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The rodent whisker-associated thalamic nucleus (VPM) contains a somatotopic map
where whisker representation is divided into distinct neuronal sub-populations, called
“barreloids”. Each barreloid projects to its associated cortical barrel column and so forms
a gateway for incoming sensory stimuli to the barrel cortex. We aimed to determine how
the population of neurons within one barreloid encodes naturalistic whisker motion. In
rats, we recorded the extracellular activity of up to nine single neurons within a single
barreloid, by implanting silicon probes parallel to the longitudinal axis of the barreloids.
We found that play-back of texture-induced whisker motion evoked sparse responses,
timed with millisecond precision. At the population level, there was synchronous activity:
however, different subsets of neurons were synchronously active at different times.
Mutual information between population responses and whisker motion increased near
linearly with population size. When normalized to factor out firing rate differences, we
found that texture was encoded with greater informational-efficiency than white noise.
These results indicate that, within each VPM barreloid, there is a rich and efficient
population code for naturalistic whisker motion based on precisely timed, population
spike patterns.
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Introduction

Thalamus is the gateway to the cerebral cortex and the manner in which sensory signals are
encoded by thalamic populations fundamentally constrains cortical computation (Sherman
and Guillery, 2009). Although it has long been suspected that neuronal activity within
modular, neuronal populations is crucial for thalamo-cortical processing, few studies have
simultaneously recorded the activity of multiple neurons within such modules in the thalamus
(Desbordes et al., 2008; Temereanca et al., 2008; Wang et al., 2010b). The whisker system
is ideal for investigating thalamic population coding (Petersen et al., 2009), since there
is a well-defined, modular population of neurons devoted to each whisker at each of the
major stations of the sensory pathway (Woolsey and Van der Loos, 1970). In the ventro-
posterior medial nucleus (VPM) of the thalamus, each whisker is primarily represented
by a cluster of ∼250 neurons (in rat) known as a ‘‘barreloid’’ (van der Loos, 1976).
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In the whisker system, mechanoreceptors embedded in
the whisker follicle-sinus complex project to the cerebral
cortex via parallel, topographic pathways through brainstem
and thalamus (reviewed by Diamond and Arabzadeh, 2013).
The major (lemniscal) pathway, primarily responsible for
encoding whisker-object touch, involves VPM (Deschênes
et al., 2005). The core of VPM receives ascending input
from the principal nucleus of the brainstem and projects
primarily (although not exclusively) to layer IV of primary
somatosensory cortex (S1) with collaterals to the thalamic
reticular nucleus (NRT). Analogously to other sensory
systems, VPM conveys ascending sensory signals to cortex
and modulates those signals depending on cortical and
behavioral state (Temereanca et al., 2008; Sherman and
Guillery, 2009). VPM activity is modulated by input from
S1 layer 6, NRT and brainstem neuromodulatory centers.
VPM is neurochemically more homogeneous than other
thalamic nuclei, such as LGN, in being devoid of GABAergic
interneurons and consisting of glutamatergic, S1-projecting relay
neurons.

By recording the activity of individual neurons, previous
studies have determined that VPM neurons can respond
to whisker deflection with high (sub-millisecond) spike
timing precision and have identified sensory features to
which VPM neurons respond (Waite, 1973; Simons and
Carvell, 1989; Pinto et al., 2000; Brecht and Sakmann, 2002;
Castro-Alamancos, 2002; Yu et al., 2006; Montemurro et al.,
2007a; Petersen et al., 2008; Ego-Stengel et al., 2012). At
the population level, it is known that sudden whisker
contact (e.g., a ramp-and-hold stimulus) evokes a response
where different neurons fire within a few milliseconds of
each other—commonly termed ‘‘synchrony’’—and that the
degree of synchrony varies with stimulus features (Pinto
et al., 2000; Temereanca et al., 2008; Wang et al., 2010b).
However, it is not known how VPM neurons, at either single
neuron or population level, respond to naturalistic whisker
motion. Coding principles for naturalistic stimuli can differ
substantially from those for artificial stimuli (Mainen and
Sejnowski, 1995; de Ruyter van Steveninck et al., 1997).
Our aim here was to investigate how the population of
neurons in an individual barreloid of the VPM nucleus
encodes texture-induced motion of the corresponding
whisker and to test whether its population response is
synchronous.

To address these issues, we used multi-microelectrode
arrays to record simultaneously the activity of multiple single
units from within a single VPM barreloid, in response to
play-back of texture-induced whisker motion (Arabzadeh
et al., 2005; Wolfe et al., 2008; Lottem and Azouz, 2011; Bale
et al., 2013). We found that naturalistic whisker motion
evoked precisely timed patterns of population spiking,
where different groups of neurons fired synchronously at
different times (‘‘dynamic synchrony, DS’’). Furthermore,
mutual information scaled linearly with population size,
suggesting a marked lack of redundancy, and responses
exhibited a greater informational efficiency for naturalistic
stimuli.

Materials and Methods

Electrophysiology
All experimental procedures were approved both by the UK
Home Office and by The University of Manchester Ethical
Review Committee. Adult male Wistar rats (n = 13, 250–350 g)
were anesthetized with urethane (1.5 g/kg body weight) and
placed into a stereotaxic apparatus. A craniotomy was made over
the hemisphere ipsilateral to whisker stimulation 2.0–4.5 mm
posterior and 1.5–4.0 mm lateral to bregma. A single-shank,
32-site silicon probe (single row of recording sites, each area
177 µm2, 50 µm spacing; recording site impedance lowered
by Iridium oxide activation, top and bottom sites used to pass
current for marking recording site; Neuronexus, Ann Arbor, MI)
was inserted into the brain at 45◦ to the midline in the coronal
plane (dorso-medial to ventro-lateral), to target the contralateral
VPM nucleus. During the experiment, position of the probe
within VPM was verified by short-latency responses evoked by
manual stimulation of the whiskers. The probe was lowered until
whisker-evoked activity ceased, and receptive fields characteristic
of the ventroposterior lateral nucleus (VPL) emerged on the
deepest recording sites (mean 8.3, SD 0.3 mm from pial surface).
Extracellular signals were preamplified, digitized at 24.4 kHz,
band pass filtered (300–3000Hz) and continuously stored to hard
disk for offline analysis.

