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Abstract

Adenomatous polyps of the colon are the most common neoplastic polyps. Although most

of adenomatous polyps do not show malign transformation, majority of colorectal carcino-

mas originate from neoplastic polyps. Therefore, understanding of this transformation pro-

cess would help in both preventive therapies and evaluation of malignancy risks. This study

uncovers alterations in gene expressions as potential biomarkers that are revealed by inte-

gration of several network-based approaches. In silico analysis performed on a unified

microarray cohort, which is covering 150 normal colon and adenomatous polyp samples.

Significant gene modules were obtained by a weighted gene co-expression network analy-

sis. Gene modules with similar profiles were mapped to a colon tissue specific functional

interaction network. Several clustering algorithms run on the colon-specific network and the

most significant sub-modules between the clusters were identified. The biomarkers were

selected by filtering differentially expressed genes which also involve in significant biological

processes and pathways. Biomarkers were also validated on two independent datasets

based on their differential gene expressions. To the best of our knowledge, such a cascaded

network analysis pipeline was implemented for the first time on a large collection of normal

colon and polyp samples. We identified significant increases in TLR4 and MSX1 expres-

sions as well as decrease in chemokine profiles with mostly pro-tumoral activities. These

biomarkers might appear as both preventive targets and biomarkers for risk evaluation. As a

result, this research proposes novel molecular markers that might be alternative to endo-

scopic approaches for diagnosis of adenomatous polyps.
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Introduction

Colorectal polyp is a protuberance into the lumen from the colonic mucosa. They are usually

asymptomatic but ulceration, bleeding, tenesmus, and intestinal obstruction could be

observed. Moreover, they could be either non-neoplastic (inflammatory, hamartomatous, or

hyperplastic polyps) or neoplastic (adenomatous) in nature. Adenomatous polyps of the colon

are the most prevalent neoplastic polyps. About 5–7% of the adenomas have high-grade dys-

plasia and 3–5% of the cases have invasive carcinoma at the time of diagnosis [1–3]. Even

though the majority of these adenomas do not go to malign transformation called adenoma-

to-carcinoma sequence, most of colorectal carcinomas originate from neoplastic polyps [4].

Therefore, insight on the transformation process could support both preventive therapies and

biomarkers indicating the risk of malignancies.

The formation of neoplastic polyps depends on multiple cumulative mutations either acti-

vating oncogenes or repressing tumor suppressors. These genetic alterations are mostly related

with proliferation, survival, and DNA repair mechanisms. In colon adenomatous polyp forma-

tion oncogenes such as K-RAS (Kirsten Rat Sarcoma Virus) and MYC as well as tumor sup-

pressors such as APC (Adenomatous Polyposis Coli) and p53 are more common whereas

sessile tumors present mutations in DNA repair genes MLH1 (MutL homolog 1) and MLH2

(MutL homolog 2) [5,6]. Since our research focused on adenomatous polyps, sessile serrated

samples are excluded. Moreover, adenomatous polyps induce inflammation and immune

response through secreting chemokines and presenting tumor associated antigens with HLA

(human leukocyte antigen) family. Immune players such as macrophages and lymphocytes

migrate tumor microenvironment with an intention to guide damaged cells to death. How-

ever, most tumors could reprogram immunity to more supportive phenotype [7,8]. Inflamma-

tion could also enhance mutation profile due to increased reactive oxygen species related

radical damage [9]. As the first mutation initiate polyposis, genetic damage accumulates to

advance the neoplasm. Although damaged cells frequently exhibit dysplasia, an adenoma

could not penetrate basement membrane and metastasize. Nevertheless, there is a threshold

where the dysregulated pathways lead more invasive and metastatic phenotype. This threshold

defines the border between benign and malign tumors.

The majority of colon adenomas are asymptomatic. Therefore, routine screening is crucial

in the diagnosis of polyps at early stages regarding the risk of malignancies. Despite its low

specificity and sensitivity, Fecal Occult Blood testing is a less irritating and relatively cheap

method to detect colon polyps. Yet, colonoscopy is the "gold standard" in diagnosis of colon

lesions due to higher sensitivity. World Health Organization recommends this screening

method every 5 years beginning at the age of 50. There are also some other endoscopic applica-

tions combined with immunocytochemistry to treat the polyp and diagnose its molecular pro-

file [6,10]. However, the procedure is both irritating and intimidating for majority of patients.

