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Noé U. de la SanchaID
1,2*, Sarah A. Boyle3

1 Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America,

2 Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois, United States of

America, 3 Department of Biology, Rhodes College, Memphis, Tennessee, United States of America

* delasancha@msn.com

Abstract

Loss of habitat, specifically deforestation, is a major driver of biodiversity loss. Species-area

relationship (SAR) models traditionally have been used for estimating species richness,

species loss as a function of habitat loss, and extrapolation of richness for given areas. Sam-

pling-species relationships (SSRs) are interrelated yet separate drivers for species richness

estimates. Traditionally, however, SAR and SSR models have been used independently

and not incorporated into a single approach. We developed and compared predictive mod-

els that incorporate sampling effort species-area relationships (SESARS) along the entire

Atlantic Forest of South America, and then applied the best-fit model to estimate richness in

forest remnants of Interior Atlantic Forest of eastern Paraguay. This framework was applied

to non-volant small mammal assemblages that reflect different tolerances to forest loss and

fragmentation. In order to account for differences in functionality we estimated small mam-

mal richness of 1) the entire non-volant small mammal assemblage, including introduced

species; 2) the native species forest assemblage; and 3) the forest-specialist assemblage,

with the latter two assemblages being subsets of the entire assemblage. Finally, we geospa-

tially modeled species richness for each of the three assemblages throughout eastern Para-

guay to identify remnants with high species richness. We found that multiple regression

power-law interaction-term models that only included area and the interactions of area and

sampling as predictors, worked best for predicting species richness for the entire assem-

blage and the native species forest assemblage, while several traditional SAR models

(logistic, power, exponential, and ratio) best described forest-specialist richness. Species

richness was significantly different between assemblages. We identified obvious remnants

with high species richness in eastern Paraguay, and these remnants often were geographi-

cally isolated. We also found relatively high predicted species richness (in relation to the

entire range of predicted richness values) in several geographically-isolated, medium-size

forest remnants that likely have not been considered as possible priority areas for conserva-

tion. These findings highlight the importance of using an empirical dataset, created using

sources representing diverse sampling efforts, to develop robust predictive models. This

approach is particularly important in geographic locations where field sampling is limited yet

the geographic area is experiencing rapid and dramatic land cover changes. When
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combined, area and sampling are powerful modeling predictors for questions of biogeogra-

phy, ecology, and conservation, especially when addressing habitat loss and fragmentation.

Introduction

We are currently in the sixth mass extinction on our planet, the Anthropocene [1]. The Earth’s

surface is covered by more than 4 billion ha of forest habitats that account for approximately

31% of the total land area of the planet [2]. Approximately 3.3 million ha of net forest loss

occurred from 2010–2015 [2], resulting in the fragmentation of key habitats on the planet. The

primary driver for mammal extinction is the loss and fragmentation of habitat [3], and this

potentially includes large numbers of poorly known or species yet to be described [4,5]. Thus,

how do we account for species that we don’t know exist? This issue is critical in places like Par-

aguay, where the species assemblages are relatively poorly understood [6]. The Atlantic Forest

of South America has experienced extreme levels of deforestation [7]. The second-largest

moist forest system in South America after the Amazon [8], the Atlantic Forest extends from

northeastern Brazil along the coastline to southern Brazil, and inland into eastern Paraguay

and northern Argentina. The Atlantic Forest is considered one of the major “hotspots” for bio-

diversity in the world [9]. Approximately 12% and 20% of the original Atlantic Forest remains

in Brazil and Paraguay, respectively [10,11]. Major changes to the Atlantic Forest from anthro-

pogenic activities did not begin until about the 1940s in Paraguay [12]. The Atlantic Forest in

Paraguay was reduced by 30% in 20 years (1970 to 1990) and by 2000 it was reduced to only

one fourth of its original extent, mostly due to soybean cultivation [11]. Thus, a logical subse-

quent question is what is the effect of this deforestation on regional biodiversity?

There are many potential predictors of species richness in fragmented landscapes [13–16],

modeling is limited by local or regional understanding of these dynamics and, in most cases,

by local datasets. While it is ideal to sample locally for all possible predictors, what do we do

when those data do not exist, which is often the situation in many geographical areas around

the world? And, more urgently, what can be done in the face of rapid and constant habitat

change, as what has happened in the Atlantic Forest of Paraguay [17]? Two well-established

and valuable predictors for species richness have included area and sampling [18]. However,

there is still debate on whether these are interrelated or completely independent relations

[14,18]. In geographic areas that have not been sampled widely, and that are still poorly under-

stood in regard to species composition, finding models that will help prioritize areas for con-

servation is a valuable and urgent task.

The species-area relationship (SAR) often shows a pattern of increased species richness

with increased area, and has been one of the most consistent patterns observed in ecology [19–

37] and particularly true for mammals [38]. SAR models have improved our understanding of

biodiversity at biogeographical and ecological scales alike [27,28,31,32,37,39,40]. Furthermore,

SAR models have been valuable in their application to management and conservation

[19,21,23,25,27,28,30,41–48]. Specifically, SAR models can be useful for richness estimates

and/or estimates of extinction resulting from habitat fragmentation or habitat loss

[32,39,49,50].

However, the use of SAR models is not without controversy and some have found SAR

models as unfit for estimating extinction rates after habitat loss [41–48]. For example, some

have found that SAR models overestimate real species loss in cases of small-to-moderate habi-

tat loss, while others have found this overestimation occurs regardless of habitat loss size
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[41,49,50]. Some researchers have concluded that SAR models overestimate extinction by esti-

mating encounter with the first individual of a species [41], versus the removal of the last indi-

vidual of that species, thus extinction [39,41].

At least two power-law based functions have been proposed for using an endemic species-

area relationship (EAR) model instead of a SAR model [22,23,25,27,35,41,49–54]. Addition-

ally, one could use a function that measures the remaining species-area relationship (RAR)

[39]. While each of these estimates have their own merits, it is important to note that the

power-law, also known as the power function, is not the only nor necessarily the best for SAR

models [22,23,25,27,35,51–54].