Whisker Stimulation
All whiskers were trimmed to 5 mm and receptive fields were
mapped for each recording site by manually deflecting single
whiskers. The whisker that evoked responses at the greatest
number of recording sites was selected for stimulation. This
whisker was inserted into a pulled pipette tube attached to
a piezoelectric actuator (P/N PL127.10; Physik Instrumente)
positioned 1 mm from the face. The actuator was shortened to
raise resonant frequency and fixed to an aluminium tube via
small plastic screws. The dynamic range of the actuator was 0.8
mm (whisker deflection range∼40◦).

We employed two types of dynamic whisker stimulation: low-
pass filtered (300 Hz) white noise (Petersen et al., 2008) and
a naturalistic texture stimulus (Bale et al., 2013). The texture
stimulus was constructed from optical measurements of whisker
motion made from awake rats by Wolfe et al. (2008). Wolfe et al.
(2008) trained rats to whisk a textured surface (sandpaper: P150,
P400, P800 or P1200) and used a CCD array to measure traces
of texture-induced whisker motion in the rostro-caudal plane. In
order to construct the stimulus corresponding to a given grade
of sandpaper, we considered only periods of the CCD traces
during which whiskers were in contact with that sandpaper. Such
traces were stitched together so that the final position of one
trace equalled the first position of the subsequent one until a
sequence of 10 s duration was obtained. To minimise potential
contribution of headmovement, the resulting sequence was high-
pass filtered (FIR at 1 Hz). Finally, to avoidmechanical resonance
from the actuator, the sequence was low-pass filtered (FIR 600
Hz). This procedure was repeated for each of the four grades of
sandpaper.

Frontiers in Neural Circuits | www.frontiersin.org 2 September 2015 | Volume 9 | Article 50

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Bale et al. Population coding in whisker thalamus

The stimulus protocol consisted of 50–100 trials. Each trial
consisted of a fixed 10 s sequence of white noise and 1–4
sequences of 5–10 s repeated texture motion. Stimulus sequences
were presented in a randomised order and were separated by 1 s
intervals without whisker motion. A schematic for an example
session (in which a single texture sequence was presented) is
shown in Figure 2A.

For consistency with the conditions under which the whisker
motion data were registered, all whisker motion stimuli were
delivered in the rostro-caudal direction. Accurate reproduction
of stimulus position, velocity and acceleration was confirmed by
optical testing with a phototransistor circuit (Storchi et al., 2012).

Histology
At the end of each experiment, two lesions were made by passing
20 µA for 6 s through both the deepest and most superficial sites
on the silicon probe. As detailed in Montemurro et al. (2007a),
animals were perfused transcardially with saline and formalin.
Brains were removed, immersed in fixative for at least 1 day
and then transferred to a phosphate-buffered 30% (w/v) sucrose
solution for a further 48 h. Coronal sections of 50 µm were
stained with cresyl violet. Recovery of the lesion sites confirmed
that all single units reported in this study were located in VPM.

Spike Sorting
The first step of our data analysis was to isolate single unit
activity from the extracellular recordings. We found that spikes
emitted by a given single unit were typically recorded from 1–3
recording sites (three recording sites span 100 µm). To exploit
this information for better single unit isolation, and also to
prevent potential double counting of spikes on adjacent channels,
we spike sorted 1–3 channels simultaneously (Figures 1D–F).
We extracted 1 ms segments around voltage-threshold-crossing
times, concatenating segments from 1–3 adjacent recording
sites and clustered these data in the space of their principal
components using a t-distribution mixture model (Figure 1E,
Shoham et al., 2003; Bale and Petersen, 2009). Only clusters
exhibiting a clear refractory period were accepted. To test
for potential double counting of spikes isolated from adjacent
blocks of recording sites, we checked for suspicious peaks
(width 0.08 ms, corresponding to two sampling intervals) in
the cross-correlation function (bin size = 0.04 ms). Any units
contributing to such peaks were excluded. An example recording
of four simultaneously recorded adjacent channels is shown in
Figure 1D, of which two sites were sorted together (channels 5
and 6). The spikes extracted during the sorting routine (from
Figure 1F) are overlaid.

Localization of Receptive Fields
During each recording, we identified the whisker that evoked
the greatest multi-unit activity (MUA) on each recording site
(its principal whisker, PW) to manual deflection of individual
whiskers. To assess the multi-unit PW quantitatively, we then
recorded responses to piezoelectric deflection of the PW in both
caudal and rostral directions with a ramp-and-hold protocol.
This was repeated for each of the surrounding whiskers. In off-
line analysis, we computed the MUA spike count evoked by

caudal and rostral deflection at each recording site (as detailed
above, time window 20 ms), for each whisker. For each site, we
determined the whisker that evoked the greatest MUA response.
Provided that this was significantly greater than the spontaneous
spike count (time window 20 ms; Wilcoxon signed ranks), this
was deemed the PW. By repeating this analysis for each recording
site, the PW at each site with significant whisker response was
obtained (Figure 1C).

The majority of single units (91%) had a receptive field that
matched the multi-unit receptive field of the channel to which
it was most closely located. The remaining 9% of single units
had a receptive field that corresponded to the MU activity of an
adjacent whisker.

Spike Train Sparseness
Sparse codes are metabolically efficient, in that much
information is conveyed with few spikes, and are prominent
in the brain (Simoncelli and Olshausen, 2001). We measured
temporal sparseness (‘‘lifetime sparseness’’), using a slight
variant of a standard measure (Rolls and Tovee, 1995):

S = 1−
〈rt〉2〈
r2t
〉 (1)

Here rt is the value of the peri-stimulus time histogram (PSTH)
in time bin t and the angled brackets denote the mean over time
bins (bin size 10 ms). If rt is constant (non-sparse response),
S = 0. In contrast, if rt is zero except for a few bins (highly sparse
response), S tends to 1 in the limit of many bins. The original
Rolls-Tovee measure, a, is related to the one used here through
the relation S = 1−a.

Stimulus Sparseness
An important characteristic of sensory stimuli is whether or
not they are Gaussian-distributed. This is usefully assessed by
measuring ‘‘sparseness’’ through the following, standard index
(Hyvärinen et al., 2009). Given samples x of a sensory signal:

Sstim = −
√
π

2
〈|x− µ|〉
σx

(2)

Where µ is the mean, σx is the standard deviation of x. Sstim =−1
for Gaussian distributions; S>−1 for distributions with a thinner
peak around the mean and fatter tails (‘‘sparse’’).

