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Poland; w.jurczak@amw.gdynia.pl

* Correspondence: tomtrz@prz.edu.pl (T.T.); adzierwa@prz.edu.pl (A.D.)

Abstract: The article presents the results of the analysis of the interactions between the single point
incremental forming (SPIF) process parameters and the main roughness parameters of stiffened
ribs fabricated in Alclad aluminium alloy panels. EN AW-7075-T6 and EN AW-2024-T3 Alclad
aluminium alloy sheets were used as the research material. Panels with longitudinal ribs were
produced with different values of incremental vertical step size and tool rotational speed. Alclad
is formed of high-purity aluminium surface layers metallurgically bonded to aluminium alloy core
material. The quality of the surface roughness and unbroken Alclad are key problems in SPIF
of Alclad sheets destined for aerospace applications. The interactions between the SPIF process
parameters and the main roughness parameters of the stiffened ribs were determined. The influence
of forming parameters on average roughness Sa and the 10-point peak–valley surface roughness Sz
was determined using artificial neural networks. The greater the value of the incremental vertical
step size, the more prominent the ridges found in the inner surface of stiffened ribs, especially in
the case of both Alclad aluminium alloy sheets. The predictive models of ANNs for the Sa and the
Sz were characterised by performance measures with R2 values lying between 0.657 and 0.979. A
different character of change in surface roughness was found for sheets covered with and not covered
with a soft layer of technically pure aluminium. In the case of Alclad sheets, increasing the value of
the incremental vertical step size increases the value of the surface roughness parameters Sa and Sz.
In the case of the sheets not covered by Alclad, reduction of the tool rotational speed increases the Sz
parameter and decreases the Sa parameter. An obvious increase in the Sz parameter was observed
with an increase in the incremental vertical step size.

Keywords: 2024-T3; aluminium alloy; incremental sheet forming; load-carrying capacity; surface
finish; surface roughness

1. Introduction

Appropriate selection of the parameters of the sheet metal forming process using
single point incremental forming (SPIF) is intended to ensure appropriate surface quality
in terms of roughness and, at the same time, an economically justified forming time [1,2].
The basic parameters in the process are: tool rotational speed, feed rate, step size, size
and shape of the tool, type of sheet metal, and tool path [3–5]. The lubricant also plays a
very important role. The surface roughness of the specimen is the result of the influence
obtained between the tool and specimen, where the lubricant plays a significant role during
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the forming process [6]. In order to optimise the process parameters, the Taguchi plan
is often used [7–9]. Baruah et al. [10] conducted optimisation studies for the process of
forming sheets of EN AW-5052 aluminium alloy using the Taguchi method. The results
showed that effective lubrication is of the greatest importance for the formability and
reduction of roughness in incremental sheet forming (ISF). Research on the influence of
lubrication on surface quality was also carried out by Hussain et al. [11]. It was confirmed
that the quality of the surface depends to a large extent on the properties of the lubricant
and the method of its application.

One characteristic of the ISF forming process is the concentration of the deformation
zone in the contact area of the tool face with the formed sheet. The size of this zone depends
on the shape and size of the tool end and affects the formability of the sheet metal and its
surface properties. Ham and Jeswiet [12,13] showed that a higher degree of formability is
achieved with a smaller tool diameter due to the relatively large deformations concentrated
in a small area of the material. Bhattacharya et al. [14] and Buff et al. [15] showed that
tool rotational speed, feed rate and vertical step size have a significant impact on the
formability of the ISFed sheets. Based on the experimental results, Ham and Jeswiet [12]
claim that a low feed rate has a positive effect on sheet deformability. Vertical step size has
a very significant influence on the formability and roughness of the shaped surface. Using
the lowest possible step size values is recommended in order to obtain an appropriate
surface quality [16–18]. Bhattacharya et al. [14] carried out research on the forming of EN
AW-5052 aluminium alloy sheets and focussed on the effect of the step-down on the surface
roughness of the draw piece surface. It was clearly indicated that an increase in the step
size causes an increase in the surface roughness of the processed surface.