At least 27 functions have been described to model SARs, most of which are non-linear

models [22,27,28,31,32,35,37,40]. However, the general pattern of these relationships has

fueled considerable debate about what is the best mathematical function to use and what shape

best describes SARs [20,23,24,26,27,29,31,33–37]. The power function

[24,27,28,31,32,37,40,55], or some derivative thereof, has gained wide acceptance and popular-

ity as the best function to apply to study SARs, mostly by convention and convenience rather

than for biological reasons [19,21,23,25,27,28,30,32,35,37,56]. Many studies have used power

function-based SAR models to estimate extinction rates by comparing the proportion of

extinctions after habitat loss of a given area to the number of species present in a larger area

[32,39,40,54]. However, recent works have shown that the power function is not always “the

best fit model” [23,57]. The power function lacks an asymptote, thus producing exceedingly

high species estimates for larger areas [54]. Despite preferences in functions, SAR models con-

tinue to be the most frequently used approach to predict biodiversity loss in systems that have

experienced habitat fragmentation [39,4–48,53,56]. There remains an opportunity to test vari-

ous models that optimize SARs [23,25,30,49,50,52–54], as the power function and other SAR

algorithms may oversimplify or significantly change the fundamental understanding of the

diversity patterns in question [23,32,41].

Beyond area, sampling effort is another major factor influencing biodiversity estimates

[41,58]. Often, studies focusing on biogeographical or macroecological scales consist of con-

glomerations of smaller local studies [41,49,50,53,58–64]. Rarely are these smaller local studies

based on equal sampling efforts due to differences in study design and duration. However,

there is a positive relationship between species richness estimates and sampling effort, where

greater sampling efforts typically result in higher richness, also known as the species-sampling

effort relationship (SSER) [39,58].

Related and interwoven, as summarized by Azovsky [58], the SSER and SAR vary in that a

SSER accounts for richness in a local sampled area (i.e. a grid or trapline) while a SAR is con-

cerned with species heterogeneity increase over the area of habitat or region of focus (i.e. a for-

est remnant or a bioregion). Variation in SSER models can confound estimates of species

richness and thus the nature of the SAR [22,23,25,27,35,51–54,58]. While there are examples

of multivariate species estimators [35], rarely, if ever, have SAR models incorporated sampling

variation into one model [65]. Combining area and sampling efforts can result in powerful

modeling predictors for SARs or EARs for questions of biogeography, ecology, and conserva-

tion, as such models allow for the simultaneous manipulation of two important variables for

predicting species richness. If sampling was not an improvement in modeling species richness,

then one would expect traditional species area models to outperform models that incorporate

sampling and area to predict species richness.

While there are considerable empirical data on species richness for the Atlantic Forest as a

whole from northeastern Brazil to eastern Paraguay [59,66,67], information about which spe-

cies are found in Paraguayan forest remnants is lacking in comparison. Our main objective

was to multivariate predictive models that would allow us to incorporate sampling and area for
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the Atlantic Forest, then apply those models to forest remnants in Paraguay, in order to iden-

tify regional remnants with high species richness. Second, given that different species have dif-

ferent functionality, our second objective was to model three species assemblages that account

for different functions. Our approach allows us to go beyond a species-area model to include a

sampling-area-species plane.

The aim of our study was to develop predictive models that incorporate species richness,

area, and sampling effort (Sampling effort Species-Area relationship models; SESARS), and

use these models to address four interrelated ecological questions that have profound implica-

tions for biodiversity conservation: 1) Are species predictive models that include sampling

effort improvements over traditional species-area models? 2) What are the best-fit models that

include both sampling and area for predicting species richness in the Atlantic Forest of South

America? 3) How do different non-volant small mammal assemblages, with different sensitiv-

ity to habitat type, respond to deforestation? 4) As a case study, where are the remnants with

high non-volant small mammal species richness for the highly fragmented Atlantic Forest of

eastern Paraguay?

Materials and methods

Workflow overview

Our workflow (Fig 1) began with the building of predictive models for the entire Atlantic For-

est. These models incorporated 20 studies of non-volant small mammals from 68 forest rem-

nants from northeastern Brazil to eastern Paraguay, where area, species richness, and sampling

efforts were all included in each study (S1 Table). We used 8 traditional species-area models

(see Traditional species-area (SAR) functions; Table 1), 28 linear log and semi-log sampling

effort and species-area relationships (SESARS) models (Table 2) and 7 non-linear generalized

additive models (see Sampling Effort and Species-Area Relationships (SESARS) models;

Table 3), for a total of 43 possible predictive models. We compared all of the multivariate and

SAR models among themselves to find the best-fit models, for three separate assemblages of

species with varying tolerance to forest loss and fragmentation (see section on Case study data-

set). The best-fit models per assemblage were then implemented in a case study of the forest

remnants of eastern Paraguay to demonstrate the application of our approach. We used forest

cover data from 2014 [68] to generate a georeferenced dataset of the forest remnants of eastern

Paraguay. This approach allowed us to predict species richness for all of the forest

remnants� 0.50 ha in eastern Paraguay. Finally, we visualized estimated species richness for

eastern Paraguay to identify remnants with high species richness for each of the three assem-

blages (Fig 1).

Case study dataset: Non-volant small mammals

Non-volant small mammals are good models for questions in landscape ecology, particularly

forest fragmentation questions [69], because non-volant small mammals have small home

ranges, short lifespans, short gestation periods, high diversity, and limited dispersal abilities

compared to larger or volant vertebrates; and they are an important prey base for predators,

consumers of invertebrates and vegetation, and consumers and dispersers of seeds and fungi

[70].

