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Abstract 

Background:  The brain–computer interface (BCI) race at the Cybathlon championship, for people with disabilities, 
challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual 
racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot 
who has tetraplegia and was trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, 
to compete in three Cybathlon events.

Methods:  A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined 
movements (motor imagery of left arm, right arm, and feet), and relaxed state. Three game paradigms were used for 
training i.e., NeuroSensi, Triad, and Cybathlon Race: BrainDriver. An evaluation of the pilot’s performance is presented 
for two Cybathlon competition training periods—spanning 20 sessions over 5 weeks prior to the 2019 competition, 
and 25 sessions over 5 weeks in the run up to the 2020 competition.

Results:  Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot 
achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy > 90%, result-
ing in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion 
time) improved significantly during the training period, leading up to the competition day, ranging from 274–156 s 
(255 ± 24 s to 191 ± 14 s mean ± std), over 17 days (10 sessions) in 2019, and from 230–168 s (214 ± 14 s to 181 ± 4 s), 
over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance 
deteriorated significantly.

Conclusions:  The training regime and framework applied were highly effective in achieving competitive race com-
pletion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in 
the sessions occurring shortly before and during the race day. Changes in cognitive state as a result of stress, arousal 
level, and fatigue, associated with the competition challenge and performance pressure, were likely contributing fac-
tors to the non-stationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day.
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Background
The Cybathlon championship is a unique competition in 
which people with physical disabilities compete against 
each other to complete tasks and challenges using state-
of-the-art technical assistance systems. The event serves 
as a platform for technology developers to exchange 
ideas and collaborate closely with people with physi-
cal disabilities as they develop their devices—Cybathlon 
aims to drive research on assistance systems for everyday 
use, and promote public dialogue [1, 2].

The Cybathlon brain–computer interface (BCI) event 
challenges teams to control a virtual race vehicle (ava-
tar) on a virtual race track (video game platform). The 
majority of teams involved in the BCI race at the 2016 
Cybathlon championship (prior to the events reported in 
this paper), focused on training pilots to modulate brain 
rhythms using a motor imagery based BCI to control the 
avatar [3]. This study documents the Ulster University 
(NeuroCONCISE) team’s training and control strategy 
involving a 4-class motor imagery based BCI for Cybath-
lon race events in 2019 and 2020.

Motor imagery BCI
A motor imagery BCI requires the user to imagine per-
forming movements or to mentally simulate a physical 
action without activating any muscular pathways. Exten-
sive research on motor imagery paradigms has explicitly 
shown that maximal discrimination accuracy is achieved 
using lateralized differences in mu (8–12  Hz) and beta 
(12–30 Hz) band power [4–6]. These power changes are 
linked with event-related (de)synchronization (ERD/
ERS) of neural activity in sensorimotor areas and origi-
nate from decreased or increased phase-locked synchro-
nous activity of specific neuron populations over cortical 
motor areas [7]. Lateralized differences in sensorimotor 
rhythms (SMR) enable discrimination of the imagined 
movement of different limbs and muscles controlling dif-
ferent parts of the body [8].

Learning intentional, goal-directed modulation of sen-
sorimotor rhythms (from imagined movement) requires 
practice with sensory feedback [6]. Motor imagery based 
BCI typically requires training to achieve a reasonably 
high level of control [9]. To reach this criterion partici-
pants generally undergo multiple sessions lasting from 
one to several hours per day, over days or weeks. Motor 
imagery based BCI training feedback may be presented 
using various modalities including somatosensory (via 

vibrotactile/electrical stimulation), auditory, or visual—
though most often using the visual channel, whilst there 
is increasing interest in the other feedback modalities 
[10, 11]. The difference between presentation methods 
is considered to be small, thus enabling the development 
of more naturalistic feedback paradigms [12] that do not 
focus on the visual sense.

Motivation has also been shown to be an important 
aspect of BCI motor imagery performance, especially in 
BCI target user groups [13]. Therefore, gamification is 
often employed in an attempt to enhance feedback pres-
entation and hence increase motivation. The Cybathlon 
BCI race event builds on this and challenges competitors 
(teams and pilots) to control in real-time, an avatar on a 
virtual racetrack using a BCI, in front of an audience. A 
significant challenge is thus presented, requiring the pilot 
to accurately and repetitively modulate brain states that 
can be detected by the BCI, associated with three race 
commands plus a no-control state, i.e., resting or relax 
state.

Factors that impact BCI control accuracy achieved 
over a multi‑session BCI training
Perdikis et  al. [14], highlighted that a successful BCI 
application should hang on three pillars: the BCI device, 
the interaction between the BCI and the user, and the 
actual application wherein the BCI is used. The BCI 
device is required to accurately decode imagined com-
mands given by the user. A long-term training period 
provides an opportunity for both the fitting of the BCI’s 
hyper-parameters to the user’s voluntary brain activity, 
and real-time feedback that enables the brain to adapt to 
the required cognitive state. Thus, the training period can 
be used to improve performance during a multi-session 
learning process [15].

Ponferrada and colleagues [16], improved the efficiency 
of their BCI system so that the amount of training data 
required to learn real-time control for Cybathlon was 
reduced, thereby shortening the time required for the 
training phase. Benaroch et al. [9], combined a progres-
sive multi-class mental task based BCI with a machine 
learning algorithm that uses adaptive Riemannian clas-
sifiers—aimed at improving BCI control by producing 
electroencephalography (EEG) activity that increasingly 
matches the BCI classifier, rather than improving the 
classifier to better discriminate the EEG activity. Turi 
et  al. [17] also reported an improvement in their pilot’s 
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BCI control accuracy during a 2 and half months training 
performed between mid-June and the end of August in 
2019. However they reported a drop in performance dur-
ing the Cybathlon competition race, compared to perfor-
mance during training. They suggested that the drop was 
due to the indirect impact of stress on performance—
expressly the user’s psychological state influenced their 
ability to concentrate, which affected their performance 
negatively. Hence, variability in the signal between ses-
sions is largely considered to be due to shifts in the user’s 
psychological state, e.g., due to fatigue or loss of attention 
[18, 19].

Here we provide details of the BCI setup, training 
regime, and performance obtained during long-term BCI 
training of the Ulster University Cybathlon team (Neuro-
CONCISE) for two race competitions. The findings high-
light the challenges in developing a BCI that is capable of 
adapting to changing user states and environmental con-
ditions that can result in temporal variations in the neu-
ral signal and create a barrier to the use of BCI systems in 
everyday life for individuals with a motor-disability.

Methods
Participant
The study involved a single participant (the pilot) who 
has tetraplegia with normal vision and hearing, aged 49 
at the time of the Cybathlon 2020. The pilot suffered a 
spinal injury (fractured C4–C5) in 1993 during a motor-
bike accident. Prior to the commencement of the train-
ing, the pilot was presented with information regarding 
the experimental protocol and was asked to read and sign 
an informed consent form to participate in the study, 
which was approved by the National Rehabilitation Hos-
pital of Ireland research ethics committee. Before the 
beginning of the BCI training carried out in 2019 and 
2020 (reported in this paper), the pilot took part in 10 
basic BCI training sessions in 2009 and 12 training ses-
sions for Cybathlon 2016.

Experimental paradigms
The BrainDriver BCI racing game was used in the 
Cybathlon BCI challenge (described at the end of this 
section). Our online BCI uses analogue outputs of four 
2-class classifiers to relay control commands to the Brain-
Driver game (described in “The online BCI” section). The 

BrainDriver race is controlled using commands received 
from the BCI but does not provide continuous feedback 
to the pilot about the analogue output of four 2-class 
classifiers which are built into the BCI framework. As 
accurate control of the avatar in the BrainDriver race 
requires each of the four 2-class classifiers to be pilot-
specifically calibrated, data must be collected to train the 
2-class classifiers. For this purpose we used another BCI 
game called NeuroSensi [20, 21]. Additionally, to present 
the pilot with outputs from four classifiers simultane-
ously we used a novel paradigm referred to as the Triad 
game, which is introduced in this study for the first time. 
These are described below and shown in Fig. 1.

