
INTRODUCTION

The intestinal epithelial barrier consists of a monolayer of 
epithelial cells and intercellular junctions between adjacent 
cells that seal the paracellular space and regulate the barrier 
permeability (Jin and Blikslager, 2020; Nighot and Ma, 2020; 
Slifer and Blikslager, 2020). This barrier separates harmful 
luminal substances, such as microorganisms, toxins, and an-
tigens from the body, and thus plays a critical role in maintain-
ing intestinal homeostasis. Impaired barrier function can lead 
to gut hyperpermeability and trigger mucosal inflammation 
(Tabat et al., 2020). Increased gut permeability usually results 
from aberrant apoptosis of intestinal epithelial cells and/or 
dysregulation of tight junctions (TJs) on the barrier (Su et al., 

2013; Otani et al., 2020). 
The mitogen-activated protein kinases (MAPKs) contain 

highly conserved serine/threonine protein kinases that play a 
central role in the regulation of TJ permeability (Xiong et al., 
2020), including extracellular signal-regulated kinase (ERK), 
c-Jun N-terminal kinase (JNK), and p38 MAPK. MAPKs are 
required for the transcription and production of various pro-
inflammatory agents and the regulation of barrier function in 
vitro (Yang et al., 2019) and in vivo (Meir et al., 2019). Tissue 
necrosis factor  (TNF-), a proinflammatory cytokine central 
to the pathogenesis of inflammatory bowel diseases (IBD) has 
been shown to promote TJ dysregulation and induce epithelial 
barrier loss by upregulating MAPK expression and enzymatic 
activity (Petecchia et al., 2012; Borgonetti et al., 2020).
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The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junc-
tions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial 
barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using 
monolayers of Caco-2 cells treated with tissue necrosis factor  (TNF-) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plas-
mid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) admin-
istration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated 
wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF- increased epithelial TJ disruption and cleaved 
caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF--induced increase in epithe-
lial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. 
CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, 
and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed 
these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, 
cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that 
HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and 
epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.
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Heme oxygenase-1 (HO-1) is an enzyme specialized in de-
grading heme and is assembled with biliverdin, carbon monox-
ide (CO), and free iron (Vijayan et al., 2018). HO-1 is normally 
expressed in the mucosal layer of gastrointestinal track (Naito 
et al., 2011). The upregulation of HO-1 expression and CO 
level inhibits inflammatory responses and attenuates intestinal 
barrier disruption (Chi et al., 2018; Stefanson and Bakovic, 
2018; Wang et al., 2020). Heme supplementation modifies the 
microenvironment of the colonic tissue, which plays a protec-
tive role in dextran sodium sulfate (DSS)-induced colitis mice 
via regulation of macrophage polarization in both HO-1-de-
pendent and -independent manner (Wu et al., 2020). How-
ever, how HO-1 and/or CO controls TJs and epithelial cells 
damage remains unclear. Therefore, in this study, we aimed 
at elucidating the effects and molecular mechanisms of HO-1/
CO in regulating TJ function and epithelial damage. The cur-
rent study demonstrated that HO-1-CO axis suppresses the 
MAPK pathway activation to maintain intestinal mucosal bar-
rier permeability. 

MATERIALS AND METHODS 

Cell culture and treatments
The human colonic adenocarcinoma cell line Caco-2 was 

cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gib-
co, USA) supplemented with 10% fetal calf serum (FCS, Gib-
co, USA), 100 U/mL penicillin, and 100 mg/mL streptomycin 
at 37°C in a 5% CO2 atmosphere. Then, TNF- (100 ng/mL, 
PeproTech, USA) was added to Caco-2 cells for 24 h. Lentivi-
ral transfection was performed using LipofiterTM (Hanbio Bio-
technology, China), according to the manufacturer’s instruc-
tions. The FUGW-HO-1 and pLKO.1-sh-HO-1 plasmids were 
obtained from Hanbio Biotechnology. The sequences used 
for HO-1 overexpression were as follows: F-CACAGACCGG-
TATGGAGCGTCCGCAACCCGACAG, R-CACAGGAATTCT-
CACATGGCATAAAGCCCTACAGC. The sequence used for 
short hairpin RNA (shRNA) targeting HO-1 was F-CCGGA-
CAGTTGCTGTAGGGCTTTATCTCGAGATAAAGCCCTA-
CAGCAACTGTTTTTTG; R-AATTCAAAAAACAGTTGCTG-
TAGGGCTTTATCTCGAGATAAAGCCCTACAGCAACTGT. 