We used data for non-volant small mammal species from 68 Atlantic Forest remnants from

20 published studies [59,70] conducted throughout the Atlantic Forest in Brazil and Paraguay

from 1987 to 2013 to assess the relationships between species richness, sampling effort (i.e.

trapnights), and forest remnant area (Fig 1A). We used only sites that had complete data sets

for these three variables per forest remnant for the construction of the models. Sampling effort

Paraguay fragmentation predictive model
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Table 1. Eight traditional species-area relationships used comparative analyses.

Traditional SAR SAR ID Formula Number of Parameters Shape Asymptotic nature

Power Power SR = cAz 2 Convex No

Exponential Expo SR = c+zlog(A) 2 Convex No

Negative exponential Negexpo SR = d(1-exp(zA)) 2 Convex Yes

Monod Monod SR = d/(1+cA-1) 2 Convex Yes

Rational function Ratio SR = (c+zA)/(1dA) 3 Convex Yes

Logistic Logist SR = d/(1exp(-zAf)) 3 Sigmoid Yes

Lomolino Lomolino SR = d/1(zlog(f/A)) 3 Sigmoid Yes

Cumulative Weibull Weibull SR = d(1-exp(-zAf)) 3 Sigmoid Yes

https://doi.org/10.1371/journal.pone.0226529.t001

Fig 1. Flowchart of our workflow. A) We began with a dataset of 68 forest remnants through the Atlantic Forest (AF) from 20 published studies (see

text for details), where area, species, and sampling efforts were all included for each assemblage and site. B) We tested 14 sampling-species-area

(SESARS) models and traditional species-area relationship functions and compared the models via Akaike Information Criterion (AIC) to find the best-

fit model. C) We calculated the size of every AF remnant of eastern Paraguay� 0.50 ha from 2014 forest cover data (Hansen et al. 2013). D) Meanwhile

we used a log-transformed linear model from the original empirical data for the entire AF to estimate the appropriate sampling efforts that would

correspond to the areas estimated from our shapefile of eastern Paraguay. E) Using the corresponding best-fit predictive model, we estimated species

richness as a function of area for eastern Paraguay, and proportional sampling effort (when appropriate), from our 2014 forest cover data for eastern

Paraguay. F) Finally, we georeferenced estimated species richness for the AF remnants to find remnants with high species richness in eastern Paraguay.

https://doi.org/10.1371/journal.pone.0226529.g001
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Table 2. The sampling effort and species-area relationship (SESARS) models1 included: Simple linear model with

two predictors; both lin-log models (predictors log transformed) or log-lin models (dependent variable log trans-

formed, or both (power function); models where the two predictor variables are combined (CV models); and

model with interaction-term models (INT model); and finally, we included INT models excluding sampling as a

separate predictor variable (noSE).

Model ID Model Model type

AFTrilm1 f(SR) = β0 +β1A + β2SE simple linear no-INT

AFTrilm2 log f(SR) = β0 + β1logA + β2logSE Log-log no-INT

AFTrilm3 f(SR) = β0 + β1logA + β2SE lin-log no-INT

AFTrilm4 log f(SR) = β0 + β1logA + β2SE log-lin no-INT

AFTrilm5 f(SR) = β0+ β1logA + β2SE lin-log no-INT

AFTrilm6 log f(SR) = β0 + β1A + β2logSE log-lin no-INT

AFTrilm7 f(SR) = β0 + β1A + β2logSE lin-log no-INT

AFTrilm8 log f(SR) = β0 + β3(logA)(logSE) power CV model

AFTrilm9 f(SR) = β0 + β3(logA)(logSE) lin-log CV model

AFTrilm10 log f(SR) = β0 + β3(A)(logSE) log-lin CV model

AFTrilm11 f(SR) = β0 + β3(A)(logSE) lin-log CV model

AFTrilm12 log f(SR) = β0 + β3(logA)(SE) log-lin CV model

AFTrilm13 f(SR) = β0 + β3(logA)(SE) lin-log CV model

AFTrilm14 f(SR) = β0 + β3(A)(SE) CV model

AFTrilm15 log f(SR) = β0 + β1logA + β2logSE + β3(logA)(logSE) power INT

AFTrilm16 f(SR) = β0 + β1logA + β2logSE + β3(logA)(logSE) lin-log INT

AFTrilm17 log f(SR) = β0 + β1logA + β2SE + β3(logA)(SE) log-lin INT

AFTrilm18 f(SR) = β0 + β1logA + β2SE + β3(logA)(SE) lin-log INT

AFTrilm19 log f(SR) = β0 + β1A + β2logSE + β3(A)(logSE) log-lin INT

AFTrilm20 f(SR) = β0 + β1A + β2logSE + β3(A)(logSE) lin-log INT

AFTrilm21 f(SR) = β0 + β1A + β2SE + β3(A)(SE) INT

AFTrilm22 log f(SR) = β0 + β1logA + β3(logA)(logSE) power INT noSE

AFTrilm23 f(SR) = β0 + β1logA + β3(logA)(logSE) lin-log INT noSE

AFTrilm24 log f(SR) = β0 + β1logA + β3(logA)(SE) log-lin INT noSE

AFTrilm25 f(SR) = β0 + β1logA + β3(logA)(SE) lin-log INT noSE

AFTrilm26 log f(SR) = β0 + β1A + β3(A)(logSE) log-lin INT noSE

AFTrilm27 f(SR) = β0 + β1A + β3(A)(logSE) lin-log INT noSE

AFTrilm28 f(SR) = β0 + β1A + β3(A)(SE) INT noSE

1Abbreviations used for species richness (SR), area of the forest remnants (A), and sampling effort (SE).

https://doi.org/10.1371/journal.pone.0226529.t002

Table 3. List of generalized linear models used for comparison1.

