWASTool is implemented in Java and is freely available for public use at http://www.sdu-idea.cn/GWASTool . 

The website hosts a comprehensive collection of resources, including a user manual, description of integrated 

algorithms, data examples and standalone version for download. 

1

 

a  

a  

m  

c  

y  

a  

t  

b  

t  

b  

a  

f  

a  

m  

s  

B  

a  

e  

t

 

g  

s  

e  

m  

h  

p  

m

 

r  

a  

s  

g  

d  

i  

w  

d  

t  

p  

t

 

t  

h

2

B

. Introduction 

The influx of genome-wide data has accelerated genome-wide

ssociation study (GWAS). The aim of GWAS is to explore the genetic

ssociations between small variations, such as single nucleotide poly-

orphisms (SNPs), and complex traits or diseases. SNPs are the most

ommon genetic variation in the DNA sequences [1] . Association anal-

sis results can be valuable in numerous scenarios. Studying variants

ssociated with diseases can provide guidance for early prevention and

argeted treatments. Detection of SNPs associated with plant traits can

e utilized to select high-yield and high-quality plant lines based on

heir genomes, eliminating the need for field planting. It reduces the

reeding cycle and experimental costs. Single marker analysis methods

nd multi-locus methods have been proposed to dissect the genetic

oundation of traits. Single marker methods test the association between

 single SNP and phenotype each time [2] . In contrast, multi-locus

ethods examine the associations between multiple loci and phenotype

imultaneously [3] . They are more in accordance with biological rules.

esides, it has been recognized that many complex traits and diseases

re caused by interactions between loci [4] . SNP interactions (a.k.a.

pistasis ) can further uncover the unknown heritability of complex

raits [5] . 
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Available epistasis detection methods can be categorized into three

roups: exhaustive [6] , stepwise [7,8] and machine learning-based

earch methods [9,10] . Exhaustive methods often have the highest cov-

rage but take a long time to run and face the challenge of “curse of di-

ensionality ”. Stepwise methods gradually reduce the candidate set and

ave better efficiency, but may miss SNP interactions associated with

henotypes. Machine learning-based approaches do not rely on specific

odels but lack interpretability and accuracy. 

Existing algorithms have been developed on diverse running envi-

onments, implemented using heterogeneous programming languages,

nd utilized various input file formats. Their heterogeneity prevents re-

earchers to select the most suitable algorithms or compare multiple al-

orithms for more reliable and comprehensive results [11] . Besides, con-

ucting biological analysis based on these results needs solid knowledge

n biology and a complex, comprehensive search process. Given those,

e develop GWASTool, a user-friendly and plugin-able web pipeline for

etecting SNPs or SNP combinations associated with diseases or pheno-

ypes. GWASTool is a complete GWAS pipeline from data generation and

rocessing, associated loci detection, to result analysis, without many

echnical barriers. 

To our best knowledge, GWASTool provides the first online platform

hat assembles multi-type algorithms and the whole pipeline for detect-
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Fig. 1. The overall architecture of GWASTool mainly consists of four parts: simulated data generation and real data processing, multiple detection algo- 

rithms execution, result analysis and performance comparison. The “Data Generation and Processing ” module offers tools to generate qualitative or quantitative 

simulated datasets and preprocess existing datasets. The “Execute algorithms ” module provides single-loci, multi-loci and epistasis detection algorithms to detect 

associations. The “Result analysis ” module facilitates the analysis and interpretation of detected SNPs. The “Algorithm comparison ” module enables users to evaluate 

and compare the performance of different algorithms. 

i  

a

2

 

c  

i  

f  

g  

t  

a  

m  

l  

p  

m  

a  

y  

G  

p  

o  

s  

u  

a  

i  

p  

a  

a

2

 

a  

a  

d  

m  

b  

G  

a  

G  

i  

o

2

 

i  

(  

m  

F  

m  

D  

E  

a

 

f  

p  
ng associated SNPs and epistasis. GWASTool is a valuable resource for

ssociation detection. 