NeuroSensi game training for paired motor imagery tasks
The first phase of the BCI training which took place 
in 2019 and 2020, involved the NeuroSensi BCI game 
(Fig.  1A, Additional file  1: Video S1) which is played 
using two motor imagery commands. The NeuroSensi 
game has a representation of a neuronal axon on both 
sides of the monitor. Two seconds after the beginning 
of the trial, a light (representing a neural spike) appears 
at the beginning of one of the two axons to cue the 
participant to begin the corresponding motor imagery 
task. The light takes 6  s to travel over the ‘axon’ dur-
ing the task period (Fig. 1A). In each NeuroSensi ses-
sion, six runs were completed wherein different binary 
combinations of the three commands (left hand (L), 
feet (F), right hand (R)), and relax (X) were performed. 
The number of trials in each run acquired for BCI cali-
bration (i.e., for calibrating/training hyper parameters 
of the BCI framework—described in “Calibration of 
the two-class classification modules” section) varied 
between 30–60 (equal number/class), depending on 
the actual session ID (more trials in the initial ses-
sion, fewer trials in later sessions). The time duration 
of a run, therefore, varied between 240 and 480 s. The 
time duration of six runs involving L vs. R (LR), FR, 
LF, LX, FX, and XR tasks, including five 90 s inter-run 
pauses, varied between 20 and 30 min (Fig. 1A). Trials 
involving the same class recorded from different runs 
(i.e., LR, FR, LF, LX, FX, and XR) were pooled (e.g., 
for “L” class “L” trials were pooled from LR, LF, and 
LX runs) forming a re-structured dataset. Thus, in the 

(See figure on next page.)
Fig. 1  BCI games were used for training our pilot for the Cybathlon BCI event in 2019 and 2020. A The NeuroSensi game and the timing of the 
trials in the 2-class classification based NeuroSensi experiments (Additional file 1: Video S1). B The BrainDriver race (Additional file 2: Video S2 and 
Additional file 3: Video S3). C The Triad game for monitoring the multi-class classification results and pilot warm-up, using a linear combination of 
multiple 2-class classifiers. The 2D position of the ball within the triangle is calculated using the results of the three ‘task vs. task’ 3-class classifiers 
(LF, LR, FR). The colour of the ball within the triangle is controlled by the ‘task vs. relax’ (TX) classifier (blue: task (T), green: relax(R)) (Additional file 4: 
Video S4). The venue timelines show time periods along with session intervals when the pilot was trained in different locations for completing the 
Cybathlon BCI series in 2019 and the Cybathlon Global Edition in 2020
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Fig. 1  (See legend on previous page.)
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re-structured dataset four different classes (L, F, R, and 
X) were derived. The number of trials per class for a 
single session varied between 45 and 90.

The three ‘task vs. task’ classifiers (LR, FR, LF) were 
calibrated using the corresponding trials stored in the 
re-structured dataset. However, in runs when the Neu-
roSensi game was controlled with a ‘task vs. relax’ (TX) 
task, i.e., in runs where the character was controlled 
with LX, FX, or XR task pairs, the same TX decoder 
was used. The TX decoder was calibrated using T vs. 
X trials from the re-structured dataset where T trials 
comprised the L, F, and R pooled trials. To improve the 
cross-session stability of the calibrated BCI, the final 
dataset for BCI calibration was prepared by pooling 
re-structured datasets from multiple sessions acquired 
prior to the calibration.

Triad game for monitoring details of the multi‑class 
classification
The Triad game (Fig.  1C, Additional file  4: Video S4, 
introduced in 2020) provides real-time continuous vis-
ual feedback from each of the four 2-class classifiers. 
The analogue output of the three ‘task vs. task’ classi-
fiers (LR, FR, LF) are presented using a light blue ball 
on the three edges of a triangle. Furthermore, the lin-
ear combination of the LR, FR, and LF classifier output 
is presented with an additional coloured ball indicat-
ing the composite output of these three ‘task vs. task’ 
classifiers. The colour of the composite output indica-
tor ball is assigned via the analogue output of the ‘task 
vs. relax’ (TX) classifier. The colour of the ball indicates 
whether the command is decoded as the task (green) 
or relaxed (dark blue) condition. The Triad game pro-
vides an opportunity for online monitoring of a combi-
nation of the three ‘task vs. task’ and concurrently the 
‘task vs. relax’ classification. For example, in session 17 
during 2020 the triad game was regularly used by the 
researcher as a monitoring tool that displayed real-
time analogue output from all 2-class classifiers whilst 
the pilot played the BrainDriver game (described in the 
next subsection). Furthermore, in 2020, from session 
19 onwards, at the beginning of each session the Triad 
game was also used by the pilot to practice controlling 
multiple 2-class classifiers in parallel, as a warm-up 
exercise before the first BrainDriver race practice in the 
session. However, as the Cybathlon event did not per-
mit the use of add-ons during the competition, the pilot 
did not use the Triad game in parallel with the Brain-
Driver game. In the future, the Triad game could be 
used for acquiring data for BCI calibration. However, 
this was not the case in 2019 and 2020, when the Triad 
game was first introduced to the pilot.

BrainDriver game to familiarize the pilot for the race 
in the Cybathlon BCI event
After the pilot learned to control the BCI using the Neu-
roSensi (in 2019 and 2020) and Triad games (2020 only), 
the BrainDriver race was used in both years to practice 
control of the avatar—a virtual race vehicle (Fig.  1B, 
Additional file  2: Video S2 and Additional file  3: Video 
S3). The actual track of the BrainDriver race comprised 
four different zones. There are zones with left and right 
curves and straight zones with streetlights turned on or 
off. To maintain the maximal speed of the vehicle, the 
pilot must produce the correct race command using the 
4-class BCI, e.g., left or right arm motor imagery for left 
or rights turns, feet imagery for “headlight” and relax for 
“no-control”. If an incorrect command is presented the 
vehicle is inhibited which decreases speed and increases 
race completion times, and moreover, presents obvious 
negative visual feedback to the pilot which enable learn-
ings and error correction strategy development. The pilot 
was instructed to relax immediately after issuing a com-
mand to allow for ‘no control’, or as an alternative strategy 
to continue to maintain the motor imagery command. 
“The online BCI” section describes how the controller 
limits commands and assists in dealing with variation in 
control performance by the BCI and pilot.

Data acquisition
The EEG was recorded from 32 EEG channels (Fig.  2B) 
using a g.Nautilus Research active electrode wireless EEG 
system (g.Scarabeo) [22] with the EEG reference elec-
trode positioned on the left earlobe. The EEG was high-
pass filtered (> 0.1  Hz), notch filtered (48–52  Hz), and 
digitized (A/D resolution: 24 bits, sampling rate: 250 Hz). 
The ground electrode was positioned over the AFz elec-
trode location according to the international 10/20 EEG 
standard (Fig. 2). Communication between the real-time 
BCI decoder module deployed in Simulink [23] (used for 
EEG data acquisition and online signal processing) and 
each of the three games (NeuroSensi, BrainDriver, and 
Triad) was via the ‘user datagram protocol’ (UDP).

Calibration of the two‑class classification modules
The BCI framework included a filter-bank common spa-
tial patterns (FBCSP) [24] and mutual information (MI) 
based feature selection [25], a well-established frame-
work used in BCI applications that enable discrimina-
tion between imagined movements [26] performed with 
the left hand (L), feet (F), right hand (R), and relax (X) 
conditions [27]. The FBCSP-MI module, the core of the 
online BCI framework (Fig. 2A), was calibrated offline as 
described below.
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Fig. 2  The framework of the BCI; developed for controlling the BrainDriver game. A Block diagram of the four 2-class classification modules. B 
EEG sensor placement. The 32 EEG channels are indicated with blue and black from which the 21 blue channels were used to calibrate the control 
command decoding framework. The ground electrode is indicated with orange. C Control command decoder module. D Game control command 
translator module. E An example of a track section in the BrainDriver game
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EEG signal processing
The acquired EEG dataset (“Data acquisition” section) 
was band-pass filtered in four non-overlapped stand-
ard EEG bands (8–12  Hz (mu), 12–18  Hz (low beta), 
18–28  Hz (high beta), and 28–40  Hz (low gamma)) 
using high-pass and low-pass finite impulse response 
(FIR) filter modules (band-pass attenuation 0 dB, band-
stop attenuation 60  dB). The band-pass filtered EEG 
was downsampled from 250 to 125  Hz. Trial-relevant 
time intervals between −  2  s before and 8  s after the 
onset of the 2 s pause [i.e., − 4 s before and 6 s after the 
onset of task (described in “Experimental paradigms” 
section)], were epoched out from the filtered EEG 
dataset for 21 pre-selected EEG channels (indicated 
with black in Fig.  2B), and stored for spatial filtering. 
The epoched data using a 1 s to 2 s width classification 
window enabled comparison of the decoding accuracy 
(DA) obtained in the 0 to 2  s reference baseline inter-
val (covering the pause period) and during the 2 s to 6 s 
task interval (after the pause period).