Unit Responsiveness
To determine whether a given unit was responsive to the stimulus
(white noise or texture), the unit’s spontaneous firing rate was
measured as the spike count in the 0.5 s interval prior to stimulus
onset and its evoked firing rate was measured in each successive
0.5 s interval throughout the course of the stimulus. A unit was
classified as ‘‘responsive’’ if its firing rate in any of the post-
stimulus windows was significantly higher than that in the pre-
stimulus window (Wilcoxon signed ranks, p< 0.001; Bonferroni
corrected for multiple comparisons). Non-responsive units were
not considered in later analysis.
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FIGURE 1 | Recording from VPM using multi-site silicon probes. (A) Location of recording sites (32-channel silicon probe, sites spaced by 50 µm) in an
example recording. Nissl stained coronal section (3.4 mm posterior to bregma). (B) Receptive field map obtained during experiment, superimposed on thalamic
nuclei reconstruction. LD, lateral nucleus; fi, fimbria; Rt, thalamic reticular nucleus; ic, internal capsule; VPL, ventroposterior lateral nucleus. MW, multi-whisker.
(C) Multi-unit activity (MUA) evoked by stimulation of each of six whiskers at each recording site. Green outline signifies units with evoked firing rate significantly
greater than spontaneous, consistent with online receptive field mapping multi-whisker (MW) observations in (B). ∗Denotes the principal whisker (PW) at each
recording site. (D) Unit identities overlaid on an example trace of the raw recording from the experiment shown in (B). (E) Waveforms for all identified spikes projected
onto the first two principal components of their multichannel waveforms; each color represents a different unit (matches D). (F) Average single unit waveforms for
three extracted clusters on two different channels from the recording shown in (B). (G) Schematic illustrating the experimental protocol.

Jitter Analysis
Since spike timing precision is a limit on a neuron’s capacity
to transmit information, it is necessary to quantify it (Petersen
et al., 2009). To quantify spiking precision, we measured the
trial-to-trial variability in spike timing (‘‘jitter’’) for each unit, as
previously described (Montemurro et al., 2007a; Bale et al., 2015).
First, we divided the evoked response into 0.8 ms time bins and
averaged over trials to form a PSTH, which was then smoothed
with a Gaussian filter (SD 1.6 ms). Firing episodes corresponded
to local peaks in the PSTH. To focus on reliable episodes we
selected peaks which satisfied the following two conditions for
the jitter calculation: (1) firing rate was at least half of the
maximum for that unit and (2) firing rate exceeded a threshold
set according to the null hypothesis that the unit fired randomly
at the same average rate (p = 0.001). To establish the second
condition, we repeatedly simulated random spike trains from a
homogeneous Poisson process with the same rate as the time-
averaged firing rate of the considered unit. The threshold was
set as the 99.9th percentile of these peak heights. For each peak
meeting both criteria, we extracted all spikes fired within±10 ms
of the time of the peak and computed spike times relative to the
peak time. These time differences were pooled across both trials
and peaks and the resulting distribution fitted to a Gaussian.

Jitter was defined as the SD of this Gaussian. A minority of units
were only weakly modulated by the whisker stimulus and did
not exhibit well-defined firing episodes, resulting in high and
unreliable values of calculated jitter. In the jitter plot (Figure 2E),
we do not plot the points which lie outside the whiskers (defined
as median ± 2.7 SD). There were seven such points for white
noise and 10 for texture out of a total of N = 65 single
units.

Synchrony Analysis
Synchrony is an interesting property of neuronal population
activity, since it can enable reliable transmission of information
even if individual synapses are weak (Bruno and Sakmann, 2006).
As a first test of synchrony, for each pair of simultaneously
recorded units, we computed the cross-correlation function for
the stimulus-evoked activity on each trial and then averaged
the data across trials (binsize 1 ms). This was done separately
for the white noise and texture stimuli. For each pair of
units, we calculated the peak value of the trial-mean cross-
correlation function (the ‘‘CCG peak’’) as well as its standard
error. A unit pair was defined as having a significant cross-
correlation peak if the CCG peak exceeded at least three standard
errors.
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FIGURE 2 | Response properties of simultaneously recorded single VPM units located within a single barreloid to dynamic whisker stimuli. (A) White
noise stimulus (top panel) and corresponding evoked PSTHs for nine simultaneously recorded units from the same barreloid (lower panels). (B) P150 texture stimulus
(top panel) and corresponding evoked PSTHs for the same nine units as in A. PSTHs computed with 0.08 ms bins, and smoothed by convolution with a Gaussian
(SD 1 ms). Units ordered by recording location from dorso-medial (top) to ventro-lateral (bottom). (C) Distribution of single cell firing rates evoked by white noise
compared to that evoked by the sandpaper texture stimulus. (D) Corresponding plot for sparseness. (E) Corresponding plot for spike timing precision (jitter). In
(C–E) central mark shows median; box edges show 25th, 75th percentiles; whiskers show range of points not considered outliers (approx. ±2.7 SD); crosses show
outliers. In panel (C), outliers are not shown. (F) Probability Density Function (PDF) of piezo position (normalized units) for the white noise (blue) and texture (red)
stimuli. (G) Power Spectral Density (PSD) of the same.

To test for synchrony in our simultaneously recorded units,
we registered the response of each unit in 10 ms time bins,
and computed the number of bins in which n = 2, 3, 4 . . .
units all fired. As a control, we compared this to the number of
bins in which such events would be expected by chance from
a statistically independent population of units, with the same
single unit spike count distributions. To do this, we shuffled
the response of each unit independently across time bins. This
preserved the overall firing rate and response diversity, while
removing the temporal structure. We then computed the same
synchrony measure (number of bins in which different numbers
of multiple units fired) for this surrogate data set.