. Methods 

GWASTool mainly contains four modules: data generation and pro-

essing, algorithm execution, result analysis and performance compar-

son, as illustrated in Fig. 1 . Each module serves a specific purpose to

acilitate efficient analysis and interpretation of genetic data. The data

eneration and processing module in GWASTool offers a range of tools

o generate simulated data sets or preprocess existing data sets. This en-

bles users to prepare their data for analysis. The algorithm execution

odule is a crucial component of GWASTool. It provides users with a se-

ection of 11 diverse algorithms. These algorithms are designed to detect

henotype-associated SNPs or SNP interactions. Users can choose the

ost suitable algorithm based on their specific requirements. GWASTool

lso offers result visualization and query module to facilitate the anal-

sis and interpretation of detected SNPs and epistasis. Additionally,

WASTool provides tool-kits for easy performance evaluation and com-

arison. These toolkits simplify the process of assessing the performance

f different algorithms with different parameters or comparing the re-

ults obtained from various analyses. It is important to note that all mod-

les can be used independently, allowing users to tailor their analysis

ccording to their specific needs and research requirements. GWASTool

s designed as parallel, batch-able and task-based to improve platform

erformance and stability. Researchers can conveniently detect associ-

tions by choosing different algorithms and easily add new algorithms
s needed. 𝑀  

762
.1. Data generation and processing 

GWASTool offers convenient tools to simplify simulated data gener-

tion and data preprocessing, as shown in Fig. 2 b. Three types of tools

re integrated. The quantitative trait values generation tool [12] is intro-

uced to simulate trait values based on different genetic models. Those

odels include those with no polygenic variances, an additive polygenic

ackground or an epistatic background. The second tool integrated is

AMETES [13] . As a canonical tool, GAMETES is supported to gener-

te complex biallelic SNP-disease models in simulation studies. Besides,

WASTool uses PLINK [14] to execute SNP filtering and data process-

ng. Users also can download these tools from the corresponding column

f GWASTool, enabling them to access more functions. 

.2. Algorithm execution 

GWASTool integrates a variety of current representative algorithms,

ncluding two single-locus algorithms based on mixed linear model

MLM) framework, EMMAX [15] and FastGWA [16] ; three multi-locus

ethods based on MLM framework, LASSO [17] , FarmCPU [18] and

astmrMLM [12] ; and six epistasis detection algorithms, exhaustive

ethods DCHE [19] and ELSSI [20] , stepwise methods HiSeeker [7] and

ualWMDR [8] , machine learning based methods MP-HS-DHSI [9] and

pi-MQMDR [21] in the latest version. The detailed procedures of these

lgorithms are given in the Supplementary file. 

As shown in Fig. 2 c, GWASTool provides a user-friendly interface

or each algorithm, allowing users to input the required genotype and

henotype data files and parameters. The genotype data files contain

SNPs of 𝑁 individuals, with SNP genotypes encoded as 0, 1, or 2,
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Fig. 2. The usage of GWASTool. (a) The homepage highlights the features of GWASTool, and introduces the concept of GWAS and epistasis. (b) The “Data 

generation and processing ” page offers tools for generating simulated datasets and preprocessing available datasets. (c) The “Algorithm ” page provides multiple 

association detection algorithms for analyzing the data, along with result visualization. (d) The “Query SNP ” page allows users to retrieve basic information of SNPs, 

such as position, related genes, and other relevant details. (e) The “MyBatchTask ” page supports the execution of multiple algorithms in a batch. Panel (f-h) separately 

compute typical evaluation metrics using result file, generate QQ or Manhattan plots of association results, compare the performance of different methods. (i) The 

“TaskStatus ” page enables users to check the status of submitted tasks. 
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ccording to the number of minor alleles present at each locus. The

henotype data files contain quantitative trait values or disease sta-

us (1 for case and 0 for control) of 𝑁 samples. To ensure data secu-

ity, GWASTool uses a task-based computing architecture. In the cur-

ent version, data files and their results are stored for two days, al-

owing users to download them. After this expiration period, we guar-

ntee that data files are automatically deleted and will not be used

or any other purpose. Our commitment to privacy and data protec-

ion is clearly outlined in the website’s privacy policy ( http://www.sdu-

dea.cn/GWASTool/privacyPolicy ). On the input page, all parameters

or each algorithm are clearly explained and preset with default values.

hese default parameter values have been extensively tested in corre-
763
ponding literature and are suitable for most cases. The user can also

pdate the parameters within the provided value range as needed. Addi-

ionally, GWASTool offers performance comparison tools to assist users

n selecting optimal parameters. 

A significant advantage of GWASTool is its support for batch exe-

ution of multiple algorithms and efficient task management. This fea-

ure greatly improves computational efficiency and resource utilization.

sers can add tasks to the task queue and run them in batches ( Fig. 2 e).

he “TaskStatus ” page provides comprehensive information about all

ubmitted tasks, including the submitted time, execution status, order in

he queue, and completion time, as shown in Fig. 2 i. Besides, GWASTool

as good scalability. It is convenient to plugin new detection algorithms

http://www.sdu-idea.cn/GWASTool/privacyPolicy
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or personal needs. The details for new algorithms adding are given in

he online document. 

.3. Result analysis 

GWASTool provides the visualization, download and annotation

nalysis for the obtained results. Users can visualize the positions of de-

ected significant SNPs on chromosomes, their located genes and other

elevant information if the SNP names are given. Users can also conve-

iently query basic information of SNPs ( Fig. 2 d), including their chro-

osome, position, related gene, Gene Ontology (GO), Plant Ontology

PO) and the nearby genes. It provides convenience for users to evalu-

te the validity of the results and do better analysis. The execution and

nalysis results of the detected associated SNPs can be downloaded from

he algorithm page or batchtask page. They will also be emailed to the

ser-specified address, which can ensure the stability of submitted tasks,

ven in cases where the tool or page is closed or interrupted. 