Model ID Model Model type

AFGAM1 log f(SR) = yi = f1 + f2(logA) + f3(logSE) log-log GAM

AFGAM2 f(SR) = yi = f1 + f2(logA) + f3(logSE) semi-log GAM

AFGAM3 log f(SR) = yi = f1 + f2(logA) + f3(SE) log-log GAM

AFGAM4 f(SR) = yi = f1 + f2(logA) + f3(SE) semi-log GAM

AFGAM5 log f(SR) = yi = f1 + f2(A) + f3(logSE) log-log GAM

AFGAM6 f(SR) = yi = f1 + f2(A) + f3(logSE) semi-log GAM

dAFGAM7 f(SR) = yi = f1 + f2(A) + f3(SE) GAM

1Abbreviations used for species richness (SR), area of the forest remnants (A), and sampling effort (SE).

https://doi.org/10.1371/journal.pone.0226529.t003
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between studies varied from 168 to 31,960 trapnights per remnant. Compiling a matrix of all

species found at each site, we then eliminated all large rodents and marsupials (> 1.5 kg)

because they are more likely to be captured in Tomahawks (large cage traps), based on per-

sonal experience and the average sizes of those animals. Inclusion of large rodents and marsu-

pials highly skewed species richness between studies that did and studies that did not use the

large traps; hence, we used only non-volant mammals < 1.5 kg.

In addition to the published studies noted above, we also included data from a sampling

expedition by the authors from 2013 from 6 forest remnants from Tapytá Reserve, Caazapá

Department, in eastern Paraguay (S1 Table). Sampling effort followed de la Sancha [70] and

consisted of Sherman live traps, snap traps, and pitfall traps with drift fences. The overall sam-

pling effort consisted of eight nights, using 15 trap stations with two Sherman and two snap

traps per station on four lines per grid (1,920 trapnights), and 7 buckets per pitfall line (56

trapnights), totaling 1,976 trapnights per forest remnant. The data collected in this 2013 study

were approved by the Institutional Animal Care and Use Committee (IACUC) at Rhodes

College.

Comparative analyses of SARs based on endemic species versus SARs based on generalist

species have found estimated species richness patterns to be statistically different, and species

curve patterns based on endemic or generalist species to be different in shape [41,49,71]. Fur-

thermore, endemic or specialist species are more prone to local extirpation as a consequence

of habitat fragmentation, and therefore amalgamating all species in an assemblage may mask

species loss [41]. Instead of running EARs, which are primarily based on power functions, we

ran our models with different subsets of the original dataset of species, based on the species’

sensitivity to deforestation. Specialist and generalist species tend to respond differently to habi-

tat changes as many habitat types provide resources used by generalists, therefore loss of one

habitat type is not as detrimental to their populations as it may be for species that rely on one

specific habitat type. Therefore, we used multiple types of species groups to evaluate potential

differences in species richness responses to changes in habitat area. Overall, we analyzed mod-

els for the entire assemblage of non-volant mammals < 0.5 kg (which included introduced

species), as well as for two additional datasets that were subsets of the entire non-volant mam-

mal assemblage: 1) the native species forest assemblage and 2) the forest-specialist (endemic

equivalents) assemblage. The native species forest assemblage consisted of only forest species,

with all grassland (e.g., Calomys tener) and introduced (e.g., Rattus rattus) species eliminated

from the dataset. For the forest-specialist assemblage, we took the native species forest assem-

blage dataset and we eliminated all forest species that have been documented in other non-for-

est habitat types or agrosystems [72–74], thus leaving only forest specialists. We assumed that

forest-specialist species, like endemics, are more sensitive to continued fragmentation and

warrant a unique assemblage because it can be inferred that these species will be the most neg-

atively affected by deforestation and potentially go locally extinct. The purpose of the multiple

assemblage analyses was to compare the response differences among the entire, forest, and for-

est-specialist assemblages.

Traditional species-area functions

We implemented 8 traditional SAR models (Table 1), using data of non-volant small mammals

in the Atlantic Forest. There are more than 27 traditional SAR models; however, we restricted

our comparison to only 8 functions. SAR models often are represented by a steep increase in

species richness as area increases, but then species richness typically reaches an asymptote.

Although SAR models can be linearized using log-transformations for visualization and statis-

tical analyses, a true linear relationship has not been shown to be representative for traditional

Paraguay fragmentation predictive model

PLOS ONE | https://doi.org/10.1371/journal.pone.0226529 December 31, 2019 7 / 22

https://doi.org/10.1371/journal.pone.0226529


SAR models (see [32,35,75,76]). In our analyses, we included and compared 8 major nonlinear

SAR models (power, exponential, negative exponential, monod (convex models), rational,

logistic, Lomolino, and cumulative Weibull (sigmoidal models)) functions (Table 1) for the

three different datasets of the entire extent of the Atlantic Forest from the 20 studies outlined

above. The power and exponential functions lack an asymptote, and the rest of the functions

show asymptotes [25]. For the traditional SAR models, regression validations were considered

for homoscedasticity using a Pearson’s correlation of the residual magnitude and areas or fit-

ted values. Models that showed significant homoscedasticity, α� 0.05, were considered not

valid [25]. We completed all of these analyses using the mmSAR R package [25].

Sampling effort and species-area relationships (SESARS) models

Several of the SAR models that have been proposed have included using an additional variable

for the traditional species-area models [35]. We were interested in various approaches that

included linear and non-linear models with two predictor variables. It is clear that larger areas

house more species, and increased sampling tends to result in higher species richness. Thus,

our first objective was to identify models where both of these predictive variables resulted in

significant contributions to the overall model.

We tested 28 linear multivariate models that predict species based on additive and multipli-

cative relationships of area and sampling with variations of log transformations per variable

including power models, combined (CV models), interaction-term models (INT model) [35],

with power and semi-log variations (Table 2). We tested 7 non-linear multivariate generalized

additive models (GAMs) that predict species richness based the relationship between area and

sampling. These models smooth out the relationship between these variables (Table 3). Addi-

tive models tend to implement smoothing functions with capture nonlinear relationships

between variables [77]. Smoothness controlling estimation was conducted using maximum

likelihood (ML); we did not use restricted maximum likelihood (REML), as it does not permit

model comparisons [78], see S1 File for details. While there is considerable turnover in species

along the Atlantic Forest latitudinal gradient, there does not appear to be geographic structure

in functional diversity along this gradient [59, 79], All multivariate analyses were run in R

using the packages lme4, MASS, mgcv, mmSAR, and AICcmodavg [23,80,81].