For this reason, newer applications of less irritating methods such as “Fecal immunochemical

testing” and “Fecal DNA and antigen testing” emerged. These assays frequently target molecu-

lar biomarkers in stool [10]. Recently trending exosomes and liquid biopsies could also make

it possible to diagnose adenomas and evaluate the risk of malignancy at early stages [11,12].

Thus, the need of biomarkers calls for further research to identify molecular risk factors and

milestones in adenoma-to-carcinoma sequence.

This study presents alterations in several gene expressions as potential biomarkers of ade-

nomatous polyps that were identified by a computational pipeline composed of several meth-

ods. The analysis performed on unified mRNA patient samples, which are obtained from eight

different microarray studies covering normal colon and adenomatous polyp samples. The

results identified increases in TLR4 (The tool-like receptor 4) and MSX1 (msh homeobox 1)
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expressions as well as decrease in chemokine profile with mostly pro-tumoral activities. These

results were also validated on independent two cohorts. Therefore, these genes can emerge as

preventive targets and biomarkers. In these regards, this research suggests molecular markers

as alternative to endoscopic approaches.

Background

This section briefly summarizes functions of biomarker genes, their roles in adenomatous

polyp and cancer development, and computational approaches developed for colon polyp and

colorectal cancer analysis.

The tool-like receptor (TLR) family. The TLR family is a bunch of pattern-recognizing

membrane proteins which are crucial in pathogen detection and immune response. Ligands

such as lipopolysaccharides, viral fusion proteins or bacterial glycolipids initiate the dimeriza-

tion of them which eventually translocate the nuclear factor (NF)-κB into the nucleus and

induces inflammatory mediators and response [13]. They do not only make function in mac-

rophages and dendritic cells, but also take essential roles in the epithelia of the gastrointestinal

tract [14]. Intestinal cells express them to detect gut microbiota and maintain epithelial cell

integrity through tight junctions. They are also correlated with proliferation and differentia-

tion. In addition to physiologic immune response, they are included in pathogenic processes

as well. Recent studies indicate that the TLR family could take pivotal role in promotion of gas-

trointestinal malignancies. They have an impact on immune suppression, matrix dysregula-

tion, and metastasis in colorectal tumors [15–17].

An infamous member of this family, TLR4 have been associated with colorectal cancers as

well as polyp formation [18,19]. Several studies indicate higher levels of expression in villous/

tubulovillous polyps and tubular adenomas along with colorectal cancers. TLR4 deficient mice

were protected from colon carcinogenesis [19]. Moreover, the expression levels were corre-

lated with F. nucleatum, E. faecalis, S. bovis. Therefore, TLR4 emerges as another mechanism

of how dysregulated microbiota could affect either promotion or progression of colon malig-

nancies [20]. Some treatment strategies antagonize them to hinder malign transformation and

discuss their effectiveness over antibiotics [21]. Nonetheless, this immune regulator receptor

not only modulates tumor-associated inflammation and immune suppression, but also cross-

signals cancer-associated pathways such as EGFR, PI3K, VEGF, NF-κB [22–24].

MSX1. MSX1is a homeobox gene taking a role in developmental processes in various tis-

sues during embryogenesis and morphogenesis. Previous studies indicate that it is mostly

expressed in progenitors and is crucial in differentiation. Human tooth development, odonto-

genesis, is most-mentioned process correlated with this transcriptional factor [25]. Recently,

accumulating number of researches identified this transcription factor as a tumor suppressor

and biomarker for longer progression-free survival in some malignancies including glioblas-

toma, melanoma, lung, endometrial, ovarian, and cervical cancers [26–30]. Hypermethylation

and loss of expression are often correlated with poor prognosis, metastasis, and drug resis-

tance. Also, Bonito and colleagues suggest that it supports p21 regulated apoptosis [31]. Even

though MSX1 hypermethylation and down-regulation are also reported in colon cancer, Hor-

azna and colleagues point out that MSX1 is overexpressed in colon villous adenomas and takes

a crucial role in tumor initiation due to APC loss [32–34]. The impact of this homeobox on

colon cancer and the malign transformation is not entirely understood.