.4. Performance comparison 

GWASTool provides a comprehensive set of tools for results evalua-

ion, performance analysis and visualization. Canonical evaluation met-

ics, such as true positive rate (TPR), false positive rate (FPR), precision

nd accuracy, can be automatically calculated for a specific algorithm

sing the user-defined thresholds( Fig. 2 f). These metrics can be used to

uantitatively evaluate the algorithm performance. As shown in Fig. 2 g,

he QQ plot and Manhattan plot are also supported to visualize the re-

ults of association analysis. In addition, a real-time chart generation

ool is embedded in GWASTool, which enables researchers to visually

ompare the performance trends of multiple methods under different

onditions. 

.5. Implementation 

GWASTool takes genotype and phenotype data files as input to detect

ssociated loci. It is developed in Java and operates on a server equipped

ith an Intel Xeon 6248R processor, 512GB RAM and an Ubuntu 18.04

ystem. The software stack includes R-4.0.0, Node 16.15.0, Npm 8.5.5,

omcat 8.5.78, redis 6.2.6, MySQL 8.0.32 and elasticsearch 7.15.2. To

etect associations, GWASTool directly executes executable files of the

lgorithms. Basic SNP information is stored in Redis, while task at-

ributes are stored in MySQL. Elasticsearch is utilized to search for

earby genes of SNPs. For querying SNP corresponding information,

WASTool leverages multiple open databases, including NCBI, Euro-

ean Variation Archive (EVA) [22] , AmiGO2 [23,24] , and MaizeMine.

he NCBI dbSNP database has amassed more than 900 million distinct

ariants from over 200,000 subjects for homo sapiens up to the latest

ersion in August 3, 2023. AmiGO 2 contains 879,963 biological pro-

ess items and 44,997 GO terms up to 2020. EVA hosts more than 3 bil-

ion genomic variants of over 130 species. MaizeMine integrates the Zea

ays Zm-B73-REFERENCE-NAM-5.0 genome assembly and genome as-

emblies of 25 other NAM founder lines with annotation data sets. These

atabases are widely used and support a comprehensive analysis of the

etected associated SNPs and their effect mechanisms. Besides, we will

lso keep up with the latest research progress and update the resources

sed in GWASTool in future. We have created a docker container for

asy deployment of the running environment. 

. Results 

.1. Comparison with existing detection tools 

The functional differences between GWASTool and other related

ools are outlined in Table 1 . Compared with existing tools, GWASTool

rovides a whole and multi-functional pipeline for detecting associated
764
NPs or SNP interactions and result analysis. It applies batch execu-

ion and caches data retrieved from public databases to enhance effi-

iency and convenience, which facilitates users to conduct comprehen-

ive association detection and result analysis. In contrast, other tools

ften only execute a single algorithm at a time, lack algorithm compar-

son, in-depth result inspection and low coverage of existing detection

lgorithms. 

.2. Detailed information of the test datasets 

We conducted extensive tests of GWASTool using both simulated and

eal datasets. The real datasets we collected include a Breast Cancer

BC) dataset with dichotomous qualitative traits and a Maize dataset

ith quantitative traits. The BC dataset comprises 5,607 SNPs from

,045 affected individuals and 3,893 controls. The Maize dataset con-

ains 127,669 SNPs from 6,957 samples after quality control. For the

imulation studies, we generated two-loci epistasis datasets based on

isease model DME-2 (with marginal effects disease model) and DNME-

 (with no marginal effects disease model), and three-loci epistasis

atasets based on DME-3 (with marginal effects) and DNME-3 (with-

ut marginal effects) using GAMETES. Their parameters and the pen-

trance values are shown in the Supplementary file. Additionally, to

nable a comprehensive performance comparison, we simulated five ef-

ective SNP combinations in DNME-2 and DNME-3 datasets. For further

erformance analysis on quantitative traits, we sampled 10,000 SNPs

nd 200 samples from the collected Maize dataset. We simulated the

henotype values using five genetic models: M-a (with no polygenic

ariances), M-b (with an additive polygenic), M-c_AxA (with Additive ×
dditive epistasis background), M-c_AxD (with Additive × Dominance

pistasis background) and M-c_DxD (with Dominance × Dominance epis-

asis background). The simulated dataset for quantitative trait testing

ncludes six effective SNPs, their effects and positions can be found in

he Supplementary file. 

.3. Performance of GWASTool 

To provide users with a performance reference for algorithm se-

ection, we evaluated the performance of integrated algorithm in

WASTool on simulated data and real data. The runtime of epistasis

etection algorithms is closely related to the number of loci and sam-

les. Thus, we conducted runtime tests on simulated data files gener-

ted by GAMETES with different numbers of SNPs and samples. The

esults are shown in Tables 4 and 5 , where 𝑁 and 𝑀 are the number of

NPs and samples, respectively. The default parameters were used for

he tests and the runtime varies with different input parameters. Once

he algorithm finishes, the runtime is displayed in the prompt. As the

umber of samples and SNPs increases, the algorithm runs slower. De-

ecting higher-order epistasis takes more runtime, due to the increased

umber of SNP combinations that need to be evaluated. MP-HS-DHSI,

iSeeker, DCHE generally perform faster than DualWMDR, Epi-MQMDR

nd ELSSI. Since HiSeeker can simultaneously output two-loci and three-

oci association results, its runtimes remain the same in Tables 4 and 5 .

pi-MQMDR doesn’t support three-loci association detection. Thus, its

untimes for three-loci model are not reported in Table 5 . 