Spatial filtering
The common spatial patterns (CSP) method was used 
to create spatial filters that increase the separabil-
ity between two classes by maximizing the variance of 
band-pass filtered EEG signals from one class, while 
minimizing their variance from the other classes [28]. 
The linear transformation matrix defined by CSP con-
verts the pre-processed EEG signals into a new vector 
space defined by the CSP filters.

Feature extraction
The number of selected CSP filter pairs for each 2-class 
classifier for each frequency band was set to three. The 
time-varying log-variance of the CSP filtered EEG was 
calculated using a 1  s width sliding window, with a 
40 ms time lag between two windows. Thus, the offset 
(end-point) of the 1  s sliding window was set to cover 
the time interval between − 1 s before and 8 s after the 
onset of the pause (covering a 1 s sliding width window, 
the 2 s pause, and 6 s task intervals).

Feature selection
The mutual information (MI) between features and 
associated target class using a quantized feature space 
was estimated [25] to identify a subset of features that 
maximize classification accuracy.

Two‑class classification
A regularized linear discriminant analysis (RLDA) 
algorithm from the RCSP toolbox [28] was applied to 
classify the extracted features. Linear discriminant 

analysis (LDA) uses a class separator boundary in a 
linear hyperplane to separate data into two classes. 
The time-varying analogue output of the classifier, i.e., 
the time-varying signed distance (TSD), is the time-
varying distance between the location of the classifier 
output and the class separation boundary in the LDA 
hyperplane. The class assigned to each feature vector 
depends on the polarity of the classifier output, deter-
mined by the relation between the location of the fea-
ture vector and the class separator boundary in the 
hyperplane [29]. The current TSD value is calculated as 
described in (1):

where, xF ,n,t is the features vector at time t in the n th 
trial, while wF and a0 are the weights (slope) and bias of 
the discriminant hyperplane.

In a six-fold cross-validation analysis, the time-varying 
DA was calculated and compared for each of the four 
2-class classifiers using the highest 6, 10, 14, and 18 MI 
ranked features. The number of highest ranked features 
that provided a classifier configuration with the highest 
DA peak in the event-related period of the task (in a 2.4 
to 8  s interval of the trial, covering a 0.4 to 6  s interval 
from the onset of the task) was applied to the online BCI 
configuration, in the case of each 2-class classifier, sepa-
rately. We highlight that an optimal number of features 
were applied to the online BCI which were selected based 
on which configuration obtained the highest MI rank 
during the calibration method. Furthermore, as each fea-
ture was derived via a CSP weighted linear combination 
of the band-pass filtered EEG signals, the information 
content of a feature is not limited to a single EEG chan-
nel is comprised of all channels which were applied in the 
FBCSP framework.

Topographical analysis
To identify frequency bands and cortical areas that pro-
vide the highest contribution to the peak DA, an analysis 
was performed using parameters of the calibrated CSP fil-
ters and the MI weights for each of the four 2-class classi-
fiers, separately. For the time-varying frequency analysis, 
the mean values of MI weights were calculated in each 
analyzed frequency band, and time point, separately. 
The obtained results were plotted in the form of subject-
specific heat maps, indicating the time-varying DA con-
tribution of the frequency bands analyzed. The location 
of the source activity was plotted using the ‘standardized 
low resolution brain electromagnetic tomography’ (sLo-
reta) software package [30] for each 2-class classifier in 
each frequency band, separately, indicating cortical areas 
where features provided the highest contribution for cal-
culating maximal DA.

(1)TSDn,t = w
F
xF ,n,t − a0



Page 8 of 22Korik et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:95 

Combining trials for different runs and sessions
The objective was to find an online BCI configuration 
that provides the highest DA with a high level of stability 
over sessions. Thus, the BCI was calibrated using differ-
ent datasets that were pooled from different combina-
tions of existing sessions. A cross-session DA analysis 
was performed for each BCI configuration, wherein the 
time-varying DA plots were compared using datasets 
excluded from calibration data. The BCI configuration 
was selected for the subsequent sessions based on a com-
parison of the cross-session time-varying DA plots, fre-
quency maps, and topographical maps using the various 
BCI configurations and objectives described above (i.e., 
long term stability paired with a maximal level of DA).

The online BCI
The core module of the online BCI involved the same 
FBCSP MI based 2-class classification framework 
(Fig.  2A) for NeuroSensi, Triad, and BrainDriver race 
which are described in “Calibration of the two-class clas-
sification modules” section. However, the post-process-
ing module was different for each of the three paradigms/
games.

NeuroSensi game
The NeuroSensi game (Fig.  1A, Additional file  1: Video 
S1) uses only one of the four binary classifiers for con-
trolling the character (i.e., LR, FR, LF, or TX). The base-
line of the corresponding TSD signal was calibrated 
manually and set to zero at the beginning of each run 
using an offset value. The amplitude of the TSD signal, 
using a scaling factor, was corrected to a value that ena-
bled the controlled character to move over the control-
lable area during the game. The corresponding TSD, after 
the baseline correction, was downsampled to 25 Hz and 
sent by UDP to the NeuroSensi game. The avatar in the 
NeuroSensi game was controlled continuously using 
the post-processed analogue TSD control signal. Jitters 
in TSD signal were smoothed in the Unity game engine 
using a linear interpolation method based “lerp” function 
that smooths the transition between two values over time 
[31].

Triad game
As the Triad game (Fig. 1C, Additional file 4: Video S4) 
was controlled by the TSD output of each of the four 
2-class classifiers, the baseline of each of the four TSD 
signals was corrected, separately, as described above for 
the NeuroSensi game. In addition, a smoothing filter 
option was applied to the baseline corrected TSD cal-
culating the moving average within a 1  s window. The 
post-processed TSD was downsampled to 25 Hz and sent 
by UDP to the Triad game. Similarly to the NeuroSensi 

game, the continuous movement of the game avatars in 
the Triad game (i.e., one ball on each edge of the triangle 
plus one more ball in the middle) was smoothed by the 
Unity game engine using the “lerp” function [31].

Cybathlon race: BrainDriver
The avatar in the BrainDiver race (Fig.  1B, Additional 
file 2: Video S2 and Additional file 3: Video S3) was con-
trolled by the online BCI framework presented in Fig. 2. 
The online BCI, in addition to the FBCSP-MI and TSD 
baseline correction modules (discussed above and pre-
sented in Fig. 2A), involves a control command decoder 
module composed of a multi-class decoder, a stability 
delay timer, a dead-band control module (Fig.  2C) and 
game control command translator module (Fig. 2D) fol-
lowed by a UDP unit for sending commands to the Brain-
Driver platform (Fig. 2E).

The output of the multi-class decoder relies on the 
baseline-corrected outputs of the four binary (LR, FR, 
LF, and TX) classifiers. If the output polarity of two of the 
three ‘task vs. task’ classifiers (LR, FR, LF) are not con-
flicting and the TX classifier is indicating a task condi-
tion (“T”) (i.e., the pilot is not relaxed), the label of the 
decoded task is forwarded to the next module for a sta-
bility check. For example, in Fig. 2C both LR and LF clas-
sifiers output indicate the same (“L”) result and the TX 
classifier indicates that there is an ongoing task (“T”). 
Therefore, in this example, the decoded (“L”) command 
passes through on Command Control Gate 1.

To filter out transient responses, the decoded (“L”) 
command passes through Command Control Gate 2 
only if the decoded (“L”) command is maintained in the 
same condition for a predefined (300 ms) period. If this 
stability check is matched, the decoded (“L”) command 
is translated with the game control command transla-
tor module to the game control command as shown in 
Fig.  2D. Finally, the game control command is sent by 
UDP to the BrainDriver game. An example of a track sec-
tion and corresponding control commands are illustrated 
in Fig.  2E (details of the BrainDriver game in “Experi-
mental paradigms” section).

To provide the opportunity for the pilot to reach a 
relaxed condition before the next command is decoded 
and to ensure sudden changes in classifier conditions do 
not interrupt a correct command issued to the vehicle, 
a dead-band system is activated. The dead-band control 
module involves a dead-band (DB) timer and a dead-
band-break (DBB) timer module. Once a command is 
sent to the BrainDriver game, the DB timer countdown 
is activated, which blocks any new commands during 
the DB period. However, the DBB timer allows the pilot 
to correct an incorrect command by breaking the dead-
band if the TX classifier after a (e.g., 3  s) DBB period 
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detects that a command is being issued for a sufficiently 
long (e.g., 1 s) period whilst the dead-band is active.