Animals experiments 
C57BL/6 male wild type (WT) mice (6-8-week-old and weigh-

ing 20-25 g) were obtained from the Laboratory Animal Cen-
ter of Dalian Medical University (Liaoning, China). Briefly, the 
mice were administered 2 mL/kg carbon tetrachloride (CCl4, 
Aladdin Biochemical Technology Co., Ltd, Shanghai, China) via 
intraperitoneal injection (CCl4:olive oil=1:3) twice a week for 12 
weeks to induce barrier loss. The control group was adminis-
tered olive oil. In the last 2 weeks, according to the groups, all 
surviving mice were administered cobalt protoporphyrin (CoPP, 
5 mg/kg, Sigma-Aldrich, Saint Louis, MO, USA) (Bakhautdin 
et al., 2014), zinc protoporphyrin (ZnPP, 5 mg/kg, Sigma-Al-
drich) (Liu et al., 2018), carbon monoxide releasing molecule-2 
(CORM-2, 8 mg/kg, Sigma-Aldrich) (Xue and Habtezion, 2014), 
inactivated-CORM-2 (iCORM-2, 8 mg/kg), or normal saline via 
intraperitoneal injection twice a week. iCORM-2 was generated 
as described previously by addition to cell culture medium over-
night (18 h) at 37°C and bubbling with air (N2) to remove the 
residual CO (Xue and Habtezion, 2014). The WT C57BL/6 mice 
were randomized into six groups: Control (n=6), CCl4 (n=10), 

CCl4+CoPP (n=10), CCl4+ZnPP (n=10), CCl4+CORM-2 (n=10), 
and CCl4+iCORM-2 (n=10). VillinCreHmox1floxp/floxp mice with 
knockout HO-1, specifically on the intestinal epithelial cells, 
were constructed using C57BL/6 mice from Beijing Views-
olid Biotechnology Co. (Beijing, China) by crossing Villin-Cre 
transgenic mice with Hmox1floxp/floxp mice that contain LoxP sites 
flanking exon 2 of the Hmox-1 gene. WT and Hmox1floxp/floxp mice 
were bred in the same room of our vivarium and used as con-
trols for experiments involving VillinCreHmox1floxp/floxp mice. WT, 
Hmox1floxp/floxp, and VillinCreHmox1floxp/floxp C57BL/6 mice were 
also induced by CCl4. The mice were randomized to six groups: 
WT-Control (n=5), Hmox1floxp/floxp-Control (n=5), VillinCreHmox-
1floxp/floxp-Control (n=6), WT-CCl4 (n=6), Hmox1floxp/floxp-CCl4 (n=5), 
and VillinCre Hmox1floxp/floxp-CCl4 (n=6). Then, intestine samples 
were collected. The excised ileum tissues in each group were 
fixed with 4% paraformaldehyde for histopathological staining, 
and the remnants of intestine tissues were stored at –80°C for 
subsequent use. All animals and experiments were carried out 
in strict accordance with the recommendations of the Animal 
Care and Use Committee of Dalian Medical University, and the 
protocols were approved by the institutional Animal Experimen-
tal Ethics Committee (Approval No. AEE18006). 

Histopathological examination 
Freshly dissected ileum biopsies were fixed with 4% form-

aldehyde in phosphate-buffered saline (PBS) (pH 7.2-7.4), 
embedded in paraffin, and stained with hematoxylin and 
eosin (H&E), according to the standard protocol. The slides 
were examined by an experienced histopathologist who was 
blinded to the study design. Intestinal mucosal injuries were 
graded according to the Chiu’s scoring system (Li et al., 2019): 
0=normal mucosa; 1=mucosal degeneration with extended 
subepithelial space; 2=intestinal villus epithelium raised and 
more extended subepithelial space; 3=intestinal villus epithe-
lium deciduation; 4=intestinal villus epithelium shedding, only 
lamina propria; 5=severe degeneration and mucosal digestion 
with disintegration of lamina propria, bleeding, and ulcers.