We also test the runtime of assembled algorithms on Breast Cancer

BC) dataset and Maize dataset, as shown in Tables 6 and 7 , respec-

ively. For quantitative traits such as Maize dataset, the algorithms EM-

AX, FastGWA, LASSO, FarmCPU, FastmrMLM and Epi-MQMDR can be

sed, while DCHE, ELSSI, HiSeeker, DualWMDR and MP-HS-DHSI tar-

et for dichotomous qualitative traits such as BC dataset. Among these

etection methods, LASSO and MP-HS-DHSI demonstrated the fastest

untimes. 

Besides, we evaluate epistasis detection performance of integrated

isease-associated methods on DME-2, DNME-2, DME-3 and DNME-3.

o measure the detection capability, we adopt power, precision, re-

all and F1-score as evaluation metrics. As shown in Table 8 , HiSeeker



X. Wang, B. Xin, M. Guo et al. Fundamental Research 4 (2024) 761–769

Table 1 

Differences between ViSEN [25] , QTLNetwork [26] , GWASpro [27] , CASMAP [28] , GBOOST [29] , mrMLM [12] and GWASTool. 

Features Online 

service 

Multiple 

methods 

Parallel 

execution 

Visualization Result 

inspection 

ViSEN A software that reads main effects and interactions, quantifies the effects of SNP attributes with 

information-theoretic quantities, and visualizes them in a network. 

✕ ✕ ✕ ✓ ✕ 

QTLNetwork A package that can dissect the genetic architecture of complex traits into single-locus effects, 

epistasis, and QTL-environment interactions, and visualize the analysis results by graphs. 

✓ ✕ ✕ ✓ ✕ 

GWASpro A high-performance web server can provide data analyses and build complex design matrices to 

account for replicated phenotypic observations. 

✓ ✕ ✓ ✓ ✕ 

CASMAP A package that can detect region-based association studies and allow the correction of 

categorical covariates. 

✕ ✓ ✕ ✕ ✕ 

GBOOST A GPU-based tool implements the Boolean operation-based screening and testing (BOOST), and a 

gene-gene interaction analysis method. 

✕ ✕ ✓ ✓ ✕ 

mrMLM An R package integrates several multi-locus GWAS methods. ✕ ✓ ✓ ✓ ✕ 

GWASTool A complete pipeline for detecting SNP loci associated with complex traits, including simulated 

data generation, multi-type algorithms execution, result analysis and performance comparison. 

✓ ✓ ✓ ✓ ✓

Table 2 

Significant SNP interactions identified by DCHE, ELSSI, HiSeeker, DualWMDR and MP-HS-DHSI on Breast cancer dataset . 

Method Chromosome SNP-SNP interaction Related genes 𝑝 -value 𝑎 

DCHE 

(chr1, chr1) (rs3820011, rs2278107) (CFAP74, EPHA7) < 10−100 

(chr1, chr5) (rs3820011, rs13360277) (CFAP74, UIMC1) < 10−100 

(chr1, chr7) (rs3820011, rs5763) (CFAP74, TBXAS1) < 10−100 

(chr23, chr23) (rs5969783, rs1802288) (TXLNG, TSPAN6) < 10−100 

(chr22, chr19, chr20) (rs1001587, rs5969783, rs912002) (TCF20, TXLNG, ADGRG4) < 10−100 

ELSSI 

(chr17, chr20) (rs434473, rs2903808) (ALOX12, ZSWIM3) < 10−100 

(chr7, chr17) (rs4987667, rs434473) (TRPV6, ALOX12) < 10−100 

(chr12, chr17) (rs2242653, rs4968318) (LY6G6F, EFCAB13) < 10−100 

(chr12, chr17) (rs13110318, rs4968318) (TBC1D1, EFCAB13) < 10−100 

(chr5, chr16) (rs1974777, rs9652589) (GEMIN5, PDILT) < 10−100 

HiSeeker 

(chr3, chr3) (rs1108842, rs4687657) (GNL3, ITIH4) < 10−100 

(chr16, chr16) (rs4408545, rs3785181) (AFG3L1P, GAS8) 5 . 74 × 10−56 

(chr6, chr6) (rs2523608, rs805262) (HLA-B, C6orf47) 1 . 19 × 10−41 

(chr20, chr17, chr20) (rs2272955, rs3827040, rs2903808) (WFDC8, ALOX12, ZSWIM3) < 10−100 

(chr20, chr17, chr20) (rs2272955, rs3827040, rs4638862) (WFDC8, ALOX12, SNX21) < 10−100 