With the simplest (static) type of synchrony, each evoked
synchronous population response has the same distribution
of population response words (that is, the same set of units
fires together). Alternatively, different evoked response events

might have different distributions of response words. We term
this dynamic synchrony (DS), since events at different times
evoke different patterns of synchrony. To quantify the extent to
which synchrony is dynamic we used an information theoretic
approach. We first isolated synchronous population firing events
by identifying time bins (20 ms) where two or more units
fired on at least 5% of trials. We quantified the degree of DS
as the mutual information between the population response
words and the peri-stimulus time of the the response event
[Ish information estimator (Montemurro et al., 2007b), Panzeri-
Treves bias correction (Panzeri and Treves, 1996)]. To normalize
for the potential effect of events of different strengths eliciting
the same patterns of synchronous activity but with different
probabilities, we consider in the information calculation only
trials where at least one unit fired. This is equivalent to
removing the response word [0, . . ., 0] from the probability
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distribution and renormalizing appropriately. If all synchronous
population events elicit the same pattern of synchronous activity
the information computed in this way should be zero. If it is
not, this shows that different synchronous population events
evoke different distributions of response patterns—hence the
synchrony is dynamic. This can be interpreted as a model
comparison between a model where all events elicit population
response words from the same distribution, and one in which
each event elicits responses from a different distribution—a
different pattern of synchrony. To determine the significance of
the observed information values we use a permutation testing
approach. The null hypothesis for this test is that the observed
synchrony is static; the same distribution of response words is
evoked by each event (albeit with possibly different pooled firing
rate). We therefore performed 1000 permutation calculations in
which the identity of the events that elicited each response were
randomly shuffled. Mutual information values are affected by the
number of trials as well as the size of the spaces considered. Since
different recordings had different numbers of trials, cells and
detected events it is therefore difficult to compare information
values directly. To address this we standardized (z-scored) the
observed information for each recording with respect to the
corresponding set of permutation values. This gives a measure of
the statistical strength of the result in favor of DS, and provides
a measure in standardised (z-score) units that can be compared
across different experiments.

Mutual Information Analysis
Mutual information is a powerful, non-linear measure of the
correlation between two variables. Applied to neural coding, it
quantifies the intuitive notion of the ‘‘information’’ that a neuron
(or neurons) conveys about a stimulus. A key advantage is that
it makes minimal assumptions on the functional relationship
between the encoded parameter (e.g., whisker position) and the
neuronal response; a second advantage is that it provides a
rigorous yardstick for comparing alternative, candidate neural
codes. Mutual information can give useful physiological insight
concerning whether, for example, precise spike timing increases
the capacity of a neuron to transmit sensory messages or
whether different neurons in a population convey the same
messages (redundancy) or complementary ones. Application of
information theoretic methods to the whisker system has been
reviewed elsewhere (Petersen et al., 2009; Ince et al., 2010).

The aim of this analysis was to quantify how much total
information a given population response code conveys about the
dynamic whisker stimulus. To this end, we used the spike trains
evoked by the repeated whisker motion sequences. We employed
the well-establishedmethod of Strong et al. (1998) and conducted
the analysis for simultaneously recorded populations of single
units. For a population of units i = 1, . . ., N, we computed the
response r as the N-element binary word (r1, r2, . . ., rN) within
the time bin (t, t + 10 ms). Here, ri denotes the (binary) response
of unit i where 0 indicates that the unit was inactive (no spikes
emitted) in that response bin, and 1 indicates that the unit was
active (at least 1 spike emitted); t denotes time with respect to
stimulus onset (t = 0). In this approach, these time bins are
each considered as the response to a particular stimulus; the

stimulus set S is then the set of response bins (implicitly, the small
segments of dynamic stimulus preceding each response bin). In
this way the explicit consideration of particular stimulus features
is replaced by the temporal exploration of a range of inputs
from an approximately ergodic process. The method therefore
takes into account, without any prior assumptions, all possible
stimulus features that might be driving the neural response. The
particular number of stimuli available depends on the length
of the repeated stimulus segment considered as well as the
bin size used. The resulting information value quantifies how
discriminable, on average, different response bins (and hence the
different preceding stimulus segments) are from each other.

The measurements of r were used to estimate the probability
P(r|t) of the neural response r in time bin, t, and the
probability P(r), the mean of P(r|t) over all time bins. When a
neural response is reliably modulated by a stimulus, it evokes
similar responses across repeated trials at a given time, and
different responses across different time bins: thus, P(r|t) varies
systematically with t. In contrast, when a neuron is insensitive to
a stimulus, similar responses are produced for all time bins and
P(r|t) is similar to P(r). I(R; S) quantifies how much, on average,
P(r|t) differs from P(r):

I(R; S) =

〈∑
r∈R

P(r|t)log2
P(r|t)
P(r)

〉
t

(3)

Here the angled brackets denote an average over all stimulus
time bins. I(R; S) quantifies how well, on average, an ideal
observer could decide which stimulus time bin was presented
from observation of the neural response r on a single trial. I(R;
S) has units of bits; one bit of information indicates that, on
average, the uncertainty about which stimulus bin was presented
is reduced by a factor of two after observation of a single
response.

For each experimental session consisting of N units, we
computed information values for all possible subpopulations of
every size, including single unit information values. For each
(sub)-population, the sum of these single unit information values
for the populationmembers gives the amount of information that
would be conveyed by if the units were transmitting information
independently (Averbeck et al., 2006), denoted independent. We
measured the synergy/redundancy as the difference between the
information conveyed by the population and the sum of the
single unit information values (Schneidman et al., 2003; Latham
and Nirenberg, 2005):

Syn(R1,R2; S) = I(R1,R2; S)− I(R1; S)− I(R2; S) (4)

Positive values of Syn(R1, R2; S) indicate synergy; the two
response variables carry more information about the stimulus
together than they do alone. Negative values of Syn(R1, R2;
S) indicate redundancy; the two variables together carry less
information then the sum of their individual contributions.
To test whether a low synergy/redundancy value for a
given population might reflect cancelation between strongly
redundant and strongly synergistic unit pairs, we conducted
the following analysis. For a given population, we computed
the synergy/redundancy of all of its constituent unit pairs.
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Positive (synergistic) and negative (redundant) values were
summed separately, resulting in a net pairwise synergy value
and a net pairwise redundancy value. The maximum absolute
value of these two was taken an indicator of the maximum
possible pairwise interaction effect for the population. We then
normalized this value with respect to the mutual information
conveyed by the population.

To give a more intuitive measure for the mutual information
conveyed by a population, we converted bits to bits/s by
dividing by the bin width. We also separately normalized
for differences in firing rate, by calculating the mutual
information per spike (bits/spike), both for single cells and
populations.