For example, if the length of race zone is approximately 
6–8 s and if the intended command is issued just as the 
avatar reaches a zone, the dead-band will ensure the ava-
tar maintains the associated control for that entire zone, 
thus maximizing speed. However, if an unintended com-
mand is issued at the start of a zone the pilot can attempt 
to correct it by attempting to issue and produce another 
command for more than the predefined (e.g., 1 s) period. 
In such a case a portion of the speedup from that zone 
may be gained. The dual scenario here improves stabil-
ity of control and makes the assumption that good com-
mands are more frequent.

To find an optimal configuration that supports the 
pilot’s control ability maximally, the actual value of 
the dead-band and dead-band-break parameters were 
adjusted manually over sessions and runs during the 
training period. The dead-band was selected in a range 
between 2 and 8  s, and the dead-band-break timer was 
selected in a range between 2 and 4 s.

Statistical analysis
To evaluate differences in race completion times achieved 
during different periods of the long-term BCI train-
ing, paired-sample t-tests were performed on race times 
achieved in ten races for each period compared (see 
“Results” section).

To assess the potential causes of fluctuation in per-
formance throughout training and during race days, 
logarithmic magnitude of power spectral density (PSD) 
located bilaterally over sensorimotor areas (C3, and C4) 
and centrally (Cz) were evaluated on different groups 
of races/sessions where race times differed. As the EEG 
dataset on the race day in 2020 was not stored due to an 
oversight, this analysis was performed for the dataset 
acquired in 2019 only. A three-way analysis of variance 

(ANOVA) was used to assess differences in 2019 using 
the following factors and levels: (1) session group (level 
1: races from sessions 15 and 16, level 2: from 17 and 18, 
and level 3: from 19 and 20); (2) electrode site (level 1: 
C3, level 2: Cz, and level 3: C4); and (3) frequency (lev-
els 1 to 15: frequencies ranging from 12 to 40 Hz in steps 
of 2  Hz (i.e., level 1: 12  Hz, level 2: 14  Hz, …, level 15: 
40  Hz). The ANOVA was two-tailed, with a 95% confi-
dence interval, and was conducted using the Statistical 
Package for Social Sciences (IBM SPSS Statistics 27.0). 
A Greenhouse–Geisser correction was applied when 
sphericity was violated and a Bonferroni correction was 
applied to pairwise comparisons to control for multiple 
comparisons.

Results
Using datasets acquired in 2019 and 2020, an offline anal-
ysis was performed to determine which modifications 
of the current BCI framework and calibration methods 
improved the pilot’s BCI control accuracy.

Calibration details
To improve the cross-session stability of the online BCI, 
calibration was performed using a dataset acquired from 
multiple sessions prior to the calibration date. To find an 
optimal combination of sessions to include in BCI cali-
bration dataset, the BCI was calibrated and tested mul-
tiple times using data acquired from a combination of 
different sessions. A dataset involving two to four ses-
sions which provided the highest cross-session DA over 
sessions near to the calibration date, were used for the 
BCI re-calibration. Table  1 shows: (1) which sessions 
were used in the cross-session stability test for selection; 
(2) sessions which provided the best cross-session accu-
racy and, therefore, were used for re-calibrating the BCI; 
and (3) sessions where the re-calibrated BCI was used for 
game control.

Table 1  The list of sessions that were used: (1) based on the cross-session stability test; (2) in BCI re-calibration; along with sessions; (3) 
where the re-calibrated BCI was used

Sessions used in cross-session stability test to 
find which sessions provide the most stable BCI 
configuration

Sessions that were selected in the cross-session 
stability test and were used in BCI re-calibration

Sessions in which the 
re-calibrated BCI configuration 
was used

N/A N/A 2019 Sessions 1–3 (offline)

2019 Sessions 1–3 2019 Sessions 1–2 2019 Session 4

2019 Sessions 1–4 2019 Sessions 1–4 2019 Session 5

2019 Sessions 1–5 2019 Sessions 2, 4, 5 2019 Sessions 6–20

2019 Sessions 1–5 2019 Sessions 2, 4, 5 2020 Sessions 1–4

2020 Sessions 1–4 2020 Sessions 3, 4 2020 Sessions 5–9

2020 Sessions 1–9 2020 Sessions 3, 4, 5, 6 2020 Sessions 10–22

2020 Sessions 1–22 2020 Sessions 5, 6, 20, 21 2020 Sessions 23–25
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Time‑varying decoding accuracy and TSD analysis 
for 2‑class BCI
To evaluate how to change the class-specific output of 
the 2-class classifiers over a trial, the TSD was calculated 
for each class and plotted along with the time-varying 
DA for each 2-class classifier (LR, FR, LF, TX), separately, 
using the dataset acquired in 2019 and 2020. The time-
varying DA and TSD outputs of the four binary classifiers 
are presented in Fig. 3.

Figure 3A and C provide a comparison of time-varying 
DA obtained in cross-validation performed during cali-
bration of the FBCSP framework applied to the BCI in 
2019 and 2020, respectively. A comparison of the time-
varying DA obtained for different binary classifiers (LR, 
FR, LF, and TX) during the online sessions using Neu-
roSensi is presented in Fig.  3B and D, respectively. Fur-
thermore, a comparison of the time-varying DA obtained 
from the same binary classifier in 2019 vs. 2020 years is 
presented in Fig. 3E. The time-varying DA graphs show 
that DA during the 0–2 s pause period is approximately 
at chance level (50 ± 10% (mean ± STD)). After the onset 
of the motor imagery task (the dotted vertical line at 2 s), 
the online DA reached 90 ± 10% (mean ± STD) (Fig. 3E) 
and was maintained by most classifiers for a period which 
was denoted between 4 and 8  s (i.e., from 2  s after the 
onset of the task until the end of the task period). A com-
parison of the TSD values obtained for the two classes 
is presented in Fig. 3F and G using the dataset recorded 
in online sessions in 2019 and 2020, respectively. The 
graphs show that during the pause period (i.e., before the 
onset of the task) the TSD varied in the same range for 
both classes around the zero baselines and that the TSD 
separability for the two classes is maximal around 4 s (i.e., 
2 s after the onset of the task).

Frequency analysis and topographical results
A comparison of frequency bands and cortical areas pro-
viding the highest DA contribution in the four binary 
classifiers (LR, FR, LF, TX) involved in the BCI configu-
ration applied in the Cybathlon race in 2019 and 2020 is 
presented in Fig. 4.

The results of the frequency analysis using CSP and MI 
weights of the BCI that was applied in 2019 indicates an 
increased level of motor imagery task-related brain activ-
ity for each of the three ‘task vs. task’ classifiers (LR, FR, 
LF) in the 18–28 Hz (high beta) band (Fig. 4B). The high-
est contribution for the ‘task vs. relax’ (TX) classification, 
similar to the LF, FR, and LF classification, was obtained 
in the high beta band. However, regarding the separa-
tion of the task and relaxation conditions, in addition to 
the 18–28 Hz (high beta), the 12–18 Hz (low beta) and 
28–40  Hz (low gamma) bands also contribute to high 
accuracy.

The topographical analysis of the BCI calibrated in 
2019 (Fig. 4A) indicated the highest contribution to the 
four binary classifications was as follows: (1) LR classifi-
cation, from the high beta oscillations in the right hemi-
sphere of the somatosensory cortex; (2–3) LF and FR 
classifications, from the high beta oscillations in the cen-
tral area of the primary motor and somatosensory cortex; 
(4) TX classification, from the high beta oscillations in 
the left hemisphere of the prefrontal cortex, coupled with 
the low gamma oscillations in the left hemisphere of the 
occipito-temporal cortex. Furthermore, for the TX clas-
sification, the low beta oscillations also provided a rea-
sonably high contribution in the right hemisphere of the 
visual sensation associated area in the parietal occipital 
cortex.

In 2020, the results of the frequency (Fig. 4D) and topo-
graphical (Fig.  4C) analyses indicated differences in the 
frequency and topographical maps compared to those 
obtained in 2019. In 2020, the highest contribution to the 
four binary classification is obtained in cortical areas as 
follows: (1) LR classification, from the low gamma oscilla-
tions in the left hemisphere of the somatosensory associ-
ation and occipito-temporal cortex; (2) FR classification, 
from the high beta oscillations in the central area of the 
primary motor and somatosensory cortex, coupled with 
the low gamma oscillations in the left hemisphere of the 
somatosensory association and occipito-temporal cortex; 
(3) LF classification, from the high beta oscillations in the 
central area of the primary motor and somatosensory 
cortex, coupled with the low gamma oscillations in the 
right hemisphere of the somatosensory association and 
occipito-temporal cortex; (4) TX classification, from the 
high beta oscillations in the left hemisphere of the soma-
tosensory association cortex, the right hemisphere of the 
premotor, and primary motor cortex, coupled with the 
high beta oscillations in the left hemisphere of the pre-
frontal cortex.