DualWMDR 

(chr3, chr6) (rs2289247, rs757256) (GNL3, LINC02829) / 

(chr18, chr21) (rs3809970, rs2070417) (ALPK2, TIAM1) / 

(chr6, chr23) (rs757256, rs1129980) (LINC02829, GPC4) / 

(chr6, chr17) (rs757256, rs12449313) (LINC02829, SMCR8) / 

MP-HS-DHSI 

(chr14, chr20) (rs976272, rs3827040) (TRMT5, SPATA25) / 

(chr15, chr20) (rs2242047, rs3827040) (SLC28A1, SPATA25) / 

(chr16, chr20) (rs7192210, rs3827040) (ACSM5, SPATA25) / 

a ’/’ means that 𝑝 -value is not included in the result of the method. 
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i  

i  
chieves the highest F1-score on DME-2. ELSSI displays the highest

ower and recall on DNME-2 and the highest F1-score on DNME-3.

P-HS-DHSI has the highest precision on DME-2 and DNME-3, while

CHE has the highest precision on DME-3. DCHE, ELSSI and HiSeeker

uccessfully detected associated SNP interactions in all simulated data

les in DNME-3. Both DCHE and ELSSI can be applied to models with-

ut marginal effects. However, ELSSI ignores the main effect in its base

ethods when detecting epistasis. As a result, ELSSI tends to have lower

ower than DCHE for models with marginal effect. Besides, ELSSI per-

orms better when most of its base methods accurately identify epistasis,

nd vice versa. DualWMDR calculates partial mutual information during

ts dual screening process to exclude SNPs. However, its accuracy can be

nfluenced by the presence of multiple effective SNP combinations with

imilar genetic models in our simulated datasets. We want to remark

hat DualWMDR can handle datasets with diverse genetic models and

hus we also integrate it into our pipeline. 

In the simulation studies on quantitative traits, we adopt power,

ean square error (MSE) and false positive rate (FPR) as the evalua-

ion metrics [30] . Power focuses on the identification capability of spe-
765
ific effective loci. FPR assesses the algorithms’ capability to avoid false

ositives, which refers to the erroneous identification of loci as associ-

ted ones when they are actually irrelevant to phenotypes. While MSE

easures the variance and bias of effect estimates. These three metrics

valuate algorithms from different perspectives. The results are shown

n Tables 9–11 . In most cases, FastGWA has the highest power. How-

ver, FastmrMLM performs better in detecting the second and third as-

ociated markers and FarmCPU performs better in detecting the fifth

arker in models M-c_AxA and M-c_AxD. EMMAX exhibits the lowest

SE in the detection of simulated associated markers in model M-c_DxD.

astmrMLM has comparable or lower MSE in model M-a. LASSO has the

owest FPR. Tables 8–11 can serve as a reference for users to select algo-

ithms based on their specific requirements. More detailed evaluations

nd analysis of algorithms can be found in the corresponding literature.

sers can execute multiple algorithms for more accurate and compre-

ensive results. 

We also evaluate integrated algorithms with Breast Cancer dataset

n Table 2 and Maize dataset in Table 3 . ELSSI detects locus rs144848

n gene 𝐵𝑅𝐶𝐴 2 [31] on Chromosome 13 and locus rs434473 in gene
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Table 3 

Significant SNPs associated with leaf length trait identified by EMMAX, FastGWA, LASSO, FarmCPU, FastmrMLM and SNP-SNP interactions identified by 

Epi-MQMDR on Maize dataset . 