Western blot analysis
Western blot analysis was performed, as described previ-

ously (Mishra et al., 2017). The primary antibodies used in our 
experiments were as follows: anti-ZO-1 (1:500, Proteintech, 
Shanghai, China), anti-occludin (1:1,000, Abcam, Cambridge, 
UK), anti-caspase-3 (1:500, Cell Signaling Technology, Bos-
ton, MA, USA), anti-cleaved caspase-3 (1:500, Cell Signaling 
Technology), anti-ERK (1:1,000, Abcam), anti-phospho-ERK 
(1:1,000, Abcam), anti-p38 (1:500, Abbkine, Wuhan, China), 
anti-phospho-p38 (1:500, Abbkine), anti-JNK (1:1,000, Ab-
cam), anti-phospho-JNK (1:1,000, Abcam), anti-HO-1 (1:500, 
Proteintech), anti--actin (1:2,000, Proteintech), or anti-GAP-
DH (1:2,000, Proteintech). Also, the secondary antibodies, in-
cluding anti-rabbit IgG (H+L) and anti-mouse IgG (H+L), were 
purchased from Proteintech (1:2,000). The intensity of the im-
munoreactive bands was quantitated using ImageJ software 
(National Institutes of Health, Bethesda, MD, USA).

Statistical analysis 
The data were representative of three or more independent 

experiments, each with similar results. The continuous data 
are shown as mean ± standard deviation. The comparison 
between two groups were performed using Mann-Whitney U 
test. The comparisons among multiple groups were made us-
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ing Kruskal-Wallis H test. p-value ≤0.05 was considered sta-
tistically significant.

RESULTS

Elevation of HO-1 increases the level of TJ proteins and 
reduces cell apoptosis

In order to examine the effects of HO-1 on the intestinal 
epithelial barrier, gain- or loss-of-HO-1-function experiments 
were conducted using Caco-2 cells transfected with FUGW-
HO-1 or pLKO.1-sh-HO-1 plasmid. The cells transfected with 
empty plasmids served as the control groups. For these in-
vitro studies, TNF- was used to stimulate the Caco-2 epithe-

lial cells as it is one of the most frequently used cell models 
for mimicking the intestinal epithelial barrier injury, and TNF- 
stimulation does not affect the expression of HO-1 (Fig. 
1A-1D, all p>0.05). Subsequently, the levels of TJ proteins 
(ZO-1 and occludin) and cell apoptosis-related factors (cas-
pase-3 and cleaved caspase-3) were determined by Western 
blot analysis. As shown in Fig. 1A and 1B, the expression of 
ZO-1 and occludin was significantly increased, and the ratio 
of cleaved caspase-3/caspase-3 was remarkedly decreased 
in cells transfected with FUGW-HO-1 after TNF- treatment 
as compared to the control group (all p<0.05). However, rela-
tive to the control group, HO-1 shRNA significantly decreased 
the expression of ZO-1 (p<0.01) and occludin (p<0.05) and 
distinctly increased the ratio of cleaved caspase-3/caspase-3 
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Fig. 1. Overexpressed HO-1 elevates the expression of TJ proteins while reducing the ratio of cleaved caspase-3/caspase-3 in Caco-2 
cells. Caco-2 cells were transfected with FUGW-HO-1 or pLKO. 1-sh-HO-1 plasmid and cells transfected with empty plasmid as the con-
trol groups. (A, B) The representative protein bands and the level of ZO-1, occludin, cleaved caspase-3/caspase-3, and HO-1 in Caco-2 
cells transfected with FUGW-HO-1 or empty plasmid, as measured by Western blot analysis. (C, D) The representative protein bands and 
the expression of ZO-1, occludin, cleaved caspase-3/caspase-3, and HO-1 in Caco-2 cells transfected with the pLKO.1-sh-HO-1 or empty 
plasmid, as measured by Western blot analysis. Measurement data are expressed as mean ± SD. All data presented were representative of 
three or more independent experiments, each with similar results. Bar *p<0.05 and **p<0.01. 
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(p<0.05) as a response to TNF- treatment (Fig. 1C, 1D). To-
gether, these data indicated that the elevation of HO-1 main-
tained the integrity of the intestinal epithelial barrier by upregu-
lating the level of TJ proteins and reducing the apoptosis of 
intestinal epithelial cells.