The probability distributions that appear in equation (3)
were computed from a finite number of trials and thus subject
to sampling error, which typically inflates estimates of mutual
information (Panzeri et al., 2007). Bias correction was performed
using the shuffled information estimator, Ish(R; S) together
with quadratic extrapolation (Montemurro et al., 2007b; Panzeri
et al., 2007). Mutual information values were computed using
the PyEntropy package (Ince et al., 2009). The length of the
repeated stimulus blocks was either 5 s or 10 s, resulting in
500 or 1000 response bins for each information calculation.
The crucial parameter for determining the effectiveness of bias
correction is the ratio of the number of trials per stimulus to
the number of different response symbols (Ince et al., 2010).
This number of trials per stimulus is given by the number
of repeated presentations of the continuous stimulus and does
not change across different stimulus block lengths or response
bin sizes. The number of response symbols (2 to the power
of the population size) is also fixed, so the difference in
stimulus block lengths does not affect the bias of the information
measure. With the available data, the number of trials per
stimulus was 50–200 (median 200); the ratio of trials/stimulus
to number of response symbols (for the largest population
size recorded in each experiment) was 0.2–100 (median 18.75).
Simulations have shown (Ince et al., 2009) that with the bias
correction employed here, a ratio of ∼0.25 can be adequately
bias corrected: the data here fall within that range. To further
test the accuracy of our bias correction, we repeated the
analysis with a surrogate data set in which, for each trial, the
population responses were shuffled independently across time
bins (so that the true information is zero). The resulting mean
information values for each population size were expressed
as a percentage of the corresponding unshuffled value. In
the most demanding case—population size 9—for white noise
stimulation, the median was 0.79%; for texture stimulation,
the median was 0.85%. This indicates that bias was effectively
corrected.

Results

Recording the Population Response of a VPM
Barreloid to Whisker Motion
Our primary aim was to investigate how the population of
neurons within a single VPM barreloid collectively encodes
naturalistic whisker motion. To address this, it was essential to

deliver multiple, identical repeats of controlled, whisker motion
sequences. To this end, we implanted 32-channel silicon probes
into the VPM of urethanised rats, and recorded simultaneously
the responses of multiple single units to deflection of the
whiskers. To concentrate recording sites as far as possible
within the same barreloid, we implanted probes at a 45◦

angle (dorso-medial to ventro-lateral), approximately parallel
to the long axis of the barreloids (Figures 1A,B). To assess
microelectrode placement, we identified, for each recording
site, the whisker that evoked the greatest multi-unit response
to ramp-and-hold deflection (Figure 1C; see ‘‘Materials and
Methods’’ Section)—the ‘‘PW’’. In the example of Figure 1,
the PW was E2 for sites 4–11, E1 for site 13 and D2 for
sites 14–16. Overall (N = 16 recordings), up to 11 recording
sites shared the same principal whisker (mean 7.4, SD 2.4
range 4–11), indicating that they recorded neural activity from
the same barreloid. Since the recording sites were spaced at
50 µm intervals along the probe shank, 11 sites spanned
500 µm. This length is consistent with anatomical estimates
of barreloid length in adult rats (Haidarliu and Ahissar,
2001).

A piezoelectric actuator was used to ‘‘play back’’ sequences
of dynamic whisker motion (Bale et al., 2013; see ‘‘Materials
and Methods’’ Section). A naturalistic stimulus was generated
from optically registered whisker sweeps of rats actively whisking
sandpaper (Wolfe et al., 2008). To benchmark the coding
efficiency of this stimulus, we also used low-pass filtered white
noise (hereafter abbreviated to ‘‘white noise’’; Figure 2A), which
was normalized to have the same standard deviation. Both
stimuli were applied to individual whiskers (N = 16 recordings),
and we recorded neuronal responses from all probe sites
simultaneously.

Response of Single VPM Units to Naturalistic
Whisker Motion are Temporally Precise and
Sparse
Figure 2 shows PSTHs, evoked by white noise (Figure 2A)
and texture (Figure 2B) applied to whisker E2, for a set of 9
responsive single units (see ‘‘Materials and Methods’’ Section)
recorded simultaneously from barreloid E2. The single unit
responses to the two stimuli were qualitatively similar. Both
stimuli evoked responses that consisted of temporally isolated
firing episodes. We quantified the spike timing precision of
these firing episodes by estimating the trial to trial ‘‘jitter’’ in
spike time (Figure 2E; see ‘‘Materials and Methods’’ Section).
Jitter for both texture and white noise was sub-millisecond
(median 0.48 ms, IQR 0.48–1.2 ms and median 0.36 ms, IQR
0.36–0.88 ms respectively). The main differences between the
stimuli were that white noise evoked a higher rate of firing events
(Figure 2C; median 3.0 spikes/s compared to 1.4 spikes/s; signed
rank test, p < 1e−7), while responses to texture exhibited higher
temporal sparseness (Figure 2D; median 0.80 compared to 0.61;
signed rank test, p < 1e−9). To investigate the source of these
differences we compared the stimuli. Compared to white noise,
the texture stimulus both had a markedly non-Gaussian ‘‘sparse’’
distribution (Figure 2F) and contained less relative power at
high frequencies (Figure 2G). Using a standard index which
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is−1 for a Gaussian and >−1 for sparse distributions (Material
and Methods, Equation 2), the white noise had an index value of
−1 and the texture−0.85.

VPM Population Responses Exhibit Dynamic
Synchrony
Our finding that texture evokes precisely timed spikes raises the
question of the nature of the response at the population level.
Motivated by previous studies of the VPM response to periodic
whisker stimulation (Bruno and Simons, 2002; Temereanca
et al., 2008; Wang et al., 2010b), we investigated whether
the population response manifested synchrony, conventionally
defined as coincident firing on a time-scale of ∼10 ms (Wang
et al., 2010a). Inspection of the recordings revealed qualitative
evidence for synchrony. Figure 3A shows a detailed view of the
responses of 3 simultaneously recorded single units (a subset of
those shown in Figure 2) evoked by the texture stimulus. Within
this 2.5 s excerpt, there were several times at which the stimulus
evoked amarked increase in firing rate in 2 ormore units (shaded
regions).

To quantify the synchrony, we first computed cross-
correlograms (CCGs) for the texture-evoked activity (Figure 3B,
for units with PSTHs shown in Figure 3A). Eighty four neuron
pairs (out of a total of 145) exhibited statistically significant
CCG peaks (see ‘‘Materials and Methods’’ Section). For the
significant peaks, the CCG peak amplitude was 0.03 ± 0.11

FIGURE 3 | Dynamic synchrony (DS) evoked by texture stimulus.
(A) Top three plots: PSTHs for three simultaneously recorded units evoked by
a sandpaper texture stimulus (units 1–3 here correspond to units 1, 2 and 4 of
Figure 2 respectively). Bottom plot: peri-stimulus time histogram (PSTH) of
pooled response of the same units. Shaded regions highlight similar peaks in
the population PSTH that arise from different patterns of population activity
(color coded). (B) Cross-correlograms for each pair-wise combination of the
units of panel (A). (C) Log frequency with which a given number of units fired
simultaneously (10 ms bin). Frequency is normalized by the single unit firing
rate. Solid line shows results for simultaneously recorded data, dashed line
shows control under null hypothesis that each unit fired independently at
random (see “Materials and Methods” Section).

coincidences/spike (median ± SD), the CCG (absolute) peak lag
was 2.5 ± 5.8 ms and the CCG peak width (full width at half
maximum, FWHM) was 4.6 ± 3.6 ms. Results for white noise
were similar: 71 pairs exhibited significant CCG peaks; for these
peaks, CCG peak amplitude was 0.08± 0.27; lag was 2.0± 5.6 ms
and CCG peak FWHM was 3.3± 5.1 ms.