Method SNP or SNP-SNP interaction Related genes 𝑝 -value 𝑎 

EMMAX 

S1_51041338 Zm00001eb126390 3 . 36 × 10−4 

S5_150626025 Zm00001eb239430 1 . 57 × 10−4 

S6_161803077 Zm00001eb294350 2 . 15 × 10−4 

FastGWA 

S4_5012512 Zm00001eb166550 1 . 88 × 10−7 

S3_211765068 Zm00001eb166550 2 . 17 × 10−7 

S4_2513671 Zm00001eb165270 4 . 25 × 10−7 

S4_2513673 Zm00001eb157700 4 . 25 × 10−7 

S4_2513683 Zm00001eb165270 4 . 25 × 10−7 

LASSO 

S1_41428002 Zm00001eb012560 / 

S2_203085168 Zm00001eb105950 / 

S3_28921363 Zm00001eb126390 / 

S6_161803077 Zm00001eb294350 / 

FarmCPU 

S4_120643323 Zm00001eb182500 3 . 44 × 10−11 

S6_154173295 Zm00001eb290690 1 . 93 × 10−14 

S1_202299516 Zm00001eb038710 9 . 43 × 10−11 

S2_83451063 Zm00001eb086680 2 . 62 × 10−7 

S1_27861046 Zm00001eb086680 1 . 61 × 10−6 

FastmrMLM 

S7_172583812 Zm00001eb330380 < 10−4 

S10_39954466 Zm00001eb411880 < 10−3 

S2_4662352 Zm00001eb067980 < 10−3 

S10_15221316 Zm00001eb409000 < 10−3 

Epi-MQMDR 

(S1_75691971, S1_267907289) (Zm00001eb020490, Zm00001eb055010) / 

(S1_39038251, S1_215761002) (Zm00001eb011970, unknown) / 

(S2_43203235, S2_236352049) (Zm00001eb081090, unknown) / 

(S3_37359861, S3_176356543) (Zm00001eb127900, unknown) / 

(S4_153048434, S4_192205670) (Zm00001eb186760, unknown) / 

(S5_212596204, S5_215261920) (unknown, Zm00001eb258590) / 

(S6_141077911, S6_166820527) (unknown, Zm00001eb297120) / 

(S6_62741234, S6_166820527) (Zm00001eb288140, Zm00001eb297120) / 

(S7_83882682, S7_173802089) (unknown, Zm00001eb330990) / 

(S8_142012041, S8_162756199) (Zm00001eb357860, Zm00001eb364930) / 

(S8_142012041, S8_162756193) (Zm00001eb357860, Zm00001eb364930) / 

(S10_121750464, S10_138051720) (Zm00001eb423960, Zm00001eb429220) / 

(S10_4750083, S10_9214870) (Zm00001eb406480, Zm00001eb407760) / 

(S10_115518504, S10_137828247) (Zm00001eb422190, Zm00001eb429130) / 

a ’/’ means that 𝑝 -value is not included in the result of the method. 

Table 4 

The runtime with different numbers of SNPs ( 𝐍 ) and samples ( 𝐌 ) on two- 

locus epistasis model . 

M 𝑁

1,000 2,000 5,000 10,000 

DCHE 

1,000 9 s 25 s 145 s 685 s 

3,000 12 s 35 s 219 s 913 s 

5,000 15 s 45 s 301 s 1311 s 

ELSSI 

1,000 69 s 228 s 1,396 s 5,791 s 

3,000 82 s 331 s 2,620 s 10,736 s 

5,000 120s 405 s 3,661 s 16,657 s 

HiSeeker 

1,000 12 s 24 s 91 s 334 s 

3,000 25 s 52 s 180 s 772 s 

5,000 34 s 76 s 321 s 1,147 s 

DualWMDR 

1,000 103 s 57 s 472 s 1,533 s 

3,000 175 s 160 s 798 s 2,926 s 

5,000 42 s 282 s 1,313 s 4,725 s 

MP-HS-DHSI 

1,000 45 s 45 s 67 s 66 s 

3,000 100 s 64 s 74 s 91 s 

5,000 78 s 79 s 100 s 127 s 

Epi-MQMDR 

1,000 37 s 95 s 529 s 1,779 s 

3,000 188 s 307 s 1,568 s 4,217 s 

5,000 589 s 806 s 2,772 s 8,889 s 

Table 5 

The runtime of DCHE, ELSSI, DualWMDR and MP-HS-DHSI with different 

numbers of SNPs and samples on three-locus epistasis model . 

M 𝑁

1000 2,000 5,000 10,000 

DCHE 

1,000 25 s 67 s 313 s 1,064 s 

3,000 34 s 169 s 448 s 1,272 s 

5,000 37 s 127 s 532 s 1,360 s 

ELSSI 

1,000 88 s 925 s 2,499 s 7,818 s 

3,000 163 s 1,360 s 4,256 s 15,219 s 

5,000 193 s 3,412 s 6,285 s 15,033 s 

HiSeeker 

1,000 12 s 24 s 91 s 334 s 

3,000 25 s 52 s 180 s 772 s 

5,000 34 s 76 s 321 s 1,147 s 

DualWMDR 

1,000 145 s 130 s 313 s 1,457 s 

3,000 40 s 106 s 941 s 2,653 s 

5,000 43 s 160 s 1,487 s 3,552 s 

MP-HS-DHSI 

1,000 109 s 490 s 166 s 199 s 

3,000 172 s 208 s 226 s 291 s 

5,000 235 s 247 s 426 s 339 s 
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Table 6 

The runtime of detecting associated SNP combinations with DCHE, ELSSI, 

HiSeeker, DualWMDR and MP-HS-DHSI on Breast cancer dataset . 

DCHE ELSSI HiSeeker DualWMDR MP-HS-DHSI 

533 s 3,342 s 715 s 3,531 s 94 s 

Table 7 

The runtime of detecting associated SNPs by EMMAX, FastGWA, LASSO, 

FarmCPU, FastmrMLM and Epi-MQMDR on Maize dataset . 

EMMAX FastGWA LASSO FarmCPU FastmrMLM Epi-MQMDR 

559 s 4,231 s 493 s 1,472 s 72,956 s 251,892 s 

Table 8 

Power, precision, recall and F1-score of DCHE, ELSSI, HiSeeker, DualWMDR 

and MP-HS-DHSI on simulated datasets. Each dataset contains 𝐍 = 𝟏𝟎𝟎𝟎 SNPs, 

800 cases and 800 controls. 