Chemokines. Directional migration of leukocytes is called chemotaxis. And chemotactic

cytokines are chemokines. They are secreted by leukocytes, epithelial, endothelial, and tumor

cells [35]. Cancer- or tumor-associated fibroblasts (CAFs/TAFs) also secrete tumor promoting

CXC chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 [35].
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Recently, it is shown that CXC chemokines and their receptors (CXCR) may affect tumor

behavior. They have got a role in angiogenesis, leukocyte attraction, proliferation and metasta-

sis. They have also autocrine or paracrine effects. In general, increased expression of CXC che-

mokines correlates with poor prognosis [35]. The N-terminal region contains cysteine

residues and is subdivided into four families according to position of these residues: CXC, CC,

C, and CX3C chemokines. X stands for any amino acid [35]. The presence of the tripeptide

motif (Glu-Leu-Arg at the NH2 terminus) is also important for sub-classification: ELR+ or

ELR- [36]. The chemoattraction of pro-tumoral or anti-tumoral leukocytes depends on the

secretion of ELR+ and ELR- CXC chemokines, respectively [35].

In addition to the major findings of TLR4 and chemokines, there were various alterations

including distinct pathways that are also determined and discussed in the results section.

Computational approaches. There are studies on different types of cancer in which one

or more computational approaches such as co-expression network, differential expression

gene analysis (DEG), pathway analysis, and protein-protein interaction (PPI) are applied. In a

recurrent glioblastoma study, weighted gene co-expression analysis (WGCNA) and DEG anal-

ysis were used together on GEO data [37]. There are studies in which gene expression and

pathway analysis are evaluated together with survival analysis for detection of target genes that

may play a role in metastatic colon cancer [38]. In order to investigate the development of

colon cancer, different gene expression analysis and PPI networks were used to identify impor-

tant genes [39]. To identify biomarkers for diagnosis of colorectal cancer, a differential gene

expression analysis was applied on TCGA and GEO datasets; important hub genes were

detected by using the STRING network [40]. A similar study integrated mRNA expression

data and a PPI network to identify important genes in the survival of colorectal cancer patients

[41]. Some of the biomarkers were validated by real-time quantitative PCR analysis. A recent

study applied WGCNA on colorectal cancer samples obtained from two GEO datasets [42].

The nodes with higher degrees in the network were identified as hub genes after mapping of

differentially expressed genes found in important modules over the STRING network. For the

differentiation of polyp subtypes, the gene expression differences between two different polyp

groups were defined by several technologies [43]. In a meta-analysis study, normal colon,

polyp and colon cancer gene expression data were integrated with the Combat method; DEG

and pathway analysis were applied to explain the mechanisms of polyp and cancer formation

[44]. In another study, DEG and pathway analysis were performed for normal, polyp and

colon cancer samples; a marker gene cluster was revealed [45]. To understand molecular fea-

tures of colorectal adenomas, cancer free and cancer adjacent polyp samples were collected,

and various analysis were applied on genome, transcriptome and methylome data [46]. There

is no study in the literature presenting the co-expression relationship between normal colon

and colonic polyp tissue by applying co-expression network and clustering analysis together.

This study aimed to explain the reasons of molecular differences between normal colon and

polyp tissue at the gene expression level by composing a larger patient cohort. We performed

data integration by using batch effect removal on cohorts of different studies. The integrated

data were analyzed by the WGCNA. This analysis led to highly correlated and significant mod-

ules for normal colon and polyp samples. The selected modules were further clustered to focus

on functionally conserved proteins. By applying network clustering algorithms, larger co-

expression modules became more targetable. As a final step, a gene enrichment analysis

revealed biomarker genes with increased/decreased mRNA expression profiles. The identified

biomarkers were validated on two independent datasets by applying differential expression

analysis. Based on gene expression behavior, the potential drugs targeting selected biomarkers

were also reported. Such integrated network-based approaches were used for analysis of a

large collection of normal colon and polyp samples for the first time. Due to covering large
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number of patient samples, the identified biomarkers present higher statistical significance in

terms of further clinical validations.

Materials and methods

This section presents a description of the datasets and stages of the study. Fig 1 shows an over-

view of the study. Normal colon and polyp samples in the GEO database were used to identify

biomarkers in polyp formation process. Various preprocessing operations, correction of batch

effect and data aggregation were applied. The WGCNA was applied to identify gene modules,

then modules with similar profiles were selected. By constructing a functional interaction net-

work (FIN) specific to the colon tissue, modules with similar profiles obtained from the previ-

ous step were directly mapped to this network. Then, various clustering algorithms run on the

obtained network and the most significant submodules between the clusters were identified.