The investigations by Rubino et al. [19] and Andrade-Campos et al. [20] focussed
on the strain distribution induced by the single point incremental forming of friction-
stir-welded AA6082 sheets. It was found that in good-quality welds, material failure
during SPIF occurs in the base material, evidencing that the mechanical properties of the
welds are equal or better than those of the original material. Tucci et al. [21] developed an
integrated numerical model able to simulate the manufacturing route for formed 6000 series
aluminium alloy sheets welded by friction stir welding technology and finally shaped by
means of a SPIF process. Thuillier et al. [22] performed the incremental forming of 6082-T6
aluminium alloy welded blanks until the fracture of truncated cones. The aim was to build
an experimental database of the whole joining and forming process. Lu et al. [23] improved
the surface quality of the parts by appropriately developing the tool path. A detailed
review of the current state-of-the-art ISF processes in terms of their specific limitations,
with discussions on the ISF process parameters and their effects on ISF processes, has been
provided by Gatea et al. [24]. Rattanachan and Chungchoo [25] used the 2k-p factorial
experimental design to analyse the interaction between the side overlap, step depth, tool
feed rate and inner surface roughness. It was found that reducing tool rotational speed
and feed rate reduced inner surface roughness.

In recent decades, artificial neural networks (ANNs) have become connections of
elements called artificial neurons used to analyse complex regression problems [26–28].
There are many topologies of neural networks used to process the relationship between the
explanatory and explained parameters [29,30]. Ambrogio et al. [31] proposed the imple-
mentation of ANN for predicting the geometrical variability of incrementally formed draw
pieces. They also compared the Levenberg–Marquardt and backpropagation algorithms
for predicting material failure. Kurra et al. [26] modelled the surface roughness in SPIF
using ANNs and genetic programming. The optimum process parameters in SPIF were
obtained and validated through these experiments, and highly satisfactory results were
found with an error of less than 10%. Alsaman et al. [32] applied ANNs and the regression
model to analyse the SPIF process for conical draw pieces. Najm and Paniti [4] used ANNs
to predict the Ra and Rz parameters by adopting the data collected from frustum cones that
were formed by SPIF. The results showed that an ANN with one argument in the output
predicted the outcome sufficiently well when compared with a two-argument structure.
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Oraon and Sharma [33] used the model of the ANN to predict the quality of the SPIF
component’s surface. The inputs were wall angle, feed rate, step size, sheet thickness,
spindle speed and density of lubricant.

The research presented in the literature is mainly based on the SPIF of sheets that
are not covered with a soft anticorrosion coating. The SPIF parameters should ensure the
continuity of the protective layer after forming. This is especially important when forming
sheets of high-strength EN AW-2024-T3 Alclad and EN AW-7075-T6 Alclad aluminium
alloys commonly used in aircraft structures. The change in the thickness of the soft Alclad
(technically pure aluminium) is related to the deformation of the core material and the
mechanical interaction of the spherical end of the tool. Therefore, the SPIF process of Alclad
sheets is different from that commonly studied in the literature, and in this paper, analysis
is carried out on the change in surface roughness during the forming of rib-stiffened panels
made of aluminium alloy Alclad sheets. The panels were formed using the single point
incremental forming technique with a tool with a spherical end and a continuous spiral-
shaped tool strategy. The load-carrying ability of rib-stiffened EN AW-2024-T3 and EN
AW-7075-T6 aluminium alloy panels under axial compression has been studied in recent
papers by the authors of [34,35]. In this paper, the effect of the forming parameters on
the surface finish of the inner surface of stiffened ribs is studied based on experimental
measurements of the surface roughness and on the artificial neural networks.