DCHE ELSSI HiSeeker DualWMDR MP-HS-DHSI 

Power 

DME-2 0.7300 0.5900 0.0100 0.0100 0.5000 

DNME-2 0.4400 0.4600 0.3300 0.0000 0.0000 

DME-3 0.5000 0.4900 0.3800 0.0100 0.0900 

DNME-3 1.0000 1.0000 1.0000 0.1700 0.5500 

Precision 

DME-2 0.0365 0.0295 0.0042 0.0005 0.2135 

DNME-2 0.0635 0.0315 0.0278 0.0000 0.0000 

DME-3 0.6729 0.0417 0.0191 0.0005 0.2290 

DNME-3 0.2400 0.2690 0.1489 0.0110 0.4150 

Recall 

DME-2 0.7300 0.5900 0.0100 0.0100 0.5000 

DNME-2 0.1140 0.1260 0.0860 0.0000 0.0000 

DME-3 0.5000 0.4900 0.3800 0.0100 0.0900 

DNME-3 0.7880 0.7600 0.5900 0.0440 0.1560 

F1-score 

DME-2 0.0471 0.0476 0.2500 0.0476 0.2238 

DNME-2 0.0848 0.05478 0.0632 0.0000 0.0000 

DME-3 0.4054 0.0700 0.0478 0.0476 0.3268 

DNME-3 0.1802 0.1933 0.1189 0.0518 0.1225 
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Table 9 

Comparison of powers for EMMAX, FastGWA, LASSO, FarmCPU, Fastm- 

rMLM . 

SNP EMMAX FastGWA LASSO FarmCPU FastmrMLM 

M-a 

1 0.04 0.35 0.02 0.02 0.00 

2 0.04 0.10 0.04 0.02 0.01 

3 0.08 0.72 0.02 0.10 0.00 

4 0.04 0.28 0.03 0.06 0.00 

5 0.00 0.48 0.00 0.01 0.00 

6 0.00 0.02 0.00 0.00 0.00 

M-b 

1 0.09 0.50 0.02 0.07 0.10 

2 0.01 0.10 0.02 0.04 0.11 

3 0.09 0.78 0.04 0.10 0.03 

4 0.07 0.44 0.04 0.05 0.14 

5 0.00 0.52 0.00 0.01 0.00 

6 0.01 0.01 0.01 0.00 0.06 

M-c_AxA 

1 0.02 0.07 0.00 0.02 0.03 

2 0.06 0.11 0.00 0.05 0.26 

3 1.00 0.92 0.73 0.00 1.00 

4 0.29 0.19 0.05 0.00 0.14 

5 0.00 0.00 0.00 0.01 0.00 

6 0.00 0.00 0.00 0.00 0.00 

M-c_AxD 

1 0.02 0.07 0.00 0.02 0.03 

2 0.06 0.11 0.00 0.05 0.26 

3 1.00 0.92 0.73 0.00 1.00 

4 0.29 0.19 0.05 0.00 0.14 

5 0.00 0.00 0.00 0.01 0.00 

6 0.00 0.00 0.00 0.00 0.00 

M-c_DxD 

1 0.01 0.13 0.00 0.01 0.02 

2 0.37 0.64 0.22 0.05 0.19 

3 0.17 0.48 0.05 0.00 0.05 

4 0.74 0.83 0.60 0.32 0.76 

5 0.00 0.37 0.00 0.02 0.00 

6 0.07 0.22 0.03 0.02 0.00 

Table 10 

Comparison of MSE for EMMAX, FastGWA, FastmrMLM. Only estimated ef- 

fect of significant associated markers are shown in LASSO and FarmCPU. Thus, 

we ignore the MSE of LASSO and FarmCPU. 

SNP EMMAX FastGWA FastmrMLM 

M-a 

1 0.9833 1.2660 0.0217 

2 0.0059 0.0269 0.0119 

3 0.2483 0.4805 0.0018 

4 1.0432 1.3887 0.0060 

5 0.2631 0.5089 0.0109 

6 0.0047 0.0185 0.0108 

M-b 

1 1.2338 1.5713 0.9714 

2 0.0107 0.0437 0.7232 

3 0.3275 0.6090 0.3035 

4 1.3421 1.7628 0.6897 

5 0.3435 0.6405 1.9419 

6 0.0046 0.0230 1.0260 

M-c_AxA 

1 0.8345 0.4699 1.1403 

2 0.2039 2.3659 4.6603 

3 0.0816 0.0280 13.0624 

4 0.5830 0.0660 2.0840 

5 0.0548 0.0558 1.8992 

6 0.1918 3.1734 1.3036 

M-c_AxD 

1 0.8345 0.4699 1.1403 

2 0.2039 2.3659 4.6603 

3 0.0816 0.0280 13.0624 

4 0.5830 0.0660 2.0842 

5 0.0548 0.0558 1.8992 

6 0.1918 3.1734 1.3036 

M-c_DxD 

1 1.1110 1.3012 1.2527 

2 0.0275 0.3586 2.4165 

3 0.1901 0.4166 0.5125 

4 1.0785 1.2307 3.8275 

5 0.18858 0.4581 1.6196 

6 0.0293 0.5197 2.2124 
𝐿𝑂𝑋12 [32] , they are confirmed as the risk loci/genes of breast cancer.