BrainDriver race scores, baseline correction, 
and dead‑band configuration
Each year, after undertaking practice sessions using the 
NeuroSensi game, our pilot’s training focused on the 
Cyathlon race paradigm: BrainDriver. The race comple-
tion times achieved by the pilot during training and race 
day performances in 2019 and 2020 are presented in 
Fig. 5.

BrainDriver race times
In both years, during the training period, the race comple-
tion time decreased over sessions. However, around four 
days before the competition, each year, the required time 
for finishing the BrainDriver race increased (highlighted 
with the dotted oval in Fig. 5A and B). Furthermore, on 
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the day(s) of the competition, the required time to finish 
the BrainDriver race increased, resulting in substand-
ard performance in the final competition race compared 

to earlier training performance (e.g., up to session 16 in 
2019 and up to session 21 in 2020).

A statistical analysis indicated significant improvement 
in race completion times (paired-sample t-test, p < .001) 

Fig. 3  Time-varying decoding accuracy (DA) and TSD results for the 2-class classifiers. A–D Comparison of the time-varying DA obtained for the 
four binary classifiers (LR, FR, LF, and TX). A Time-varying DA obtained from cross-validation (CV) during BCI calibration using dataset recorded 
in 2019 at sessions 2, 4, 5. B Cross-session average of time-varying DA obtained in 2019 at sessions 6–10. C Time-varying DA obtained from 
cross-validation (CV) during BCI calibration using dataset recorded in 2020 at sessions 3, 4, 5, 6. D Cross-session average of time-varying DA 
obtained in 2020 sessions 7–13. E Comparison of time-varying decoding accuracy obtained in 2019 vs. 2020 for each classifier (LR, FR, LF, and TX), 
separately. F and G Time-varying TSD values obtained for each binary classifier in 2019 during sessions 6–10 (B) and 2020 during sessions 7–13 (E). 
The onset of the task performance is indicated in each plot with a vertical dotted line (at 2 s). The solid lines in shaded areas of E–G panels indicate 
the mean value from analyzed sessions, and the shaded area is the standard deviation



Page 12 of 22Korik et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:95 

between the first ten races in 2019 (from the beginning 
of 2019 session 7) and in the last ten race attempts dur-
ing training before the degradation in the pilot’s perfor-
mance before the competition (at the end of 2019 session 
16). No differences were observed in 2019 race times 
(paired-sample t-test, p > .05) in ten races before the end 
of the training phase (closed at the end of 2019 session 
16) and after the beginning of the pre-competition period 
(counted from the beginning of 2019 session 17) even 
though during the latter which was closer to the competi-
tion day the race time varied significantly more. Further-
more, the ten race completion times in 2019 (counted 
from the beginning of 2019 session 19 and into competi-
tion days) were significantly higher than those during the 
ten races after the beginning of 2019 session 17 (paired-
sample t-test, p < .002).

A similar analysis was performed using race times 
obtained in 2020. Completion times in the first ten races 

attempt (recorded after the beginning of 2020 session 9) 
were significantly higher (paired-sample t-test, p < .001) 
compared to that achieved in ten runs before the time 
when the pilot’s performance started to decrease (i.e., 
before the end of 2020 session 21). Moreover, the game 
completion times increased significantly in ten race 
attempts at the beginning of the pre-competition period 
(counted after the beginning of 2020 session 22) com-
pared to the last ten race attempts performed at the end 
of the training phase (before the end of 2020 session 21) 
(paired-sample t-test, p < .009).

Finally, an analysis was performed evaluating possible 
transfer of the learned BCI control skills between 2019 
and 2020. The race times obtained in the last ten game-
plays before the improvement in the pilot’s performance 
stopped (at the end of 2019 session 16) were compared 
to race times obtained in the first ten races in 2020 (from 
the beginning of 2020 session 9). No significant difference 

Fig. 4  Results of the topographical and frequency analysis. A, B Results from 2019. C, D Results from 2020. A and C Topographical maps of cortical 
areas providing the highest level of contribution for 2-class classification are indicated in red, separately, for LR, FR, LF, and TX classifiers in the three 
most prominent (12–18 Hz, 18–28 Hz, 28–40 Hz) frequency bands. B and D Time-varying frequency maps indicating frequency range providing the 
highest level of contribution for 2-class classification are indicated in red, separately, for LR, FR, LF, and TX classifiers. The rectangles in the A and C 
panels highlight topographical maps that belong to the most prominent frequency range (indicated with ellipses in the B and D panels)
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between the two compared periods (paired-sample t-test, 
p > .05) was observed even though there was approxi-
mately 1 year of no training between these two periods.

Figure 6 compares BrainDriver race times obtained in 
different periods of the BCI training.

Baseline shift and dead‑band control parameters
The baseline shift on the TSD of the 2-class classifiers 
(Fig.  5C and D) is correlated with the increase in race 
times (Fig.  5A and B) as highlighted with a dotted and 
solid oval.

To find a BCI configuration that maximally supports 
the pilot’s control ability, the values of the dead-band and 
dead-band-brake timers were set over sessions manu-
ally. The applied values of the dead-band and dead-band-
brake parameters are presented in Fig. 5E and F. Based on 
manual observation of the game completion times and 
feedback information reported by the pilot about which 
configuration best supported control ability, the BCI was 
configured for the final challenge in both years, 2019 and 

2020, using a 6  s dead-band and a 3  s dead-band-break 
time.

BrainDriver race performance and EEG power spectral 
density (PSD)
ANOVA was performed to evaluate a possible connec-
tion between the change in BrainDriver race times and 
the power spectral density (PSD) of EEG during Brain-
Driver race control, across the 2019 sessions and runs 
(“Statistical analysis” section). As the EEG dataset on the 
race day in 2020 was not saved due to an oversight, this 
analysis was performed for the dataset acquired in 2019, 
only.

Figure  7 shows the averaged logarithmic PSD mag-
nitude calculated for each analyzed run, in a 12–40  Hz 
frequency range, for session groups 15–16, 17–18, and 
19–20 at C3, CZ, C4 electrodes which are located cen-
trally and bilaterally over sensorimotor areas. Main 
effects were significant for the session group, electrode 
site and frequency (F(2, 46) = 21.65, p < .001, η2p = .49, F(1.2, 

Fig. 5  The BrainDriver race times were achieved by the pilot in 2019 and 2020 and changes in key parameters throughout the training period. A 
and B BrainDriver race competition time achieved in 2019 and 2020, respectively. C and D TSD outputs baseline correction applied to the 2-class 
classifiers of the online BCI in 2019 and 2020, respectively. E and F Dead-band and dead-band-break configuration applied to the online BCI in 
2019 and 2020, respectively. Minor ticks at horizontal axes of graphs presented in (A–F) panels indicate values obtained, separately, in each run of 
the corresponding session. Dashed (and solid) oval highlights sessions near (and during) the competition day when the pilot’s BCI control ability 
decreased (i.e., race completion time increased) compared to earlier sessions
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27.49) = 2604.79, p < .001, η2p = .99, and F(3.04,69.87) = 2592.69, 
p < .001, η

2
p = .99, respectively). Significant interac-

tion effects were found for session and electrode (F(1.96, 

45.19) = 8.19, p = .001, η2p = .26), session and frequency 
(F(28, 644) = 9.67, p < .001, η2p = .3), electrode and frequency 
(F(28, 644) = 166.13, p < .001, η2p = .88), and a three way 

interaction between session, electrode and frequency 
was also found to be significant (F(56, 1288) = 7.74, p < .001, 
η
2
p = .25). Pairwise analyses, which were corrected for 

multiple comparison effects using a Bonferroni correc-
tion, revealed that the main effect for session was due to 
a significant difference between session 2 and session 1 

Fig. 6  Comparison of BrainDriver race times obtained in different periods of the BCI training. Coloured dots displayed in the boxplots indicate race 
time values obtained from ten BrainDriver races during the period indicated in the horizontal axis (i.e., in ten runs after the beginning of the training 
phase, ten runs before the end of the training phase, ten runs after the beginning of the pre-competition phase, and ten runs after the beginning 
of the competition phase, for both 2019 and 2020, years). The box extends from the lower to upper quartile values, with a line at the median. The 
whiskers extend from the box to show the range of displayed race time values. p values obtained from paired-sample t-tests are also presented