Elevation of HO-1 blocks the MAPK signaling pathway 
We used RNA-seq to explore the putative molecular mech-

anism of HO-1 in barrier disruption, and the results demon-
strated that HO-1 regulates the expression of MAPK signaling 
pathway-related genes in TNF--induced Caco-2 cells treated 
with CoPP or ZnPP (Supplementary Fig. 1A-1D). We also ex-
amined the expression of MAPK signaling pathway-related 
proteins, such as ERK, phosphorylated-ERK (p-ERK), p38, 
phosphorylated-p38 (p-p38), JNK, and phosphorylated-JNK 

(p-JNK), by Western blot analysis and found that the ratios of 
p-ERK/ERK (p<0.05), p-p38/p38 (p<0.001), and p-JNK/JNK 
(p<0.01) were significantly decreased in cells transfected with 
FUGW-HO-1 after treatment with TNF- as compared to that 
in the control group (Fig. 2A, 2B). However, compared to the 
control group, HO-1 shRNA significantly increased the ratios 
of p-ERK/ERK (p<0.05), p-p38/p38 (p<0.05), and p-JNK/JNK 
(p<0.01) in cells treated with TNF- (Fig. 2C, 2D). These find-
ings indicated that elevated HO-1 might suppress the phos-
phorylation of the MAPK signaling pathway in Caco-2 cells. 

Eff ect of HO-1 and CORM-2 on intestinal epithelial barrier 
injury and MAPK signaling pathway in CCl4-induced mice

To determine the therapeutic effects of CoPP, ZnPP, 
CORM-2, or iCORM-2, we used CCl4 to induce intestinal epi-
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Fig. 2. HO-1 overexpression suppresses the MAPK signaling pathway in Caco-2 cells. Caco-2 cells were transfected with FUGW-HO-1 or 
pLKO.1-sh-HO-1 plasmid, and cells transfected with empty plasmid as the control groups. (A, B) The representative protein bands and the 
ratios of p-ERK/ERK, p-p38/p38, and p-JNK/JNK in Caco-2 cells transfected with FUGW-HO-1 or empty plasmid, as measured by Western 
blot analysis. (C, D) The representative protein bands and the ratios of p-ERK/ERK, p-p38/p38, and p-JNK/JNK in Caco-2 cells transfected 
with pLKO.1-sh-HO-1, as measured by Western blot analysis. Measurement data are expressed as mean ± SD. All data presented were 
representative of three or more independent experiments, each with similar results. Bar *p<0.05, **p<0.01, and ***p<0.001. 
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thelial barrier damage. Mice were administered CoPP, ZnPP, 
CORM-2, iCORM-2, or normal saline after CCl4 administra-
tion, and then, serum was collected and intestinal tissues 
harvested. The disrupted architecture and the disarranged 
ileal epithelial mucosal villi were observed by H&E stain-
ing in the CCl4-treated group (Fig. 3A). CoPP significantly 
upregulated the level of HO-1 protein in the intestine of the 
mice model (Supplementary Fig. 2, p<0.05). H&E staining 
revealed that CoPP and CORM-2 administration attenuated 
the CCl4-induced pathological changes in the ileum mucosa 
(Fig. 3A); however, groups treated with ZnPP showed severe 
pathological changes than the CCl4-treated group. Western 
blot analysis revealed that CoPP and CORM-2 administration 
significantly increased the expression of ZO-1 (p<0.01 and 
p<0.05, respectively) and occludin (both p<0.05) proteins, and 
reduced the ratios of cleaved caspase-3/caspase-3 (p<0.01 
and p<0.001, respectively), p-ERK/ERK (p<0.01 and p<0.05, 
respectively), p-p38/p38 (both p<0.01), and p-JNK/JNK (both 
p<0.01) as compared to the CCl4-treated group (Fig. 3B-3E). 
However, ZnPP treatment reversed these effects (Fig. 3B-