While some authors have argued that comparison between sites requires equal sampling

(e.g., equal trapnights, [82]) because it may be otherwise difficult to distinguish between the

influence of sampling and the influence of area (or other variables); others have suggested that

there should be proportional or nested sampling in accordance to increases in area [18,58].

This is important to disentangle the difference between species-area relationship versus spe-

cies-sampling relationships, two relationships that are related but not the same (see [18]).

However, there is still no consensus about what approach is best or most appropriate for com-

parative purposes [18]. Our approach is unique and valuable because it permits us to apply

both approaches when using the predictive models, given that we were working with a multi-

variate regression plane.

We considered a model to be robust based on two criteria. First, we tested our models to

null models. Doing so ensured that the combination of variables performed better than by a

random model, given that it usually helps to validate models. Second, we selected only models

where all predictors significantly contributed to the species richness. Those SESARS models

that had either 1) both predictive variables as significant or 2) the combination of area and

sampling as significant, were compared with the eight major families of traditional species-

area models.
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Any one dataset can have multiple models that provide valid inference, assuming that data-

sets and predictive variables of a model are sound. Akaike Information Criterion (AIC) pro-

vides model selection that is objective and omnibus [83, 84], thus AIC metrics for traditional

SAR models were generated in mmSAR and AIC metrics for all other models were generated

using function ‘AIC’ in R (S1 File). The best model was visualized using ‘ggpredict’. SESARS-

predicted species richness, along with standard error values, were calculated using the R func-

tion ‘predict’ (Fig 1B).

Geospatial analysis for area

We used Hansen et al. [68] data (updated for 2014; http://earthenginepartners.appspot.com/

science-2013-global-forest/download_v1.2.html) to obtain raster files of forest cover in 2000

and forest loss as of 2014. We created a mosaic of the raster files, and then took the 2000 forest

cover data and subtracted the raster files of the deforestation data from 2014 deforestation data

to obtain the estimated 2014 forest cover. The 2014 forest data were clipped to fit the extent of

the Atlantic Forest, using the map from [85] as a reference. We then extracted only the data

from Paraguay. The data were projected to South America Albers Equal Area Conic. We then

converted the raster data into a shapefile representing the Atlantic Forest in Paraguay. We cal-

culated the area of each feature (forest remnant) and then extracted forest remnants that were

0.50 ha and larger for use in the analyses. All spatial analyses were conducted using ArcGIS

10.1. These area metrics became our area values to include in our predictive model (Fig 1C).

Trapping effort estimation

The multivariate models we developed permitted us to include any sampling effort we decided

upon as function of our three dimensions. We could have used the same sampling effort for all

remnants, for example, or we could have included sampling effort that was “proportional” to

area. Making proportional estimations of sampling to implement in a predictive model is com-

plicated. The approach we opted for was to calculate an appropriate sampling metric that had

meaning based on our original empirical data. We estimated sampling effort using the linear

relationship between area and sampling of the original empirical data, via a log-log regression.

This provided an unbiased estimate of sampling, and it was proportional to that used along the

entire Atlantic Forest by other researchers (S1 Table). This allowed us to estimate an adequate

sampling effort for each of the forest remnants of eastern Paraguay. These values of area and

sampling were then implemented in the best-fit multivariate model to predict species richness

for all of eastern Paraguay (Fig 1D).

Species estimates in eastern Paraguay

Finally, we included the area of the individual forest remnants of eastern Paraguay (Fig 1C)

and the estimated corresponding proportional trapping effort (Fig 1D) in the best-fit species

predictive model (Fig 1E). Predicted species richness for each assemblage model was compared

and significance was tested via permutation tests. The permutation began with a comparison

of observed mean difference between pairwise comparisons between assemblages. For each

pairwise comparison a null distribution of mean differences was developed by changing the

species richness per site via permutation for 10,000 replications. P-values were then estimated

as the number of observations equal to or more extreme than the original observed mean dif-

ferences. This permitted us to test that there were significant differences between assemblages

based on functionality. Code for running the permutation test was developed by us and run on

R. Estimated species richness from the best-fit model was then spatially modeled for all
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remnants in eastern Paraguay that were 0.50 ha and larger (Fig 1F). We did so for all three

assemblages: entire assemblage, native species forest assemblage, and forest-specialist

assemblage.

Results

Best-fit model comparisons for the Atlantic Forest

We identified all of the models where all of their included parameters included were signifi-

cantly contributing to the SESAR (entire assemblage: S2 Table; native species forest assem-

blage: S3 Table; and forest specialist assemblage: S4 Table). For the entire small mammal

assemblage, we identified 11 combined or interaction-term SESAR models where all the

parameters included, demonstrated significant contributions to the SESAR (S2 Table); and 9

combined or interaction-term SESAR models the native species forest assemblage, (S3 Table);

and two SESARS models for the forest-specialist assemblage (S4 Table). None of the general-

ized additive models (GAMs) showed significant contribution by both area and sampling (S5–

S7 Tables) for any of the assemblages. Sampling effort into consideration improved our mod-

els, compared to the traditional species-area models (Tables 4 and 5). All best-fit models were

robust as these outperformed null models and all predictors significantly contributed to

Table 4. Best-fit sampling effort and species-area relationships models identified for the entire assemblage of

non-volant small mammals in the Atlantic Forest after comparison of 18 linear, 6 generalized linear model mod-

els, and 8 traditional species-area models. Tables 2–5 outline the models.