To extend the analysis of synchrony beyond the pairwise
CCGs to neuronal sets of arbitrary size, we used the following
procedure. We registered the response of each unit in 10 ms time
bins, and computed the number of bins in which n = 2, 3, 4 . . .
units all fired on the same trial. As a control, we compared this
to the number of such events expected from random firing (see
‘‘Materials and Methods’’ Section). We found, for the texture-
evoked response of the nine simultaneously recorded units of
Figure 2A, that synchronous firing of three and four units
occurred more often (14.6 and 66.8 times respectively) than
expected from random firing (Figure 3C). Synchronous firing of
5 units occurred in the experimental data but never in the control.
On average, across all sets of simultaneous recordings, synchrony
occurred more frequently than expected by random firing.

These results indicate that both white noise and texture
whisker motion induced synchronous firing within the
associated VPM barreloid. However, closer inspection of
the data revealed that the precise pattern of synchrony changed
over time: different constellations of neurons fired at different
times during the stimulus. The shaded regions in Figure 3A
illustrate four response episodes where the pooled firing rate
of the population was similar but the mean population spike
patterns were, in 3 cases, distinct. For two of the peaks all three
units exhibited high firing rate at almost the same time (red
shading), but at other times different combinations of units
responded: units 1 and 2 but not 3 (blue shading) or units 1 and
3 but not 2 (green shading).

With the simplest (static) type of synchrony, each evoked
synchronous population response has the same distribution
of population response words (that is, the same set of units
fires together). Alternatively, different evoked response events
might have different distributions of response words. Since
events at different times evoke different patterns of synchrony,
we refer to this type of synchrony as dynamic (dynamic
synchrony, DS). DS implies that there is a repertoire of different
synchronous response patterns and that there is a systematic
relationship between a particular stimulus event and the evoked
response pattern. DS can be quantified by measuring the
strength of this association. Specifically, we quantified DS with
a normalized mutual information value (see ‘‘Materials and
Methods’’ Section). This value can be interpreted as a z-score:
under the null hypothesis of static synchrony, it should take
values drawn from a standard normal distribution. For all seven
recordings in which synchronous events were reliably identified
(3–9 simultaneously recorded units; 3–121 synchronous events)
the DS measure was highly significant (p < 0.001; permutation
test, N = 1000). We found that responses to texture stimuli
resulted in aDSmeasure of 35.8± 21.1 (standardised units) while
for those to white noise, the values were 26.8 ± 23.1; but that
this difference was not significant (Wilcoxon signed rank test,
p> 0.3).
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VPM Populations Encode Information
Independently
To guide our investigation of the population response, we
examined how the information conveyed by the population
scaled with population size. Such an analysis can reveal whether
the representation is, overall, redundant (sub-linear scaling),
independent (linear scaling) or synergistic (super-linear scaling).
We estimated the mutual information that the population
spike pattern (the simultaneous response of all neurons in a
given time bin) conveyed about white noise and texture (see
‘‘Materials and Methods’’ Section). In all cases, we found mutual
information to scale approximately linearly with population
size. We illustrate this with the three experiments with highest
numbers of simultaneously recorded units (Figure 4). The
similarity between the mutual information available in the
population and that in the sum of single unit information values,
across a range of population sizes (Figures 4A,B, independent
solid lines, pattern dotted lines), implies a striking lack of
redundancy.

In principle, zero redundancy for a population could mask
significant redundancy/synergy in subsets of the population that
cancel out. To test this, we first calculated pairwise synergies

and redundancies directly (see ‘‘Materials and Methods’’
Section). For each recording with two or more simultaneous
units, we calculated the mean absolute synergy/redundancy
value (Equation 4) of each unit pair, as a percentage
of the mutual information conveyed by that pair. Across
recordings (N = 11), the mean was 2.1 ± 1.7% for white
noise and 1.8 ± 1.0% for textures. This shows that net
pairwise interaction effects were small. Second, for recordings
in which at least five units were recorded (N = 3; those
shown in Figure 4A), we considered all possible sub-
populations of size 5. For each such sub-population, we
computed an index which expresses the maximum possible
pairwise synergistic/redundant effect, as a percentage of
the mutual information conveyed by the sub-population
(see ‘‘Materials and Methods’’ Section). This resulted in a
maximum pairwise synergy/redundancy cancellation of 2.0 ±
1.5% (N = 258 populations, mean ± SD). While this
analysis does not exclude the possibility of potential higher
order effects, it does show that the near-zero redundancy
observed at the population level was not a consequence
of cancelation between synergy and redundancy in pairs of
units.