2. Materials and Methods
2.1. Material

Rib-stiffened panels were fabricated based on sheets with dimensions 160 mm × 120 mm
(0.8-mm-thick EN AW-7075-T6 Alclad and 0.4-mm-thick EN AW-2024-T3 Alclad) and
160 mm × 100 mm (1-mm-thick EN AW-2024-T3). The chemical composition and the
basic mechanical properties of the materials of the test sheets are shown in Tables 1 and 2,
respectively.

Table 1. Chemical composition of test sheets in wt.% [36].

Alloy Si Fe Mn Cu Mg Cr Zn Ti
Other Elements

Al
Each Total

2024-T3 0.50 0.50 0.3–0.9 3.8–4.9 1.2–1.8 0.10 0.25 0.15 0.05 0.15 Remainder
7075-T6 0.40 0.50 0.30 1.2–2.0 2.1–2.9 0.18–0.28 5.1–6.1 0.20 0.05 0.15 Remainder

Table 2. Basic mechanical properties of test sheets [36].

Material Temper

Specified Thickness,
mm

Tensile Strength
Rm, MPa

Yield Stress Rp0.2,
MPa Elongation A50

min, %Over Through min max min max

EN AW-2024 Alclad T3 0.25 0.50 405 - 270 - 12
EN AW-2024 T3 0.50 3.20 435 - 290 - 15

EN AW-7075 Alclad T6 0.32 1.00 490 - 420 - 8

The tests were conducted in lubricated conditions using SAE 75W-85 gear oil supplied
by Mannol (Wedel, Germany). About 5 mL of oil was used on each panel during the
forming process. Basic physicochemical properties of the oil used are listed in Table 3.

Table 3. Basic physicochemical properties of SAE 75W-85 gear oil.

Density ρ (at 15 ◦C), kg/m3 Flash Point, ◦C Pour Point, ◦C Viscosity at 40 ◦C, mm2/s Viscosity Index

879 210 −45 72.4 157
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2.2. Forming Method

The ribs, with a width of 20 mm and an inner radius of 10 mm, were formed in
the middle part of the panel (Figure 1a). During the experimental tests, 7 mm diameter
hemispherical, high-speed HS2-9-2 steel was used for forming.
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mental forming (SPIF) and (c) continuous spiral-shaped tool strategy generated in the EdgeCAM
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The research was planned according to an orthogonal plan (two variable factors at
three levels). A constant feed rate of 800 mm/min was used in the study. Incremental
vertical step size ap and tool rotational speed v (Table 4) were selected as variable parameters.
The same research plan was applied to all the grades of sheet metals.

The device (supporting plate and blank holder) for SPIF was mounted on the table
(Figure 1b) of a numerically controlled TM-1P vertical milling machine (Hass Automation,
Oxnard, CA, USA). The sheet was placed between the supporting plate and the blank
holder and clamped firmly at the edges using screws. During forming, the tool moves
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in accordance with a path designed in the EdgeCAM program (Hexagon AB, Stockholm,
Sweden). A continuous spiral-shaped toolpath (Figure 1c) was used in the investigations.

Table 4. Orthogonal array design.

Number of Experiment Incremental Vertical Step
Size ap, mm Tool Rotational Speed v, rpm

E1 0.2 18
E2 0.2 110
E3 0.2 202
E4 0.3 18
E5 0.3 110
E6 0.3 202
E7 0.4 18
E8 0.4 110
E9 0.4 202

2.3. Analysis of Surface Roughness

Scanning electron microscopy (SEM) was used to investigate wear on the inner surface
of the formed ribs. Therefore, characterisation of the SEM samples was carried out on
an S-3400 Phenom ProX SEM (Nanoscience Instruments, Phoenix, AZ, USA). Roughness
measurements were performed by using a Talysurf CCI Lite white light interferometer
(Taylor Hobson, Leicester, UK) with a vertical resolution of 0.01 nm. Basic 3D parameters
of surface roughness were determined according to the ISO 25178-2 [37] standard. The
profiles were taken perpendicular to the wear track in the middle part of the inner surface
of the ribs (Figure 2).
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Figure 2. Location of measurement of the surface roughness in the inner surface of the stiffening ribs.