Entire Models AIC Δi AIC� Log L wi

TriLm22 88.3 0.00 1.00000 0.96416

TriLm17 95.1 6.86 0.03237 0.03121

TriLm10 99.7 11.43 0.00330 0.00318

TriLm24 101.4 13.12 0.00141 0.00136

TriLm8 108.0 19.73 0.00005 0.00005

TriLm26 109.2 20.89 0.00003 0.00003

TriLm9 111.3 23.02 0.00001 0.00001

Null 118.5 30.25 0.00000 0.00000

Logist 187.8 99.55 0.00000 0.00000

Ratio 188.6 100.31 0.00000 0.00000

Power 190.6 102.31 0.00000 0.00000

Expo 191.5 103.22 0.00000 0.00000

Weibull 192.6 104.31 0.00000 0.00000

Lomolino 192.6 104.34 0.00000 0.00000

NegExpo 197.6 109.39 0.00000 0.00000

Monod 260.7 172.47 0.00000 0.00000

TriLm23 349.7 261.46 0.00000 0.00000

TriLm21 360.2 271.94 0.00000 0.00000

TriLm13 362.7 274.43 0.00000 0.00000

TriLm25 364.6 276.35 0.00000 0.00000

TriLm11 368.9 280.60 0.00000 0.00000

TriLm12 376.6 288.37 0.00000 0.00000

TriLm14 377.1 288.86 0.00000 0.00000

�Based on criteria sensu Burnham and Anderson [83], Δi AIC values < 2 are indicative of substantial evidence for

model validity, Δi values of 3 to 7 offer less support, and Δi values > 10 indicate very unlikely evidence for those

models.

https://doi.org/10.1371/journal.pone.0226529.t004
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species richness (S5 and S6 Tables). The power-law INT models that excluded sampling as an

independent variable were the most robust for the entire assemblage (Trilim22 P< 0.0001, F-

value = 21.362,64, Adj. R2 = 0.38 [log f(SR) = β0 + β1logA + β3(logA)(logSE)], Table 4) and

native species forest assemblage (Trilim22_For, P< 0.0001, F-value = 13.712,64, Adj. R2 = 0.28

[log f(SR) = β0 + β1logA + β3(logA)(logSE)], Table 5). Meanwhile, for the forest-specialist spe-

cies, the logistic species-area function was the best-fit; however, the power, expo and ratio tra-

ditional species-area functions were just as valid (Table 6). The logistic model indicated that

there was no correlation between the residual magnitude and areas (Pearson’s r = 0.138, and

P = 0.27) which indicatives a valid model (valid models should be nonsignificant for this analy-

sis). Other parameters of the logistic species-area model included c = 4.99, z = 0.00008, f =

-0.081. However, the power, exponential, and rational models were just as likely to be valid

with ΔAIC less than 2 (Table 6); and these models did not exhibit correlations between vari-

ables (Pearson’s r = 0.14, and P = 0.27; r = 0.14, and p = 0.28; r = 0.15, and P = 0.23). Other

parameters were as follows: power, c = 1.953 and z = 0.068; exponential c = 1.87 and z = 0.192;

and rational c = 2.300, z = 0.0004, and f = 0.00008.

Species richness in the Atlantic Forest remnants of Paraguay

Assemblage specific models varied in the predicted species richness based on their sensitivity

to deforestation. Pair-wise permutation tests comparing predicted species richness between

Table 5. Best-fit sampling effort and species-area relationships models identified for the native species forest assemblage of non-volant small mammals in the

Atlantic Forest after comparison of 28 linear, 7 generalized linear model models, and 8 traditional species-area models. Tables 2 and 4 outline the models.

Forest Models AIC Δi AIC� Log L wi

TriLmFor22 101.3 0.00 1.00000 0.88814

TriLmFor17 105.7 4.37 0.11230 0.09974

TriLmFor10 111.0 9.67 0.00794 0.00705

TriLmFor24 113.0 11.67 0.00293 0.00260

TriLmFor8 113.3 11.98 0.00250 0.00222

TriLmFor9 118.1 16.74 0.00023 0.00021

Null 121.2 19.89 0.00005 0.00004

Logist 179.6 78.30 0.00000 0.00000

Power 180.5 79.16 0.00000 0.00000

Ratio 180.6 79.23 0.00000 0.00000

Expo 181.1 79.71 0.00000 0.00000

Weibull 182.5 81.16 0.00000 0.00000

NegExpo 186.2 84.87 0.00000 0.00000

Monod 252.0 150.66 0.00000 0.00000

TriLmFor23 351.6 250.27 0.00000 0.00000

TriLmFor18 359.0 257.67 0.00000 0.00000

TriLmFor21 359.6 258.28 0.00000 0.00000

TriLmFor11 362.2 260.86 0.00000 0.00000

TriLmFor13 363.2 261.87 0.00000 0.00000

TriLmFor12 370.6 269.27 0.00000 0.00000

TriLmFor14 372.3 270.98 0.00000 0.00000

�Based on criteria sensu Burnham and Anderson [83], Δi AIC values < 2 are indicative of substantial evidence for model validity, Δi values of 3 to 7 offer less support,

and Δi values > 10 indicate very unlikely evidence for those models.

https://doi.org/10.1371/journal.pone.0226529.t005
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the entire small mammal assemblage, native species forest assemblage, and forest-specialist

assemblage for the Atlantic Forest of Paraguay were highly significant (P< 0.0001; Fig 2).

SESARS models for the entire and native species forest assemblages showed parallel patterns

and, as expected, the entire assemblage showed consistently higher species richness throughout

the region. All models clearly showed sigmoidal relationships even when log-transforming

area and species (Fig 2). For Atlantic Forest remnants in Paraguay that were 0.50 ha and

greater, species richness estimates varied from 6 to 12 species for the entire assemblage, 5 to 10

species for the native species forest assemblage, and 2 to 5 species for the forest-specialist

assemblage (including all the likely models: logistic, power, exponential, and rational). Species

richness and area plots of the raw data showed that most of the species accumulations

appeared at relatively small areas (Fig 2C) and with different hypothetical sampling efforts for

the entire assemblage and native species forest assemblage, and most species accumulation was

reached for forest specialists when forest area was considerably larger.