NP rs4987667 is located on gene 𝑇 𝑅𝑃 𝑉 6 , which encodes the TRPV6

rotein, an endothelial calcium entry channel that has a large influence

n breast cancer cell proliferation [33] . It also detects locus rs1974777

n gene 𝐺𝐸𝑀 𝐼 𝑁 5 . Dysregulation of this gene may play a role in tu-

or cell motility [34] . SNP rs9652589 is located on gene 𝑃 𝐷𝐼𝐿𝑇 of the

DI family, the overexpression of PDI is closely associated with breast

ancer cell proliferation [35] . DCHE successfully detects rs2278107 in

ene 𝐸𝑃 𝐻𝐴 7 , increased expression of which is associated with carci-

oma [36] , and rs13360277 in gene 𝑈𝐼 𝑀 𝐶1 , which encodes a nuclear

rotein that interacts with BRCA1 [37] . It also detects rs1802288 on

ene 𝑇 𝑆𝑃 𝐴𝑁6 , which controls the migration and recruitment of B cells

o breast cancer tissues, B lymphocytes play an important role in anti-

ancer immunity [38] . 4 loci are detected by both ELSSI and DCHE. MP-

S-DHSI detects several significant combinations including (rs2242047,

s3827040). All loci detected by MP-HS-DHSI are also considered by

CHE to be related to BC. HiSeeker detects rs11088402 in gene 𝐺𝑁𝐿 3
nd rs3785181 in gene 𝐺𝐴𝑆11 . The protein encoded by 𝐺𝑁𝐿 3 may

nteract with p53 and be involved in tumorigenesis [39] . 𝐺𝐴𝑆11 is

ssociated with breast cancer [40] . DualWMDR detects rs2289247 in

ene 𝐺𝑁𝐿 3 . It also detects rs2070417 in gene 𝑇 𝐼 𝐴𝑀 1 , which plays an

mportant role in cell invasion, metastasis, and carcinogenesis [41] . 3

oci are detected by both HiSeeker and DualWMDR. It is worth not-

ng that 𝑇 𝑅𝑃 𝑉 6 is one of store-operated Ca 2+ channels, Ca 2+ entry

hrough CRAC( Ca 2+ releaseactivated Ca 2+ ) channels stimulates arachi-

onic acid release [42] , and the 𝐴𝐿𝑂𝑋12 gene encodes arachidonic acid

2-lipoxygenase [43] . Both of them are associated with breast cancer
ut the interaction between 𝑇 𝑅𝑃 𝑉 6 and 𝐴𝐿𝑂𝑋12 has not been exten- 
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Table 11 

Comparison of FPR for EMMAX, FastGWA, LASSO, FarmCPU and Fastm- 

rMLM . 

EMMAX FastGWA LASSO FarmCPU FastmrMLM 

M-a 0.0008 0.0943 0.0006 0.0027 0.0020 

M-b 0.0010 0.0969 0.0007 0.0021 0.0018 

M-c_AxA 0.0052 0.0041 0.0008 0.0017 0.0027 

M-c_AxD 0.0051 0.0041 0.0008 0.0017 0.0027 

M-c_DxD 0.0019 0.0755 0.0009 0.0021 0.0014 
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ively studied to date. Therefore, these algorithms can recommend po-

ential directions for further research. 

EMMAX detects S5_150626025 and S6_161803077, FastGWA de-

ects S3_211765068, S4_5012512, S4_2513671, S4_2513673 and S4_

513683. LASSO detects S1_41428002 and S2_203085168. FarmCPU

etects S1_202299516, S1_27861046, S4_120643323 and S6_154173

95. FastmrMLM detects S5_211179420, S7_172583812 and S10_399

4466. Their corresponding genes are related to leaf tip and leaf base.

0 loci are considered to be related to trait by both FarmCPU and Fastm-

MLM. All parameters used in the experiments are the default ones. 

In summary, the assembled algorithms can detect SNPs or SNP com-

inations that are significantly associated with the traits. Our GWASTool

reatly simplifies the GWAS workflow and empowers GWAS tasks. 

. Conclusion 

GWASTool offers a pipeline that integrates single/multiple SNPs and

pistasis detection methods, practical simulated data generation tools,

ata processing and result analysis tools. It encapsulates the tedious data

rocessing, running environment configurations and result analysis of

iverse detection methods, and offers a user friendly web interface to

esearchers. Besides, it is easy to plugin new methods to meet the users’

pecific requirement. Users can also download and run GWASTool on

heir own machines when processing large or private datasets. In the fu-

ure, we will pay attention to the latest research progress and promptly

pdate GWASTool’s functions and data resources to meet the evolving

eeds of users. Additionally, we will mine SNP interactions in higher di-

ensions, aiming to further unravel the genetic mechanisms underlying

omplex traits. 
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