2.4. Artificial Neural Networks

The number of neurons in the input and output layers is determined by the num-
ber of parameters presented at the input and the number of parameters at the output.
The Statistica program was used to analyse the effect of SPIF parameters on the surface
roughness value of the stiffening ribs. The ANN algorithm (Intelligent Problem Solver)
manuscript was built in the Statistica program, which automatically analyses the training
set and possible correlations between input and output parameters for the specified num-
ber of multilayer perceptrons na = 50. Based on the results of this analysis, the structure
of a neural network, which is optimal for the data in the training set, is proposed. The
flowchart of the algorithm of the Intelligent Problem Solver module was not discussed
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in the documentation of the Statistica program. The incremental vertical step size and
the tool rotational speed were selected as explanatory parameters. The parameter to be
explained was the arithmetical mean height Sa, the basic parameter of surface roughness in
the machine manufacturing industry [38]. Due to the fact that sheets of various materials
and thicknesses were tested, with or without the protective Alclad, it was decided to build
an independent network for each of the sheets tested. It is possible to include all these
parameters in one global network, but this requires the adding of new neurons at network
input and, in consequence, could lead to the loss of the network’s generalisation capabilities
due to the limited amount of training data. While the number of neurons in the input
and output layers is determined by the number of explanatory and explained variables,
there are no general guidelines allowing a priori selection of the number of neurons in the
hidden layer(s).

An ANN with a 2:2-8-1:1 structure (Figure 3) was selected after conducting a series
of analyses with multilayer networks with a different number of neurons in the hidden
layer based on the values of two parameters [39–42], i.e., the coefficient of determination
R2 (Equation (1)) and round mean square error RMSE (Equation (2)) for the analysis of the
influence of SPIF parameters on the value of the average roughness Sa and the 10-point
peak–valley surface roughness Sz of the inner surface of the stiffening ribs. Due to the
small size of the training set, this network was used separately to forecast the values of the
Sa and Sz parameters. Sa and Sz parameters are the most studied parameters of SPIFed
surfaces [26]. The network shown in Figure 3 ensured the highest value of the determination
coefficient R2, and, at the same time, the lowest RMSE error for data contained in the
training set. The values of the network quality parameters were determined as follows:

• Coefficient of determination, R2:

R2 = 1 −
(

∑n
i=1
(
aj − pj

)2

∑n
i=1
(

pj
)2

)
(1)

• Round mean square error, RMSE:

RMSE =

√
1
n

n

∑
i=1

∣∣aj − pj
∣∣2 (2)

where a is the actual value, p is the predicted value and n is the number of training sets.
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The training of the network was carried out with the use of various algorithms,
which provided comparable results for the relatively uncomplicated network used in the
investigations.

3. Results
3.1. Surface Topography

Selected surface topographies and the values of the basic parameters of the stereo-
metric structure of the inner surface of the ribs formed in 1-mm-thick EN AW-2024-T3,
0.4-mm-thick EN AW-2024-T3 Alclad and 0.8-mm-thick EN AW-7075-T6 aluminium alloy
sheets are shown in Figures 4–6 and Table 5.