FIGURE 4 | Quantitative comparison of alternative population codes. (A) Mutual information conveyed about the white noise whisker stimulus by the VPM
population (bin size 10 ms) for the three experiments with the largest number of simultaneously recorded units. “Population” denotes the information in the
synchronous population response; “Independent” denotes the linear sum of the information conveyed by each individual neuron within the considered population.
Each point is an average over all possible sub-populations of a given size (error bars show SEM over populations). (B) Corresponding results for responses to
sandpaper texture stimulus. (C) Information conveyed by the different codes under white noise (blue) and texture (red) stimulation for all subpopulations obtained over
all experimental sessions. Information values are normalized by the total firing rate of each considered sub-population to obtain units of bits/spike. Each point is the
mean over all sub-populations of that size; error bars show SEM. (D) Scatter plot of raw information values for single units, pairs of units and populations of size 5.
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VPM Populations Encode Naturalistic Texture
Motion Efficiently than White Noise Motion
We repeated the information calculations for all recordings
(N = 16; Figure 4D). To factor out the effect of different firing
rates, we normalized the mutual information values to units of
bits/spike and then averaged the results over all simultaneous
recordings of a given size (Figure 4C). The normalization to
units of bits/spike revealed that themutual information conveyed
per spike was higher for the texture stimulus than for the white
noise stimulus. At the single unit level (N = 65), white noise
stimulation yielded mutual information values of 1.33 ± 0.67
[1.29] bits/spike, while texture stimulation yielded 1.94 ± 1.24
[1.64] bits/spike (mean ± SD [median]): this difference was
significant (signed ranks test; p < 0.00001). For populations
of size 6 (N = 169), the population code conveyed 1.26 ±
0.15 [1.26] bits/spike with white noise and 1.95 ± 0.26 [1.98]
bits/spike with texture (signed ranks test; p < 1e−10). This
difference might mean either that the population transmits
more information (in a given period of time) about texture
than about white noise or, alternatively, that it conveys the
same information but using fewer spikes. The scatter plots in
Figure 4D show that the mutual information values conveyed
by the response in each 10 ms bin were usually similar for
the two types of stimuli (although a proportion of population
responses were more informative about white noise). Therefore,
the lower firing rate evoked by texture (Figure 2C) accounts for
the finding that texture conveys more bits/spike. The population
response conveys about the same amount of information about
texture motion as white noise, but does so with fewer spikes.
This suggests that the subcortical pathway may be adapted to
whisker motion with the statistical characteristics of natural
object interactions.

Effect of Noise Correlations on the Population
Code
Dynamic synchrony might reflect either: (1) properties of
individual units or (2) network properties. To discriminate
between these possibilities, we calculated the effect of noise
correlations on the population code, using information theory
(Schneidman et al., 2003; Latham and Nirenberg, 2005;
Chicharro, 2014). Noise correlations are correlations between
the responses of simultaneously recorded single units that are
not related to, or driven by, the external stimulus; arising
instead from intrinsic network activity. The effect of noise
correlations can be removed by creating a surrogate data set
in which the responses of each unit to a given stimulus are
shuffled across trials, with respect to the other members of
the population. This surrogate data set is then a model for
what the responses would look like if the cells were firing
independently. We generated such surrogate data and repeated
both the DS analysis and the mutual information based analysis.
We found, for both types of stimulus, that shuffling made
little difference to the DS measure: the ratio of the shuffled
to the unshuffled DS measure was 1.02 [0.82 1.19] (median
[min max] across recordings) for white noise and 0.99 [0.90
1.13] for texture. To assess the impact of noise correlations

on mutual information, we computed the difference between
the unshuffled and shuffled information, normalized by the
unshuffled information. Again, for both types of stimulus, the
impact of noise correlations was small: 4.1% [2.4 6.7] for white
noise, 2.9% [1.8 4.8] for textures (median [min max] across
population sizes). These results indicate that the results reported
above reflect the coding properties of individual units rather than
network interactions.

Robustness of Results to Differential Parameters
of the Mutual Information Estimation
It is necessary to test whether estimates of mutual information
are accurate (see ‘‘Materials and Methods’’ Section). To assess
the robustness of the main mutual information results to the
various parameters of the information theoretic analyses, we
performed the following controls. First, we investigated the
effect of the length of stimulus. In the full data set, stimulus
lengths ranged from 5–40 s, corresponding to 500–4000 10
ms bins. To test whether our results were affected by these
differences, we repeated the population mutual information
analysis using subsections of the stimulus sequence (1.25–5 s)
common to all recordings (Figure 5A). In all cases, the texture
stimulus evoked more informative responses than white noise
(in bits/spike), there was very little redundancy and the values
were quantitatively very close to the full results presented in
Figure 4C. Information values for the shortest texture stimuli
(1.25s) were lower, but we expect this is a consequence of the
sparse structure of the stimulus. Second, we tested the effect
of bin size used for the information analysis (range 10–80 ms;
Figures 5B,C). Again the results were robust: in all cases, texture
evoked higher bits/spike than white noise and redundancy was
very low. Information values were lower for larger bin sizes; this
indicates the temporal precision of the population response is (as
expected from the jitter and CCG results) at least 10 ms.

Discussion

The aim of this study was to investigate how a modular,
population of neurons corresponding to one whisker processes
complex, naturalistic whisker motion. We focussed on the VPM
thalamus, where signals from a given whisker are primarily
encoded by a population of ∼250 projection neurons within the
corresponding barreloid (van der Loos, 1976; Land and Simons,
1985; Sugitani et al., 1990; Haidarliu et al., 2008). We were able
to record from up to nine single units within one barreloid
simultaneously. In contrast to what has previously been reported
with ramp-and-hold stimuli, we found that naturalistic whisker
motion evoked a dynamic sequence of population spiking, where
different groups of neurons fired synchronously at different
times (‘‘dynamic synchrony’’).

Previous work on the rat/mouse VPM recorded the activity
of 1–2 neurons within one barreloid (Waite, 1973; Simons and
Carvell, 1989; Pinto et al., 2000; Brecht and Sakmann, 2002;
Yu et al., 2006; Montemurro et al., 2007a; Petersen et al.,
2008; Temereanca et al., 2008; Bale and Petersen, 2009; Wang
et al., 2010b; Scaglione et al., 2011; Poulet et al., 2012). Here,
by using multi-site silicon probes and a novel insertion angle,
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FIGURE 5 | Robustness of information theoretic analyses. (A) Mutual information results over all experiments as a function of population size (details as in
Figure 4C) when the calculations are performed with stimulus windows of 5, 2.5 and 1.25 s (500, 250 and 125 stimuli respectively). (B,C) Mutual information results
over all experiments as a function of population size (details as in Figure 4C) for a range of response bin sizes (10–80 ms) for the white noise (B) and texture (C)
stimuli.

up to 11 recording sites could be located within a single
barreloid. Eleven sites spanned 500 microns, which is consistent
with anatomical measurements of barreloid length in adult rats
(Haidarliu et al., 2008). This technique enabled us to isolate the
activity of up to nine single units within the same barreloid.

‘‘Naturalistic’’ stimuli, that reflect the complex, dynamic
stimuli that animals experience during natural behavior, can
evoke responses that differ substantially in reliability and spike
timing (Mainen and Sejnowski, 1995; de Ruyter van Steveninck
et al., 1997). Although the naturalistic stimulus paradigm is well-
established in vision (Simoncelli and Olshausen, 2001), it is only
more recently that it has become feasible in the whisker system
(Arabzadeh et al., 2005; Lottem and Azouz, 2011; Bale et al.,
2013). Our aim here was to study the population response of
a VPM barreloid to naturalistic whisker motion. To this end,
it was essential to reproduce identical sequences of naturalistic
whisker motion on multiple trials. Our approach was to use an
anesthetised preparation and to play back sequences of texture-
induced whisker motion recorded optically from behaving rats
(Wolfe et al., 2008).