Enrichment analysis was applied for the selected significant submodules. As a result of this

analysis, genes that are both involved in significant biological processes and pathways and dif-

ferentially expressed between normal colon and polyp tissues were selected as biomarkers.

Fig 1. An overview of the study.

https://doi.org/10.1371/journal.pone.0267973.g001
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Dataset selection

We filtered the Affymetrix hgu133plus2 chip experiments for normal colon and polyp tissues

to use for training of a model and finally obtained eight datasets available in the GEO database.

In addition, two data sets, one of them Affymetrix hgu133plus2 (GSE37364) and the other one

Affymetrix hgu133a (GSE68468) chip experiment, were used for the validation of the initial

model. The total number of patient samples of training and validation sets are given in

Table 1.

Microarray data pre-processing

When the data sets for training were examined, it was seen that there were 604258 different

probes at the beginning. The “rma” (Robust Multi-Array Average) method of the “affy” library

in R-Bioconductor was used for the normalization of these probes. After the normalization

process, 54675 probes remained in the data sets. These probes were annotated using the Entrez

identifier of each gene. A total of 12753 probes were found to be labeled as “NA”, these probes

were removed and a total of 41922 probes with gene name tags were found.

The same preprocessing method was applied for the validation sets. Since one of the valida-

tion sets was Affymetrix hgu133plus2 chip same as the ones in the training set, the number of

probes obtained became the same. For the Affymetrix hgu133a microarray in the validation

set, 22283 probes were obtained after applying the "rma" normalization. These probes were

annotated using the Entrez identifier of each gene. A total of 2077 probes were found to be

labeled as “NA”, these probes were removed and a total of 20206 probes with gene name tags

were found.

Batch effect elimination and data aggregation

A gene is represented by more than one probe in microarray chips. In order to aggregate sev-

eral measurements of each gene, the median value of the repetitive probes was taken and

assigned as the mRNA expression value of each gene. After this aggregation process, a total of

20174 probes representing individual gene regions remained for 150 samples in the training

data set. In the validation set, total number of probe numbers remained the same for the Affy-

metrix hgu133plus2 microarray (GSE37364), while it was obtained as 12645 for the Affymetrix

hgu133a microarray (GSE68468).

Table 1. Datasets used in the study.

GEO Accession Normal colon Polyp Training Set Validation Set

GSE4107 10 ✔
GSE4183 8 15 ✔
GSE8671 32 32 ✔
GSE9348 12 ✔
GSE10714 3 5 ✔
GSE13471 4 ✔
GSE15960 6 6 ✔
GSE18105 17 ✔
GSE37364 38 29 ✔
GSE68468 55 51 ✔
Training 92 58

Validation 93 80

Total 185 138

https://doi.org/10.1371/journal.pone.0267973.t001
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In order to obtain more statistically significant analysis, it is necessary to reduce the “batch”

effect between gene expression data produced in different laboratories using the same plat-

form—GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) in training sets. The "Com-

Bat" function in the "sva" package in R-Bioconductor is used for this process. The dendrogram

obtained by hierarchical clustering used to evaluate the results is given in S1 and S2 Figs.

Since the two experiments in the validation dataset belong to different platforms (GPL570

and GPL96), the batch effect removal method was not applicable on validation samples, so

they analyzed independently by performing statistical significance tests.

Network analysis

We used an integrated FIN with sufficient information about biological processes specifi-

cally related to cancer formation and progression [47]. Within this network structure, each

node represents a human protein, and a link connecting two proteins represents a weight

value that shows how biologically similar processes these two proteins work on. The FIN

consists of 20790 proteins (nodes), 21952150 interactions (links). The weight value of each

interaction represents the similarity of biological function between two proteins, and these

values range from 0 to 1. Proteins with very low functional similarity (those with 0–0,1

range) were excluded. After this filtering, 15002 proteins and 334225 interactions remained

in the FIN.

In order to eliminate the noise that may occur in the subsequent analyzes, we used the "Tis-

sue Atlas" data within the "Human Protein Atlas" project. We eliminated the proteins, which

are not synthesized in healthy colon tissue, and the connections between them from the FIN.