Fig. 7  Power spectral density (PSD) maps obtained from BrainDriver game EEG records in 2019 sessions 15–20. The PSD maps show the logarithmic 
magnitude for three EEG channels (C3, CZ, C4) that provided a prominent contribution to the control of the BrainDriver in 75 individual games 
during sessions 15–20 (results from individual games corresponding to the indicated sessions are presented in the horizontal axis). Vertical dotted 
lines separate session groups 15–16 from 17–18 and 19–20
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(MD = 1.9, SE = .31, p < .001), and session 2 and session 3 
(MD = 1.69, SE = .34, p < .001) only, while the main effect 
for electrode was due to significant differences between 
all three electrodes (C3 and Cz—MD = 1.1, SE = .021, 
p < .001; C3 and C4—MD = .168, SE = .008, p < .001; C4 
and Cz—MD = .92, SE = .017, p < .001). Finally, the main 
effect for frequency was due to significant differences 
between all frequencies (p < .001) except for between 18 
and 20 Hz (p = .18). The interaction between session and 
electrode was driven by a significant difference at all three 
electrode locations during session 1 compared to session 
2 (C3—MD = 2.03, SE = .33, p < .001; Cz—MD = 1.83, 
SE = .29, p < .001; C4—MD = 1.86, SE = .31, p < .001) 
and also during session 3 compared to session 2 (C3—
MD = 1.77, SE = .37, p < .001; Cz—MD = 1.64, SE = .32, 
p < .001; C4—MD = 1.65, SE = .34, p < .001). The session 
by frequency interaction occurred due to significant dif-
ferences between session 1 and 2, and between session 
2 and 3 (but again, not between session 1 and 3, across 
all fifteen frequencies (p < .001), while the interaction 
between electrode and frequency was due to significant 
differences between each frequency at all three electrode 
sites (p < .001). The three-way interaction was found to be 
due to significant differences in the PSD for all frequen-
cies, as measured at C3, Cz, and C4 electrode locations, 
during session group 1 and session group 3, when com-
pared to session group 2 (p < .01).

BrainDriver race times and frequency bands providing 
the highest DA contribution
During pre-competition sessions, performed before com-
petition races, a decrease occurred in the pilot’s Brain-
Driver game control ability (Fig.  5A and B). Based on 
the NeuroSensi dataset acquired in 2020, an analysis was 
performed to investigate a possible connection between 
the decrease in BCI control ability and the change in 
frequency bands providing the highest contribution to 
2-class classification, comparing results from the final 
days of the BCI training period (sessions 19–21) and pre-
competition days (sessions 22–24). For the analysis, the 
classifiers were trained separately for the two options, 
i.e., when the training dataset was pooled from sessions 
19–21, and sessions 22–24.

The results of the analysis (Fig. 8) for each ‘task vs. task’ 
classifiers (LR, FR, LF) shows that the task-related DA 
contribution of the 18–28 Hz (high beta) and 28–40 Hz 
(low gamma) bands show a relatively high value (red 
area) for the final days of the BCI training period in 
sessions 19–21 (Fig.  8A) closer to the onset of the task 
(dotted vertical line) compared to results obtained for 
pre-competition days in sessions 22–24 (Fig.  8B). As 
indicated by the lighter coloured areas in Fig.  8C, the 
highest difference in DA contribution for ‘task vs. task’ 

2-class classification between the two session groups was 
obtained during the task period around 4–5 s (i.e., 2–3 s 
after the onset of the motor imagery task).

In the case of the ‘task vs. relax’ (TX) classification, 
the DA contribution map obtained from the two-session 
groups showed more diverse non-focal patterns, espe-
cially in the 8–12 Hz (mu) band and signifiant difference 
in the baseline period between the session groups in the 
BCI training period (sessions 19–21) and pre-competi-
tion days (sessions 22–24). Out of all the classifiers the 
TX appears the least stable between the session groups 
and without clear distinction between baseline and event 
related periods in 2020.

Discussion
This paper provides an overview of a long-term pilot 
training and BCI strategy implemented in preparation for 
the Cybathlon BCI race event in 2019 and 2020. In both 
years, the initial phase of the project focused on calibrat-
ing the 2-class classifiers using the NeuroSensi game. 
Our results show that decoding accuracy increased dur-
ing the online sessions following the calibration period. 
This observation is in line with similar studies that have 
demonstrated improvements in the Cybathlon pilot’s 
BCI control ability due to long-term practice periods—
although this has not always translated into high perfor-
mance on the day of the event, as was the case with the 
current study and for both Benaroch et  al. [9] and Turi 
et al. [17]. Possible reasons for this drop in race-day per-
formance are discussed along with suggested strategies to 
address the issue.

Analogue TSD output of the 2‑class classifiers
The TSD results from the current study indicate that 
although the BCI was re-calibrated between 2019 and 
2020, the timing of the pilot’s accuracy control strategy 
remained consistent during this time. The TSD output of 
the ‘left vs. right’ (LR) classifier between 0 and 3 s (refer-
ence baseline-related interval) in 2020, shows less fluctu-
ation in positive or negative directions compared to that 
obtained in 2019. The more balanced TSD track devia-
tion, before the effect of the class-specific motor imagery 
task in 2020, may be because the pilot was asked to 
maintain a relaxed mental state whilst keeping the con-
trolled character in the center position (at the zero base-
line) during the pause period of the ‘task vs. task’ runs 
in 2020, but not in 2019. Furthermore, the time course 
of the TSD values for the ‘task vs. relax’ (TX) classifier 
within a 2  s width interval around the onset of the task 
(between 1 and 3 s in the trial) shows that the controlled 
character moves in the negative direction. The above-
described effect is more clearly observable in the 2020 
results (Fig. 3G, ‘task vs. relax’) compared to the results 
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from 2019 (Fig.  3F, ‘task vs. relax’), indicating that the 
pilot followed the instructions and tried to relax during 
pause periods of the TX runs, especially in 2020.

Frequency and topographical analysis
The comparison of the frequency and topographic analy-
sis results obtained in 2019 and 2020 using CSP and MI 
parameters of the calibrated BCI, indicate a similar pat-
tern each year (Fig.  4). However, the patterns obtained 
based on the 2020 BCI configuration involve some spe-
cific features that are not evident in the 2019 BCI. The 
performance in 2019, for each binary classifier, relied on 
a single area in the frequency and topographical maps 
(Fig. 4A and B). However, in 2020, for most binary clas-
sifiers, two separate areas provide similarly high contri-
butions for the 2-class classification (Fig. 4C and D). For 
example, the ‘feet vs. right’ (FR) classification in 2019 
relied mostly on 18–28 Hz (high beta) oscillations in the 
central area of the primary motor and somatosensory 

cortex—a cortical area commonly activated when able-
bodied participants perform the task associated with a 
kinaesthetically imagined feet movement. This observa-
tion is in line with the findings reported by Müller-Putz 
et  al. [32], which reveal a post-movement beta rebound 
within a mean range of 17.3–29.7 Hz. For the FR classi-
fication in 2020, in addition to the high beta activity in 
the central area of the primary motor and somatosensory 
cortex, a similarly high contribution was obtained from 
low gamma oscillations in the left hemisphere of the 
somatosensory association and occipito-temporal cortex. 
Thus, the above discussed CSP-MI patterns obtained in 
2020 indicate task-specific cortical activity for both com-
pared tasks (‘feet vs. right hand’), as opposed to high-
lighting only one task (‘feet’), as was the case in 2019.

Performance of the Ulster University team
Each year, after some initial NeuroSensi game sessions, 
which served to help the pilot achieve control confidence 

Fig. 8  Comparison: DA contribution of frequency bands obtained in 2020 for final days of the BCI training period (sessions 19–21) vs. 
pre-competition days (sessions 22–24). Time-varying frequency maps indicating frequency range providing the highest level of contribution for 
2-class classification using datasets recorded in 2020 for final days of the BCI training period (sessions 19–21) (A) and for the pre-competition days 
(sessions 22–24) (B). The absolute value of the difference in (A) and (B) frequency maps is indicated in (C)
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in the 2-class paradigm, the focus of the sessions turned 
to the BrainDriver race paradigm. The BrainDriver race 
completion time during the training period improved 
significantly. In 2019 completion times ranged from 274 
to 156 s over 17 days—including 10 sessions wherein the 
completion times in the first of these ten sessions (ses-
sion 9, Fig.  5A) was 255 ± 24  s (mean ± std), reaching 
191 ± 14  s in the last of these ten sessions (sessions 16, 
Fig. 5A).