Our geospatial analysis recovered 140,913 Atlantic Forest remnants that were 0.50 ha and

larger in Paraguay. Visualization of species richness in the Paraguayan Atlantic Forest land-

scape produced very similar patterns, regardless of species groups used, predictions recovered

the same forests remnants as most species rich (Fig 3A–3C). The number of predicted species

were significantly different between assemblages (Fig 3D–3F) and supported with the spatial

models. As expected, the estimated species richness varied more for the entire assemblage and

the least for the forest-specialist assemblage. The 15 remnants in Paraguay that were larger

than 15,844 ha were predicted to have a maximum of 5 forest-specialist species each. However,

the same forest remnants had much greater predicted species richness when the entire and

native species forest assemblages were modeled (Fig 2; [10]). Of the 140,913 Atlantic Forest

remnants that were 0.50 ha and larger in Paraguay, 140,898 remnants (99.99%) were predicted

to have 2–3 species for the forest-specialist assemblage, and species richness for the entire

assemblage and the native species forest assemblage was predicted to be 5 or greater for 100%

of the forest remnants (Fig 3A and 3B). Even so, species richness for the entire assemblage and

the native species forest assemblage was� 6 for 99.52% and 98.51% of the forest remnants,

respectively (S8 Table).

Table 6. Best-fit sampling effort and species-area relationships models identified for the forest-specialist assemblage of non-volant small mammals in the Atlantic

Forest after comparison of 21 linear, 7 generalized linear model models, and 8 traditional species-area models. Tables 2 and 4 outline the models.

Endemic Models AIC Δi AIC� Log L wi

Logist 123.6 0.00 1.00000 0.27093

Power 123.8 0.16 0.92537 0.25071

Expo 124.1 0.47 0.79242 0.21469

Ratio 125.2 1.53 0.46423 0.12577

Weibull 125.8 2.16 0.34042 0.09223

NegExpo 127.2 3.56 0.16854 0.04566

TriLmEnd8 171.7 48.01 0.00000 0.00000

TriLmEnd22 172.8 49.17 0.00000 0.00000

Null 174.1 50.44 0.00000 0.00000

TriLmEnd26 176.3 52.68 0.00000 0.00000

Monod 176.8 53.15 0.00000 0.00000

TriLmEnd11 311.4 187.72 0.00000 0.00000

�Based on criteria sensu Burnham and Anderson [83], Δi AIC values < 2 are indicative of substantial evidence for model validity, Δi values of 3 to 7 offer less support,

and Δi values > 10 indicate very unlikely evidence for those models.

https://doi.org/10.1371/journal.pone.0226529.t006
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Discussion

Multivariable models

As the impacts of increasing human populations and activity accelerate and increase in both

scope and intensity, many regions of the world might not have had the luxury of time and

resources to amass large datasets to model the impacts of habitat loss and fragmentation on

biodiversity and conservation. While perhaps over-simplistic, we can pool smaller studies

(many of which might have variable sampling efforts as they come from different authors) to

address the impact of human land cover changes. The SESARS approach allows us to incorpo-

rate both the sampling efforts and area with flexibility and robustness, and this approach is

particularly valuable for predictive modeling. Many variables other than area can affect species

richness estimates in forest remnants [13, 14, 35, 73, 74], and one of the most obvious and rou-

tinely overlooked is sampling effort [58]. Our analysis corroborates that different assemblages

do not have the same responses to habitat fragmentation, i.e. the entire assemblage versus for-

est-specialist species. Therefore, use of SARs for modeling should consider various sampling

efforts, and multiple assemblages, when used for conservation of management efforts.

Fig 2. Based on Akaike Information Criterion (AIC), models with values lower than Δi AIC of 2 were just as likely to be valid (see

Tables 4–6). Plots represent the best-fit models for the entire assemblage of small mammals (SppEntire), the native species forest

(SppForest), and four species-area models for forest specialists (logistic: SppLog, power: SppPow, exponential: SppExp, and ratio: SppRat).

The plots show A) log-area and predicted species relationships; B) area and predicted species richness relationships, which show that most

species accumulations were reached at relatively small forest areas; and C) the log area and log species relationships that are valuable for

comparison of patterns of species accumulations. This suggests that while the largest forest remants have the highest species richness,

small- and medium-sized remnants are valuable for conservation efforts from the perspective of small mammals.

https://doi.org/10.1371/journal.pone.0226529.g002
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SESARS models and spatial analyses

Coupled with geospatial analysis, SESARS models are valuable for conservation and manage-

ment alike. First, although our assemblages varied in predicted species richness, once they

were spatially modeled there were clear spatial patterns that highlighted species-rich regions or

remnants that are of potential conservation value. Second, our framework can be expanded to

Fig 3. The Atlantic Forest in Paraguay primarily consists of forest remnants that are 50 ha and smaller. Maps identify

species richness remnants with high species richness for non-volant small mammals based on (A) predictive SESARS for

the entire non-volant, small mammal assemblage; B) SESARS for the native species forest assemblage; and C) ratio

species-area model for the forest-specialist assemblage, with the three largest remnants noted in order of size (1–3).

Species richness among the three assemblages varied from (D) 6–12 species for the entire assemblage, to (E) 5–10 species

for the native species forest assemblage, to (F) 2–5 species for the forest-specialist assemblage.

https://doi.org/10.1371/journal.pone.0226529.g003
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species assemblages or guilds that are more appropriate to the question at hand and can also

be used at any spatial scale from local to regional to global, as well as to any land cover type.