It was found that the inner surface of the ribs revealed small linear ridges as a re-
sult of the interaction of the spherical-shaped tool tip with the workpiece. The greater
the value of the incremental vertical step size, the more prominent the ridges (1-mm-
thick EN AW-2024-T3—Figure 4a, 0.8-mm-thick EN AW-7075-T6 Alclad—Figure 5a and
0.4-mm-thick EN AW-2024-T3 Alclad—Figure 6a). Because the difference between the low-
est valley and the highest peak on the surface is Sz, the tool tip is continuously cultivating
the sheet surface and creating new grooves. When the incremental vertical step size ap is
small, then the grooves are continuously plastically deformed, and one can even detect
flattening of the surface. The grooves presented in Figures 4b, 5b and 6b correspond to
the 1-mm-thick EN AW-2024-T3, 0.8-mm-thick EN AW-7075-T6 Alclad and 0.4-mm-thick
EN AW-2024-T3 Alclad, respectively. The asperities on the sheet surface are destroyed
and recreated continuously by the topography of the tool. In the case of Alclad sheets
(Figures 5 and 6), there is no clear effect of the tool rotational speed on the arrangement
and pitch of ridges. However, when forming the EN AW-2024-T3 sheets without Alclad,
the highest tool rotational speed caused tearing of the lateral sides of ridges (Figure 4c). A
similar effect was observed when forming sheets with Alclad (Figures 5c and 6c). In the
case of 1-mm-thick EN AW-2024-T3 sheets, the increase in the vertical step size ap under
constant tool rotational speed leads to an increase in the Sz parameter (Table 5). There are
no other clear relationships within the specific grade of sheet metal. The relations between
ap and v affecting it are imperceptible due to small differences in the values of parameters.
Therefore, it is necessary to build a model that takes the overall view on the change in
surface roughness into account. This will be the topic of the next chapter.
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Figure 6. Surface topographies of the inner surface of ribs formed in 0.4-mm-thick EN AW-2024-T3 Alclad fabricated at
with the following conditions: (a) ap = 0.4 mm, v = 18 rpm; (b) ap = 0.4 mm, v = 202 rpm; (c) ap = 0.2 mm, v = 202 rpm.

Table 5. Basic amplitude parameters of the surface roughness of the ribs formed in 1-mm-thick EN
AW-2024-T3 sheets.

ap, mm v, rpm Sq, µm Ssk Sku Sp, µm Sv, µm Sz, µm Sa, µm

0.2
18 1.09 0.355 3.10 5.16 4.33 9.49 0.874

110 0.94 0.0009 2.73 3.85 3.69 7.54 0.733
202 0.99 −0.0872 2.60 4.05 4.30 8.36 0.799

0.3
18 1.16 −0.321 3.37 3.86 4.67 8.53 0.914

110 1.53 0.0228 2.45 5.09 4.77 9.86 1.26
202 0.93 −0.184 3.50 3.34 4.91 8.25 0.737

0.4
18 1.92 0.192 2.65 7.12 8.51 15.6 1.59

110 1.19 0.0649 3.35 4.93 6.65 11.6 0.940
202 1.39 −0.0958 3.69 4.88 8.29 13.2 1.09

3.2. ANN Modelling

The training of the network was carried out with the use of various algorithms (quasi-
Newton, backpropagation and Levenberg–Marquardt), which provided comparable results
for the relatively uncomplicated network used in the investigations. The learning process
was characterised by a continuous reduction of the network error along with an increase
in the number of epochs, during which the training data were presented to the network.
The learning process was carried out until there was no further reduction of the network
error [42]. The values of the network for individual learning algorithms and the number of
learning epochs necessary to achieve the minimum value of the error function are presented
in Table 6. The smallest error values were observed for networks learned with the quasi-
Newton algorithm. The number of learning epochs necessary to reach the minimum error
value was about 80 for the quasi-Newton algorithm, 140 for the backpropagation algorithm
and 170 for the network trained using the Levenberg–Marquardt algorithm.
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Table 6. RMSEs for the 2:2-8-1:1 networks trained using different algorithms.