We obtained a colon tissue specific interaction network. Technically, Entrez identifiers of the

genes that are expressed in the colon tissue were obtained. As a result of this analysis, 14486

genes and 234189 common links were obtained for colon tissue. Then, the "components" func-

tion in the "igraph" library was used to determine the submodules on this colon tissue-specific

network. 24 submodules were identified, the largest module covers 11355 genes and 234152

links. Subsequent analyzes continued with the largest module structure.

Weighted gene co-expression analysis

Weighted gene co-expression analysis was performed with 20174 gene expression data of 150

patients in our training dataset using the WGCNA library in R-Bioconductor. Thus, it was

aimed to extract the gene expression modules that have the highest correlations with given

phenotypes of the patients.

First, the soft threshold power was selected according to the scale-free topology criterion

[48]. Using this soft threshold value, a weighted gene adjacency matrix is defined that repre-

sents a gene co-expression network in which each link shows the co-expression similarity

between a pair of genes. Then, the adjacency matrix was transformed into the topological over-

lap matrix (TOM) to minimize the effects of noise. The dissimilarity matrix was calculated by

subtracting the TOM from 1. Hierarchical clustering of the difference matrix (with the "hclust"

function) was used to identify the modules in the network. This function produces a clustering

tree (dendrogram). When branches of the tree are densely interconnected, they represent

modules formed by highly co-expressed genes. Detecting modules means identifying the

branches of the tree by cutting them. The dynamic tree cutting method from the “dynamic-

TreeCut” package, which is a standard method for cutting branches, was used. Dynamic tree

cutting may identify modules with very similar gene expression profiles. The genes of such

modules were combined because they were highly co-expressed.
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Network-based clustering

The genes involved in each significant module were combined and directly mapped on the

FIN, which was previously customized for colon tissue. The "ego" function in the "igraph"

library is used for this filtering process. The network structure in which the genes in each mod-

ule are directly adjacent to each other in the FIN was used. There are 478 genes and 2846 links

directly connected to each other in the network obtained by this method.

In order to focus conserved network modules in terms of biological functions, we applied

network clustering algorithms to specific modules selected as a result of WGCNA and mapped

to FIN. Markov clustering (MCL), fuzzy neighborhood (FN) and spectral clustering algorithms

were run separately on the same network to find the most relevant submodules. Marker genes

that play an active role in polyp formation might be detected more effectively in this way.

The MCL algorithm runs using libraries in Python and R languages. Different values have

been tested for the inflation and expansion parameters, which are the critical arguments of the

MCL algorithm. Since the highest modularity score was obtained when the inflation operator

was "1.2" and the expansion operator was "2", the algorithm runs with these values. For the

fuzzy neighborhood algorithm, the "cluster" function in the “ProNet” package was used by set-

ting the method parameter as "FN". For the spectral clustering algorithm, the "SpectralCluster-

ing" function in the Python "Sklearn" library was used. The algorithm runs with the following

parameter values: affinity as "precomputed", assign_labels as "discretize", random_state as "0".

The performance of each clustering algorithm was evaluated using both internal and bio-

logical metrics. Internal evaluation metrics evaluate only on clustered data, without reference

to externally provided results (such as cluster labels). The internal metrics used are modularity

and silhouette.

Modularity, one of the most popular validation criteria for topological clustering, states that

a good cluster should have more interior edges than expected and fewer inter-cluster edges

than expected, compared to a random network with similar properties. The modularity score

Q calculated for a clustering is given in Eq 1; where m is the number of sides; Aij is an element

of the neighborhood matrix A in row i and column j; ki and kj denote the degree of i and j, ci
and cj are components of i and j, respectively. The sum is calculated for all pairs of vertices i
and j; where δ(x,y) is taken as “1” if x = y, and “0” otherwise.

Q ¼
1

2m
P

i;jðAij �
kikj
2m

d ci; cj
� �

ð1Þ

The "modularity.igraph" function from the "igraph" library was used to calculate the modu-

larity of a clustering. The higher the modularity score Q value, the better the topological clus-

tering [49].

The silhouette index S(u) represents the average of the silhouette value S(i) of each observa-

tion. S(i) was calculated using the mean intra-cluster distance (a) and the mean nearest-cluster

distance (b) for each sample (Eq 2). The S(i) lies in the range of [–1,1]; well clustered observa-

tions have values close to 1 and vice-versa. The “index.S” function in the “clusterSim” library

was used to calculate the silhouette index score [50].