3E), and iCORM-2 had no effects on the barrier loss and the 
level of MAPK pathway-related proteins after CCl4 challenge 
(all p>0.05). These findings indicated that CoPP and CORM-
2 repaired the intestinal epithelial barrier loss, which was 
characterized by the alleviated intestinal mucosal lesions, the 
upregulated expression of TJ proteins, and the reduced cell 
apoptosis. Moreover, CoPP and CORM-2 inhibited the phos-
phorylation of the MAPK signaling pathway. 

Conditional knockout of HO-1 on intestinal epithelial cells 
loses the protective eff ect against CCl4-induced barrier 
loss

To confirm the intestinal epithelial cell-specific function of 
HO-1 in mediating the barrier loss, we specifically deleted 
HO-1 from intestinal epithelial cells (VillinCreHmox1floxp/floxp) 
(Supplementary Fig. 3) by crossing Villin-Cre mice with Hmox-
1floxp/floxp mice. WT and Hmox1floxp/floxp mice displayed relatively 
mild mucosal lesion, TJ disruption, and cell apoptosis after 
CCl4 challenge (Fig. 4A-4D), while VillinCreHmox1floxp/floxp mice 
showed a significant aggravation of mucosal lesions (Fig. 4A), 
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disruption of TJ proteins (Fig. 4B, 4C), and increase in cell 
apoptosis (Fig. 4B, 4D). Moreover, the animals presented a 
significantly elevated MAPK phosphorylation as compared 
to the WT and Hmox1floxp/floxp mice (Fig. 4B, 4E). In summary, 
HO-1 on intestinal epithelial cells contributed to the protection 
of the paracellular leakage pathway, effectuating the repair 
of barrier disruption. These processes were accompanied by 
the inhibition of MAPK phosphorylation in a HO-1-dependent 
manner.

DISCUSSION

Gut leakiness is a well-characterized phenomenon in pa-
tients with many diseases (Shao et al., 2018; Albillos et al., 
2020; Hall et al., 2020; Wang et al., 2020). In this study, we 
demonstrated that the dysregulation of TJs and the apoptosis 
of intestinal epithelial cells induced intestinal barrier loss in 
vitro and in vivo. The elevated expression of HO-1 repaired 
the intestinal epithelial barrier dysfunction by increasing the 
expression of TJ proteins, regulating the epithelial structure 
and reducing the apoptotic frequency of cells. Furthermore, 
the loss of HO-1 enhanced the disruption of TJs. In addition, 
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HO-1 was shown to interact with the MAPK signaling pathway, 
and the overexpression of HO-1 suppressed the upregulation 
of phosphorylated ERK, phosphorylated p38, and phosphory-
lated JNK, while the loss of HO-1 induced an increase in the 
phosphorylation of ERK, p38, and JNK. Herein, we provided 
novel evidence for the relative contributions of HO-1-mediated 
MAPK pathway involved in repairing intestinal barrier function 
(Fig. 5). 