Sheet Material Output Variable RMSE for Training Set

Quasi-Newton Back Propagation Levenberg–Marquardt

0.4-mm-thick
EN AW-2024-T3 Alclad

Sa 0.1206 0.1278 0.1381
Sz 0.4624 0.4821 0.4997

0.8-mm-thick
EN AW-7075-T6 Alclad

Sa 0.3004 0.3189 0.3047
Sz 0.0817 0.0974 0.1086

1-mm-thick
EN AW-2024-T3

Sa 0.2860 0.3068 0.3091
Sz 0.1311 0.1457 0.1531

So, in this paper, the variable metric (quasi-Newton) algorithm was selected to present
the results of the training process. The quasi-Newton algorithm ensures the fastest achieve-
ment of the error minimum by the network response during the learning process [43,44].
From the training set, 20% of the cases were randomly selected and assigned to the valida-
tion set, which is used for independent control of the training algorithm. The validation set
protects the learning process against “Occam’s razor”, according to which “in explaining
phenomena one should strive for simplicity, choosing such explanations that are based
on the fewest assumptions and concepts”. Failure to meet Occam’s condition leads to
overfitting of the network to the training data, and, consequently, its ability to generalise
the data is lost. RMSE error values for the networks are shown in Table 6. The differences
in the values of these errors for different networks result from the difference in the possible
data noise in the training sets. Another explanation for the differences is the different
character of interaction of the spherically ended tool with a clad and an unclad sheet
surface. Alclad is an aluminium alloy core material metallurgically bonded to a high-purity
aluminium surface layer, which, due to reduced hardness, is much more susceptible to
roughening than the core metal. Another explanation for the differences in errors is due to
random selection by the learning algorithm of data that were qualified to the validation set.
Removal of data that carried significant information from the training set could reduce the
quality of the training process.

The observation of changes in the value of the network learning error is a response
to a possible network training error, while next to the network learning error, very im-
portant parameters indicating the network’s approximation abilities are the coefficient of
determination and the mean of the absolute error. Taking into account the small amount of
training data, all networks were characterised by a relatively high value of the coefficient of
determination defined for the training set (Tr. SA in Figure 7) above R2 = 0.657 (Figure 7a–c).
Values of the standard deviation ratio above 0.512 for the training set indicate an average
quality of the predictive neural network.

The coefficient of determination of neural networks with Rz as the explained variable
was characterised by a high value of the coefficient of determination R2 > 0.92 (Figure 7d–f).
This means that the input parameters correlate more closely with the roughness parameter
Sz than with the Sa parameter. Moreover, the networks explaining the value of the Sa
parameter were characterised by an about two times lower value of the standard deviation
ratio. The lower the value of this coefficient, the better the quality of the model constructed.
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Figure 7. Basic regression parameters of the artificial neural networks modelling the effect of process
parameters on roughness parameters Sa (a–c) and Sz (d–f): (a,d) 0.4-mm-thick EN AW-2024-T3 Alclad,
(b,e) 1-mm-thick EN AW-2024-T3 and (c,f) 0.8-mm-thick EN AW-7075-T6 Alclad: Data S.D.—standard
deviation of data, Error S.D.—error of standard deviation, Abs. E. Mean—absolute error mean, S.D.
Ratio—standard deviation ratio, Correlation—coefficient of determination R2.

The principal goal of the analyses carried out with the use of neural networks, apart
from an attempt to build a high-quality network based on a relatively small set of training
data, was to find out the relationship between the parameters of the SPIF process and
the value of the average roughness Sa. The response surfaces of the neural networks for
the data concerning all materials are shown in Figure 8. According to all neural models,
increasing the value of the incremental vertical step size ap increases the value of the
surface roughness parameter Sa. The influence of the tool rotation speed v on the value
of the Sa parameter is more complex. When forming sheets with an Alclad (Figure 8a,c),
increasing the rotational speed v reduces the value of the average roughness Sa parameter.
A reverse relationship can be observed for the EN AW-2024-T3 sheet (Figure 8b) which did
not have a protective anticorrosive coating. This can be explained by the heating of the soft
Alclad containing a large proportion of pure aluminium, under the adhesive effect of the
surface of the rotating tool. Consequently, the plasticised asperities of the sheet surface
were more susceptible to flattening.