Previous work on VPM has shown that rapid whisker motion,
such as occurs frequently during a white noise sequence or
at the start of a ramp-and-hold stimulus, evokes spikes whose
timing is reliable with sub-millisecond precision (Montemurro
et al., 2007a). Under some circumstances (periodic whisker
deflection), it is known that these spikes occur coincidently
across neurons on a time-scale of ∼10 ms (‘‘synchrony’’; Bruno
and Sakmann, 2006; Temereanca et al., 2008;Wang et al., 2010b).
We found that naturalistic whisker motion evoked a complex

population response where different subsets of neurons are
co-active at different times (Figure 3A). In other words, the
synchrony was dynamic. We argue that this difference is due
to the more complex nature of the stimuli we used. The onset
of a ramp-and-hold whisker deflection provokes a correlated
increase in position, velocity, acceleration and all higher order
temporal derivatives of whisker position (Petersen et al., 2008).
Thus, although VPM neurons are tuned to diverse kinetic
features (Pinto et al., 2000; Petersen et al., 2008), such a
stimulus will tend to evoke a synchronous response from a
substantial proportion of the neuron population. Conversely,
with a dynamic naturalistic stimulus, the position, velocity and
acceleration are decoupled and neurons tuned to different kinetic
features tend to fire at different times. Consistent with this
interpretation, our quantitative measure of DS was not strongly
affected by removing noise correlations from the responses.
Moreover, the degree of synchrony exhibited by VPM neuron
pairs is known to depend on both deflection velocity and
stimulation frequency (Temereanca et al., 2008). Adaptation
mechanisms may contribute further dynamism to the response
(Wang et al., 2010b). VPM response heterogeneity has also
been reported both in the electrical whisking paradigm (Yu
et al., 2006) and in the behaving mouse (Gutnisky et al.,
2013). These observations are consistent with a model of VPM
barreloid function whereby different neurons independently
encode different aspects of the on-going whisker motion.
Consistent with this, we found that the mutual information
conveyed by the population scaled linearly with population size
and that this effect was robust to varying the parameters of the
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analysis. We found no evidence that this lack of redundancy
reflected cancelation between strongly synergistic and strongly
redundant pairwise sub-populations.

Individual spikes conveyedmore bits/spike for the naturalistic
texture stimulus compared to white noise (Figure 4C), suggesting
that the sensory pathway to thalamus may be optimized towards
representing naturalistic stimuli, as has also been suggested in
the visual and auditory systems (Dan et al., 1996; Simoncelli and
Olshausen, 2001; Lewicki, 2002). Similarly to these other systems,
the naturalistic texture stimulus had a notably non-gaussian
‘‘sparse’’ distribution. Compared to white noise, the texture
stimulus had relatively greater power at low frequencies. There
are likely to be two factors underlying the greater sparseness and
informational efficiency of the texture responses: (1) the greater
stimulus sparseness and (2) the fact that VPM neurons tend to
be velocity-sensitive (Pinto et al., 2000; Petersen et al., 2008) and
therefore sensitive to higher stimulus frequency components.
Theories of efficient coding (redundancy reduction, predictive
coding) predict that, under high signal to noise conditions,
there should be little redundancy in the neural representation
of a sensory signal (Barlow, 1961; Srinivasan et al., 1982; Atick
and Redlich, 1990). There has been extensive investigation of
efficient coding in vision (Atick and Redlich, 1990; Simoncelli
and Olshausen, 2001; Vinje and Gallant, 2002; Sharpee et al.,
2006), a few studies in audition (Smith and Lewicki, 2006; Ming
and Holt, 2009) but in somatosensation, the only previous work
has been on tactile robots (Hafner et al., 2003; Evans, 2013). As
far as we are aware, the current study is the first direct evidence
for efficient coding in somatosensation.

Synchrony is potentially important, since it provides a
possible explanation for how the thalamocortical pathway might
achieve reliable transmission, despite the fact that individual,
afferent synapses are typically weak (Bruno and Sakmann, 2006).
When a population of thalamic neurons spikes synchronously
(on the time-scale of membrane time constant), multiple
postsynaptic potentials can summate in a thalamorecipient
neuron and trigger postsynaptic spiking. Such an integration
mechanism accounts for how stimuli such as ramp-and-
hold whisker deflections might trigger a reliable response in
thalamorecipient, cortical neurons, and is a potentially effective
method of decoding the occurrence and velocity/direction of
such stimuli. However, integration is sensitive only to the
number of presynaptic spikes and is blind to their origin.
It will lose information from a DS code where different
patterns of spikes are elicited by different stimulus features.
An intriguing possibility is that, through tuning of synaptic
strengths (Feldman, 2009) and/or nonlinear dendritic processes
(London andHäusser, 2005), cortical neurons are able to perform
decoding operations more sophisticated than integration and
thereby to discriminate amongst a broad class of sensory signals.

Our findings raise issues for further work. One limitation
of the current analysis relates to the information calculations.
Mutual information as computed here is a powerful statistic for
quantifying, in a general way, the reliability of the population
response to a dynamic stimulus. However, it would also be
interesting to understand what particular kinematic features of
the stimulus drive the population response. Second, although
recording from populations of size 9 from a single barreloid is the
largest-scale recording yet reported from VPM, some network
interaction effects only become appreciable for large population
sizes (Roudi et al., 2009), and it would be interesting to achieve
still higher population sizes. Finally, it is an important challenge
to investigate population coding in the awake, behaving animal.
However, since multiple trials of identical whisker motion
sequences cannot be delivered under these conditions, the
present analysis approaches are inapplicable and new methods
will be required.

In sum, our findings suggest that the basic building
block of the whisker-related thalamus—the barreloid—encodes
naturalistic sensory information in a remarkably efficient
manner. Barreloid ensembles exhibit temporally sparse responses
that encode rich information about whisker motion through a DS
code. The combination of sub-millisecond spike timing precision
and diverse tuning leads to a high capacity thalamic population
code, which potentially conveys a rich signal about multiple
features of whisker motion to cortex. A potentially significant
implication of our findings is that it would be advantageous for
cortical circuits to act not only as detectors of coincident thalamic
activity but also to decode patterns of thalamic population
activity.
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