HO-1 is the rate-limiting enzyme in the degradation of 
heme, converting heme to free iron, biliverdin, and CO, which 
in turn, plays a major role in conferring protection against the 
different types of damage, such as intestinal diseases (Onyiah 
et al., 2013; Wu et al., 2020), liver injury (Chen et al., 2019), 
sepsis (Zhan et al., 2018), and pulmonary inflammation (Cho 
et al., 2018). However, a majority of the studies used HO-1 as 
the damage stimuli, while no data are available on the protec-
tive role of HO-1 in the intestinal barrier disruption after CCl4 
via direct regulation of HO-1. TNF- increases the intestinal 
TJ permeability (Feng and Teitelbaum, 2013; Su et al., 2013; 
Du et al., 2015), which contributes to the increase in the intes-
tinal permeability (Hartmann et al., 2012; Chen et al., 2015). 
Our previous study has demonstrated that TNF- levels are 
increased in BDL-induced cholestatic liver injury (Zhang et al., 
2017). The present study demonstrated that TNF- treatment 
increased the permeability of epithelial barrier, reduced the 
intestinal TJs, and induced the expression of cell apoptosis-
related proteins, such as cleaved caspase-3 in vitro. In ad-
dition, TNF- stimulation did not exert a significant effect on 
the expression of HO-1. The overexpression of HO-1 and ex-
ogenous administration of the HO-1 inducer CoPP repaired 
the intestinal epithelial barrier dysfunction in TNF--induced 
Caco-2 cells and CCl4-induced mice. Intriguingly, CORM-2 
mimicked the protective role of HO-1 via exogenous admin-
istration of CO. Conversely, HO-1 shRNA and exogenous ad-
ministration of the HO-1 inhibitor ZnPP reversed these effects. 
Our findings indicated that HO-1/CO repaired the intestinal TJ 
permeability and reduced the cell apoptosis, and therefore, 
restored the intestinal epithelial barrier defects. However, the 
potential mechanisms of HO-1/CO protecting the barrier loss 
are currently under intensive focus. 

The MAPK signaling pathway (including p38, ERK, and 
JNK) harbor highly conserved serine/threonine protein ki-
nases that function in various fundamental cellular processes, 
such as growth/proliferation, differentiation, motility, apoptosis/

survival, inflammation, and innate immunity (Hua et al., 2017). 
The MAPK signaling pathway has been shown to play a major 
role in the disruption of the intestinal barrier (Song et al., 2010; 
Wang et al., 2017; Yang et al., 2019). In addition, colonic in-
flammation and downregulation of occludin and claudin-1 was 
mediated by p38, JNK, and ERK phosphorylation (Sun et al., 
2015; Ran et al., 2018). In the present study, RNA-seq analy-
sis data revealed that the differentially expressed genes were 
mainly clustered to the MAPK signaling pathway in TNF--
induced Caco-2 cells. Based on these data, we found an obvi-
ous increase in the phosphorylation of p38, ERK, and JNK as a 
response to TNF- stimulation. Furthermore, dysregulation of 
TJ, apoptosis of intestinal epithelial cells, and disarrangement 
of ileum villus structure were accompanied by the activation of 
the MAPK signaling pathway after CCl4. These data showed 
that the MAPK signaling pathway might participate in intestinal 
epithelial barrier injury. Nuclear factor E2 related factor 2 (Nrf2)-
mediated HO-1 elevation significantly reduced the phosphory-
lation levels p38-MAPK in the small intestine (Zhuang et al., 
2019). Hirsutenone reverses the disordered intestinal perme-
ability by activating the EGFR/Akt and ERK pathways, which 
are involved in the regulation of HO-1 expression (Seo et al., 
2014). Water-soluble CO-releasing molecules reduce the de-
velopment of postoperative ileus via modulation of MAPK/
HO-1 signaling and reduction of oxidative stress (De Backer 
et al., 2009). In this study, HO-1 overexpression and CoPP 
and CORM-2 administration blocked the phosphorylation of 
ERK, p38, and JNK, while HO-1 shRNA and ZnPP treatment 
enhanced the phosphorylation. Our findings suggested that 
HO-1/CO protects the barrier loss by inhibiting the phosphory-
lation of the MAPK signaling pathway. However, further stud-
ies are needed to delineate the upstream (e.g., p-MAPKKs 
and their total) and downstream (p-c-Jun/p-c-Fos and their 
total) effects of MAPK activation or inhibition in the intestinal 
barrier damage.

In summary, this study indicated that intestinal HO-1 con-
tributes to maintaining the integrity of intestinal epithelial bar-
rier, increasing the intestinal TJs and reducing the apoptosis of 
intestinal epithelial cells through inhibiting the phosphorylation 
of the MAPK signaling pathway. Targeting the gut HO-1-MAPK 
crosstalk would track the clinical management of patients with 
barrier loss.
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