Third, we were able to identify medium-size forest remnants (e.g., in the northernmost portion

of the Atlantic Forest of Paraguay) that have potential conservation value based on the species

richness of all three different assemblages (Fig 2). The scanning of maps alone tends to bias

observers to identify large, strangely shaped, or very isolated remnants. Our analyses allowed

us to highlight seemingly unimportant remnants that were in fact potential conservation prior-

ity areas, based on the estimated richness visualized by our results. Had we used maps without

richness visualizations, these potentially important forest remnants may have been overlooked.

Our findings suggest small remnants are valuable and help to house some species and mitigate

local extinctions. Although, it is worth noting that our that dataset might actually reflect pat-

terns of populations yet to experience extinction debt [86]. Or it may be the case that the area

that would reflect local extinction tends not be sampled and not included in our model (i.e.

less than 0.50 ha). In addition, our model only applied to small mammals, and larger-bodied

fauna may be more sensitive to extinction [87]. Although, empirical studies have found nega-

tive, positive, and no relationships for area, body size, and extinction [88]. Fourth, this model

has great potential in forecasts. Our SESAR approach is robust in predicting species richness

for areas based on future forest loss. Lastly, perhaps the most valuable aspect of our approach

is the ability to integrate studies of varying sampling effort. Currently, there is still no consen-

sus about the best or most appropriate scheme for sampling as a function of area [18]. Our

SESAR approach allows users to explore either or both of these sampling schemes as needed

for their available datasets. Given the logistical complexities of sampling in remote regions and

the cost of long-term expeditions, even small campaigns with modest sampling efforts can add

value to the modeling of broad scale patterns using our SESAR approach. Among the benefits

of having different sampling efforts is that one can anticipate field work effort for sampling dif-

ferent sized remnants and thus logistical resources (e.g. funding, field work hours needed) can

be prioritized as needed. Furthermore, as newer and additional data are collected, the model

can be improved even if the data originate from different sources with varying sampling

efforts.

Paraguay’s Atlantic Forest

The Atlantic Forest in South America is a biodiversity hotspot [89], but much of it has been

deforested, including in Paraguay in recent years [17,90]. For each of the three assemblages of

nonvolant small mammals (entire, native species forest, and forest-specialist), the largest forest

remnants were predicted to have the greatest species richness, as expected. Although the for-

est-specialist assemblage had a maximum species richness of 5 for the Paraguayan forest rem-

nants, and only 7 forest remnants had this maximum number of 5 species, the forested area

that comprised these 7 remnants totaled 32.71% of the entire Atlantic Forest in Paraguay.

While the largest forest remnants had the greatest species richness regardless of assemblage,

small- (< 125 ha) and medium-sized (~15,000 ha) remnants still maintained 5–10 species

when examining the entire and native species forest assemblages. These findings highlight the

importance of small and medium remnants for small mammal conservation. In Paraguay, it is

difficult to make the case that there are endemic Atlantic Forest species per se, which is why

we used the term forest specialist. That said, it is important to note that at least 30 new species

records have been documented for Paraguay since 2002, and the taxonomy for mammals is

still very unclear, even for megafauna [91]. Furthermore, new species records are validating

our models, for example, Juliomys pictipes, a particularly rare Atlantic Forest species, was first

documented in Paraguay 2009 [92] and more records are being added [70]. More recently
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Atlantic Forest endemics Delomys dorsalis and Abrawayaomys ruchii have been recently dis-

covered in the country [93, 94, 95]. It is very likely that new species will be found in these larger

forest remnants with continued field expeditions [6] and improved taxonomic and collections

studies [95].

The two largest forest “remnants” in Paraguay were expanses of patchwork forest sur-

rounded by a non-forest matrix, but in reality, these larger forest remnants likely consist of

multiple remnants that are separated by short (< 50 m) distances. As a result, 30-m resolution

satellite imagery, which is the basis of the forest cover data from [68] and the basis for many

studies of deforestation [96], may overestimate connectivity in the landscape. Although 30-m

resolution satellite imagery is common for analyzing larger areas, smaller-resolution imagery

can often detect patch size, shape, and connectivity better [97]; however, such imagery comes

at a financial cost, a time cost to analyze the data, and limitations for processing such large

quantities of data [98]. Furthermore, given that anthropogenic disturbances in a forest can also

contribute greatly to biodiversity loss [99], the linear, sinewy forest remnants with high edge-

to-area ratios may have lower species richness than forest remnants that are of the same size

but more intact. We believe that this framework can be easily replicated for any fragmented

landscape, archipelago, or sky islands system, where datasets are limited and where empirical

data from many authors with different sampling effort; and may provide more informative

predicted species models. With our models, we are able to find the regions with the highest

richness, but we can potentially also identify the areas more susceptible to fauna loss and sub-

sequently focus efforts on the conservation of these sites. Furthermore, this approach can be

applied immediately, which is important given the logistical difficulties of sampling at multiple

biogeographical scales, the limitations of sampling in inaccessible and remote locations, and

the current and intensifying rates of global deforestation. This approach also permits null

models that help to prioritize regions to be sampled and regions which may be important rich-

ness hotspots. This is valuable where resources are limited for extensive field data collection

and where the rates of deforestation are very high and immediate action is important.

Concluding remarks

Lastly, our initial analysis showed that the power function may not always be best approach to

understanding SARs and we should expand our horizons to include additional SAR models as

needed. While we did not find a universal function, we did find that incorporating sampling

into SAR models can be valuable. Furthermore, there may be additional variable transforma-

tions which may optimize these relationships. Thus, this is just the beginning of the possibili-

ties to these models. While SARs may overestimate extinction loss, overestimation is a

preferable error over underestimation, and we think that SARs are still valuable for modeling

responses of species richness to deforestation and habitat loss and will remain for the foresee-

able future. Furthermore, it would be interesting to implement these models when studying

true islands and sky islands and implement these models when using other species-area data-

sets with varying sampling efforts, so comparisons can be made to traditional predictions.
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Validation: Noé U. de la Sancha.

Visualization: Sarah A. Boyle.
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