It was found that during the forming of ribs in Alclad sheets there is a clear relationship
between the average roughness Sa and the 10-point peak–valley surface roughness Sz.
Increasing the rotational speed of the tool and vertical step size increases the value of the
parameter Sa (Figure 9a,c) and the parameter Sz (Figure 9a,c). In the case of the sheet
not being covered by soft Alclad, the reduction of tool rotational speed increases the Sz
parameter (Figure 9b) and reduces the Sa parameter (Figure 8b). So, the tool rotational
speed is a more important parameter in determining the surface finish than incremental
vertical step size. In the case of sheets covered by a soft layer of technically pure aluminium,
the inner surface of the ribs was more easily ploughed. So, the pronounced directional
scratches can be easily correlated with the change of parameters Sa and Sz. The character of
the interaction of the hard surface of the spherically shaped tools with the relatively high-
strength of the surface of the greatest thickness (1 mm) of the EN AW-2024-T3 aluminium
alloy sheet causes the deformation of the surface asperities. These changes take place in
cyclical ridges so the surface asperities are flattened without significant changes in the
depths of the valleys.
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0.4-mm-thick EN AW-2024-T3 Alclad, (b) 1-mm-thick EN AW-2024-T3 and (c) 0.8-mm-thick EN AW-7075-T6 Alclad.

4. Conclusions

In this paper, an analysis is presented on the effect of SPIF parameters on the surface
roughness of stiffened ribs formed in EN-2024-T3 and EN AW-7075-T6 aluminium alloy
sheets with and without the high-purity aluminium surface layers metallurgically bonded
to the core material. The following conclusions are drawn from the experimental research
and ANN analyses:

• The greater the value of the incremental vertical step size, the more prominent the
ridges found in the inner surface of stiffened ribs, especially in the case of both Alclad
aluminium alloy sheets.

• In the case of Alclad sheets, there is no clear effect of the tool rotational speed on
the arrangement and pitch of ridges. However, when forming the 1-mm-thick EN
AW-2024-T3 sheets (without Alclad), the highest tool rotational speed caused tearing
of the lateral sides of the ridges.

• Regardless of the grade of the sheet, an obvious increase in the Sz parameter was
observed with an increase in the incremental vertical step size.
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• The performance measures of the multilayer perceptrons predicting the values of
average roughness Sa and the 10-point peak–valley surface roughness Sz ranges
between 0.657 and 0.979, respectively.

• Alclad sheets exhibit a different character of changes of parameters Sa and Sz from
unclad sheets. In the case of Alclad sheets, increasing the value of the incremental
vertical step size increases the value of the surface roughness parameters Sa and Sz.
The reduction of the tool rotational speed increases the Sz parameter and decreases
the Sa parameter when forming unclad sheets.
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28. Trzepieciński, T.; Lemu, H.G. Effect of activation function and post synaptic potential on response of artificial neural network to
predict frictional resistance of aluminium alloy sheets. IOP Sci. Conf. Ser. Mater. Sci. Eng. 2017, 269, 012041. [CrossRef]

29. Altaf, S.; Mehmood, M.S.; Imran, M. Implementation of efficient artificial neural network data fusion classification technique for
induction motor fault detection. J. Eng. Sci. 2018, 5, E16–E21. [CrossRef]

30. Rao, K.V.; Murthy, B.S.N.; Rao, M. Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of
AISI 316 steel with artificial neural network. Measurement 2014, 51, 63–70.

31. Ambrogio, G.; Filice, L.; Guerriero, F.; Guido, R.; Umbrello, D. Prediction of incremental sheet forming process performance
using a neural network approach. Int. J. Adv. Manuf. Technol. 2011, 54, 921–930. [CrossRef]

32. Alsamhan, A.; Ragab, A.E.; Dabwan, A.; Nasr, M.M.; Hidri, L. Prediction of formation force during single-point incremental sheet
metal forming using artificial intelligence techniques. PLoS ONE 2019, 14, e0221341. [CrossRef]

33. Oraon, M.; Sharma, V. Prediction of surface roughness in single point incremental forming of AA3003-O alloy using artificial
neural network. Int. J. Mater. Eng. Innov. 2018, 9, 1–19. [CrossRef]
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