The game completion time in 2020 ranged from 230 
to 168  s over 18  days—including 13 sessions wherein 
the completion time in the first of these thirteen ses-
sions (session 9, Fig. 5B) was 214 ± 14 s (mean ± std), and 
reached 181 ± 4  s in the last of these thirteen sessions 
(session 21, Fig. 5B). However, on both competition occa-
sions, towards the race date, the pilot’s performance in 
the race decreased significantly. For reference, the win-
ning race times were 183 s and 172 s in 2019 and 2020, 
respectively.

The results confirm that not only did the multi-session 
online training with BrainDriver race attempts have a 
positive impact on the pilot’s performance, manifested 
in an increased BCI control ability that enabled the pilot 
to achieve competitive race completion times, but also 
highlights that experience gained in 2019 was transferred 
to performance in 2020. This observation resulted in race 
completion times being achieved at the beginning of the 
training performed in 2020 which were in the same range 
as the best race completion times achieved at the end 
of the training performed in 2019 (paired-sample t-test, 
p > .05).

Performance of the competing pilots
In terms of other competitors, the NITRO 1 team, Bena-
roch et al. [9] reported that the game completion time of 
their pilot fluctuated between 250 and 340 s during seven 
training sessions before the Cybathlon BCI series event 
in 2019. However, their pilot could not finish the track 
within the 4-min limit. The NITRO 2 team, Turi et  al. 
(2021) reported that in the final competition of the 2019 
Cybathlon BCI series their pilot completed 390.5 m in the 
500 m long virtual track within the 240 s limit [17] but did 
not note details of the game completion time achieved by 
their pilot during the training period. For the Mirage 91 
team, Hehenberger et  al. [33] reported that their pilot’s 
performance showed a constant improvement over 
14 months of training including 26 game-based sessions 
for the 2019 Cybathlon BCI series and 2020 Cybathlon 
Global Edition. The BrainDriver race completion time 
improved from 255 ± 23  s to 225 ± 22  s (mean ± STD). 
For the SEC FHT team, Robinson et al. [34] also reported 
improvement in their pilot’s performance over a 9-month 

training period involving 15 sessions, with BrainDriver 
competition time varying between 310 and 214 s.

The best three ranked teams completed the track in 
the final challenge of the Cybathlon BCI series (2019) in 
the following order. Rank 1st: WHI team (500 m within 
183 s), Rank 2nd: Mirage 91 team (500 m within 229 s), 
Rank 3rd: NeuroCONCISE team (386 m within the 240 s 
limit) [17, 35]. The best three ranked teams in the 2020 
Cybathlon Global Edition completed the track in the fol-
lowing order: Rank 1st: WHI team (500 m within 172 s), 
Rank 2nd: MAHIDOL BCILAB BCI team (500 m within 
176 s), Rank 3rd: Neurorobotics team (500 m within the 
213 s). Our team, the Ulster University NeuroCONCISE 
team, completed the 2020 Cybathlon Global Edition, 
Rank 6th (452 m within the 240 s limit) [36]. We applied 
a similar strategy in the 2016 Cybathlon event, with the 
same pilot, but without a dedicated rest vs. task classifier. 
While the Cybathlon 2016 data is not comparable due to 
differences in the race track and total race time, our pilot 
achieved the 3rd best time of all competitors in the com-
petition, but had a poor qualifying lap which meant being 
awarded 6th place overall [3].

Potential factors affecting the NeuroCONCISE pilot’s 
performance
For a few days before the competition each year, the race 
completion time achieved by the pilot from session to 
session decreased, indicating an improvement in BCI 
control ability and/or a more refined parameters selec-
tion for the BCI. However, over the days directly before 
the competition day each year, a significant increase and 
or variability in the race completion times occurred (dot-
ted oval area in Fig. 5A and B). Furthermore, on the day 
of the competition, the race completion time followed 
this trend (solid oval area in Fig. 5A and B). During the 
last six sessions before the competition in 2019 when this 
negative effect was observed, the BCI configuration had 
not changed, nor was there a change in the game control 
strategy reported by the pilot. There may be several fac-
tors associated with this change in performance, includ-
ing increased arousal and stress levels, fatigue, and/or 
changes in living and dietary patterns, e.g., the pilot was 
living away from home for extended periods during the 
lead up to race day.

Benaroch et al. [9] demonstrated that their Cybathlon 
pilot’s strategy of adapting their brain patterns to match 
the training data distribution helped to improve BCI con-
trol. However, they also report that they were not able to 
translate this to event day performances, which is con-
sistent with our findings. Additionally, Turi et  al. [17] 
reported a similar outcome for competition day results, 
citing multivariate factors that influence and poten-
tially disrupt pilot performance, including training time, 
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change in routine, differences in the training method 
with the final game, and differences in training and event 
environment.

A longitudinal study involving another Cybathlon pilot 
who has tetraplegia [34] investigated factors affecting the 
long-term use of their system by analysing several per-
formance indicators including activations maps, com-
pletion time, classification, and the personal experience 
of the pilot, by measuring their subjective experience of 
both their physical and mental readiness on a scale of 1 
to 5. The findings support the use of a closed-loop cali-
bration system with real-time feedback, due to better 
online median classification performance, compared to 
open-loop calibration paradigms, and improved pilot 
engagement. Although only a single subject study, the 
team recommends striving to keep the training paradigm 
closely matched with the final event by including closed-
loop real-time feedback. This strategy helps to boost the 
classification performance whilst increasing brain activa-
tions due to the increased engagement felt by the pilot.

Promisingly, not all entrants reported a decrease in 
performance on the event day. Hehenberger et  al. [33] 
described a correlation between external influencing 
factors and performance on their final race. As was the 
case for the current study, the authors describe the pilot’s 
increased performance over time, but did not observe a 
decrease in performance during the final races. Moreo-
ver, the pilot achieved a personal best in his performance 
at the 2019 Cybathlon, leading the authors to speculate 
that their pilot performs better in front of an audience.

Factors of arousal and feedback on BCI performance
In an attempt to understand how to mitigate all negative 
influences on pilot performance, it has been argued that 
the peak performance of paralympians is driven not only 
by psychological factors, but through their convergence 
with a sufficient support network, lifestyle, and attuned 
methods of performance [37]. Hence, recent research has 
focused on counteracting the effects of these variables. 
One approach has been to use neurofeedback to improve 
BCI task performance through training self-regulation 
of arousal states via attention mechanisms [38]. Cogni-
tive control underlies executive function within the brain 
and interacts critically with arousal systems to activate 
approach-avoidance behavior [38, 39]. This interaction 
is the principal behind the Yerkes–Dodson law—a psy-
chological concept that posits that an optimal (moderate) 
level of arousal is necessary for improved task perfor-
mance—while a low level of arousal reduces motivation 
and a high level of arousal negatively impacts cognitive 
information processing, thus impairing task perfor-
mance. Therefore, this relationship between the state of 

arousal and performance on a task is best described as an 
inverted-U, known as the Yerkes–Dodson curve [38, 40].

Arousal levels have been found to influence sensory-
motor cognition—spontaneous high-frequency oscil-
lations known as “pilot-induced oscillation” (PIO) are 
generated when performing a high-consequence task. 
These unstable oscillations have deleterious effects on 
performance when amplified by the pilot’s over-correc-
tion of small errors in control [38, 41]. Faller and col-
leagues (2019) used audio feedback in a closed-loop 
neurofeedback BCI, comprising a synthetic slow heart-
beat (60  bpm), which became louder with increased 
arousal, to train users to self-regulate their arousal levels 
while performing a virtual reality (VR)-based boundary 
avoidance task (BAT). Task performance improved sig-
nificantly for the users who received veridical feedback 
compared to those in the sham or no-feedback control 
conditions. This result was corroborated by heartrate 
variability (HRV) data and measures of pupil dilation, 
which indicated a learned ability to shift arousal state 
and increase task performance through neurofeedback 
training.

However, it remains uncertain whether the advantage 
afforded by feedback would be maintained in the absence 
of that feedback during the competition itself. Mindful-
ness training could provide a more sustainable approach 
to the self-regulation of arousal, via underlying cogni-
tive mechanisms. Mindfulness training has been shown 
not only to have a positive impact on stress reduction 
[42] but is also gaining momentum in the BCI research 
community with some studies showing an improvement 
in performance of almost 20% for those using mindful-
ness over a control group [43]. Mindfulness is a metacog-
nitive process as it requires self-regulation of attention 
to control cognitive processes while simultaneously 
monitoring conscious experience [44]. Individuals who 
are experienced in meditation skills have been found to 
demonstrate higher resting SMR power, a more stable 
resting mu rhythm, and greater BCI control, compared 
to those who have not practiced meditation techniques 
[45]. Furthermore, mindfulness-based stress reduction 
(MBSR) training has been found to improve BCI learn-
ing and performance on BCI tasks that communicate 
the user’s intent via motor imagery commands and voli-
tional rest [46]. The mechanism for this improvement is 
brought about by the user’s ability to volitionally increase 
alpha-band neural activity as a consequence of the MBSR 
training. Stieger et al. [46] evidenced an increase in alpha 
activity recorded during the user’s volitional resting-
state, across MBSR sessions, which was correlated with 
mindfulness practice and predicted BCI performance. 
Strategies to reduce challenges and stress when preparing 
for the competition include anticipation and preparation 
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through detailed planning, including contingency plan-
ning, and expectation management, i.e., focusing on the 
process rather than the outcome [47]. Training in MBSR 
would fit with these approaches to stress management 
and enhance BCI task performance under the pressure of 
competition.

Distractors and external factors
Factors that impact SMR-BCI performance that are less 
dependent on the BCI user and more dependent on 
external elements include distractors, time spent training, 
various types of feedback, and features of the EEG system 
and the data preprocessing algorithms [40]. For exam-
ple, González-Franco et  al. [48] whose research studied 
the influences of positive and negative visual feedback 
on motor imagery task performance using EEG and elec-
trocardiography (ECG), found that over-biased negative 
feedback caused mental stress that is detected in the 
form of significantly higher heart rate variability (HRV), 
compared to sessions where over-biased positive feed-
back was presented, and accuracies correlated with the 
polarity (−/+) of the biased feedback. If a pilot experi-
ences a drop in performance and some negative feedback 
for any reason during the training sessions immediately 
preceding the competition day when pressure to perform 
well and competition anxiety may be heightened the 
effect of this anxiety may further negatively impact per-
formance and degradation in performance spirals. Race 
teams engineers may also begin to get anxious when see-
ing these performance changes and thus start to adjust 
BCI parameters to counteract and adapt to these changes 
resulting in the pilot experiencing different feedback than 
expected and thus further negative effects. This mutual 
adaptation or perhaps maladaptation can result in sig-
nificant performance degradation quite quickly. Adaptive 
feedback, or BCI setup, that limits the negative feedback 
may be an alternative strategy where the onus is on the 
BCI to deal with the changes in the pilot’s affective state 
and certainly further research is required to address this 
human machine learning dilemma (involving the human 
pilot, the BCI machine and the human engineer or engi-
neers who are also in the loop).

Performance may be improved by replacing the BCI 
framework proposed here with an adaptive BCI method 
that could update the BCI in real-time and adapt to the 
pilot’s actual mental state [49]. In the lead up to the com-
petition, the average TSD was offset from zero (indicat-
ing classifier bias to one of the classes). Even manual 
correction (offsetting) before each session was not 
enough to counteract the drift. This baseline drift is a 
well-known issue in BCI and is associated with changes 
in the distribution of the features, i.e., covariate shift [50, 
51]. As shown in Figs.  7 and 8 we observed changes in 

the temporal evolution of the frequency response and 
feature importance changes over time, in addition to the 
inclusion of some features that negatively impact perfor-
mance. Although more difficult to manage, an adaptive 
classifier approach [52] or feature adaptation [53] or data 
space adaption approach [54, 55], may combat this issue 
and help maintain performance regardless of the pilot’s 
affective state.

Study limitations
The BCI and race strategy proposed here (Fig. 2) requires 
the task vs. relax’ (TX) classifier to act as a game-control 
command gating mechanism which oversees when a 
command is sent to BrainDriver or when a ‘no-control’ 
state is intended. As the BrainDriver command gating 
mechanism relies on the time-varying DA of the TX clas-
sification, it can have a significant impact on the pilot’s 
ability to: (1) maintain a stable ‘no-control’ state after a 
correctly classified game-command; and (2) immediately 
send a new game-control command to correct a mistake 
after having sent an incorrect command. We observed 
that each of the three ‘task vs. task’ classifiers (LR, FR, 
LF) achieved higher DA and lower DA peak latency 
compared to the ‘task vs. relax’ (TX) classifier (Fig. 3E). 
Furthermore, when comparing the TX classifier to other 
classifiers we also observed that: (1) the DA contribution 
levels from different frequency bands for the TX classifier 
were much more diverse; and (2) the difference between 
contribution patterns obtained for the final training ses-
sions and the competition period were maximal the TX 
classifier (Fig. 8), signifying least stability. The lower per-
formance of the TX classifier may, therefore, have been 
influenced more by the pilot’s relax state variability as 
race day approached and thus overall negatively impacted 
the performance disproportionally to other classifiers.

Therefore, future work will focus on devising meth-
ods to train the pilot on how to use the TX classification 
more reliably, e.g., by replacing the NeuroSensi game-
based multiple 2-class classification training with a Triad 
game-based training framework, and generally training 
resting state maintenance and relaxation techniques.

Next, as described in “Calibration of the two-class clas-
sification modules” and “Calibration details” sections, a 
cross-session DA analysis was performed to find a BCI 
configuration that resulted in the most stable and high-
est DA peak performance obtained over multiple test 
sessions. The datasets, which were used for a cross-ses-
sion DA analysis based BCI calibration, were selected by 
pooling different combinations of existing sessions. How 
and when to adapt the classifier and which training data 
is optimal for classifier calibration and adaptation are 
still open questions in BCI research. Some researchers 
choose to adapt the classifier after every session, others 
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periodically after a number of sessions but using the most 
recent session, whilst others apply online real-time and 
regular automated adaptation techniques (see [56] for 
short review). The approach we employed was thorough 
in terms of assessing which combination of past ses-
sions maximized accuracy and was, additionally, robust 
and stable across multiple sessions—however, it may 
have been suboptimal as it was a heuristic search. Future 
work will involve developing a globally optimal solution 
to select the training data for more robust optimization 
as well as developing automated solutions for classifier 
updates and adaptation.

Additionally, as we did not use EEG data that was 
acquired during the training race attempts to update the 
classifier, we did not collect triggers from the BrainDriver 
platform to epoch the EEG. The challenge of determin-
ing a strategy to win the competition meant that the data 
and research focus was secondary. This may have been an 
oversight, as more game related data would have enabled 
a deeper analysis. Future work should focus on complete 
profiling of pilot affective states and race performance. 
Finally, this study presented a single subject whilst future 
work should involve comparing additional subjects com-
peting within the same training regime.

Conclusion
We described the long-term training of a pilot who has 
tetraplegia in preparation to compete at the Cybathlon 
Competition in 2019 and 2020. Training was under-
taken in the pilot’s home, in hotel rooms, and at the 
race venues. All home-based training in 2020 was sup-
ported remotely by the team (i.e., due to the COVID 19 
pandemic a non-expert at the pilot’s home assisted with 
cap preparation, etc., and the race team remotely moni-
tored, coached, and calibrated performance). Our results 
demonstrate significant improvement in performance 
as a result of our user training strategy, BCI approach 
and optimisation of the BCI parameters. We have dem-
onstrated that applying multiple binary classifiers along 
with additional post-processing modules and training 
with multiple neurogaming technologies is effective at 
improving the capacity of a user who has tetraplegia to 
control a virtual avatar without movement, directly via 
brain activity, and to maximise that control ability to 
continue to reduce race times and achieve state-of-the 
art performances for the challenge. Our pilot has devel-
oped into a BCI expert, even though he has tetraplegia 
for 37  years, as demonstrated by consistently achieving 
accuracies above 90% and competitive race times outside 
the competition days. We did however observe that per-
formance was significantly impacted by changes in cog-
nitive state, possibly due to heightened arousal arising 
from competition day pressure. We conclude that relax 

and testing state modulations are not stable and help-
ing the pilot to maintain consistent relax/resting states 
is of critical importance to ensure race day performances 
are consistent with best training day performance. This 
should be supplemented by adaptive BCI strategies that 
can autonomously adjust to cognitive state changes to 
maintain performance. However, maintenance of cogni-
tive state stability is likely to be the most important crite-
ria for success at the Cybathlon championship for people 
with disabilities. We will focus on this and plan to com-
pete again at the CYBATHLON Edition in 2024.
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