SðiÞ ¼
bðiÞ � aðiÞ

ðmaxfðaðiÞ; bðiÞÞg
where; SðuÞ ¼

Pn
i¼1
SðiÞ=n ð2Þ

Biological metrics evaluate the ability of a clustering algorithm to generate biologically

meaningful subsets. The biological metrics used in this study are the Biological Homogeneity

Index (BHI), Wang Biological Process (BP), and Molecular Function (MF) Index.
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BHI measures how biologically homogeneous clusters are. B = {B1,. . .., BF} is defined as an

F functional class sequence, B(i) is defined as the functional class containing gene i, B(j) is

defined as the functional class containing gene j, and I(B(i) = B(j)) takes the value “1” if B(i)
and B(j) are the same, “0” otherwise. Genes placed in the same cluster are assumed to have the

same biological functions. For a given clustering segment C = {C1,. . ..,CK} and a biological

class sequence B, the BHI value is given in Eq 3 [51]. Here, nk = n(Ck/B) and Ck is the number

of genes in the statistical set. The BHI value is in the [0,1] range, the larger values correspond-

ing to more biologically homogeneous clusters. The “BHI” function in the “clValid” library

was used to calculate the BHI score.

BHIðC;BÞ ¼
1

K
PK

k¼1

1

nkðnk � 1Þ

P
i6¼j2Ck

IðBðiÞ ¼ BðjÞÞ ð3Þ

Wang et al., used the semantic similarity between gene ontology (GO) terms to calculate

how functionally similar the genes in the detected clusters were [52]. They used a network-

based method that uses the topology of the GO mesh structure to calculate semantic similarity.

The semantic similarity of two GO terms is determined based on both their positions in the

GO hierarchy and their relationship to ancestor terms in the network. In this method, the

semantics of GO terms are encoded in a numerical format and different semantic contribu-

tions of different relations are considered [52]. The Wang Biological Process (BP) and Molecu-

lar Function (MF) Index were calculated with the “mgeneSim” function in the “GoSemSim”

library.

Furthermore, significant gene expression analysis was performed to show gene expression

changes between the normal colon tissue and the polyp in the modules obtained by WGCNA.

In this analysis, both student’s t-test and fold change were calculated. The p-values were cor-

rected using the "False positive rate (FDR)" method. Statistically significant gene lists were

obtained by filtering genes with absolute fold change value > 1.0 and FDR< 0.05. Then, the

common genes between selected WGCNA modules and statistically significant ones were

identified by comparing colon tissue and polyp samples.

Considering both internal and biological evaluation metrics, the submodules determined

by the clustering algorithms that provide the optimum clustering results were re-evaluated

with the individual BHI, Wang-BP, Wang-MF criteria, and finally the submodules with the

highest biological evaluation criteria were selected. Then, significantly expressed genes within

these submodules were selected for biomarker analysis.

Enrichment analysis

The GO biological processes and KEGG pathways covering the genes in the significant mod-

ules were determined using the enrichR software [53]. Terms with a 0,05 or lower p-values

(FDR adjusted) were selected as significant.

The pathway results were visualized by using the term_gene_graph (edited) function in the

pathfindR package to summarize gene expression changes and pathways memberships [54].

Validation analysis

After applying data preprocessing and probe aggregation operations on experiments

(GSE37364, GSE68468) in the validation data set, differential expression analysis was applied

to each experiment separately. We aimed to identify the differentially expressed genes that

were statistically significant between normal colon tissue and polyp for each data set. In this

analysis, both the student’s t-test and the fold change value were calculated similar to the train-

ing set. The p-values were adjusted by using the FDR method. Differentially expressed gene
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lists were obtained by filtering genes with absolute fold change > 1.0 and FDR< 0.05. Differ-

entially expressed genes for validation sets were compared with the genes found in significant

submodules that were identified by the network analysis of the training set.

Results

We summarize the results of computational analysis pipeline in this section.

Gene co-expression analysis

WGCNA creates a gene co-expression network in accordance with the scale-free topology cri-

terion [48]. As shown in Fig 2, the lowest threshold value of “8” was chosen when the scale-

free topology fit index curve reaches a high value and flattens out.

Fig 3 shows a correlation matrix resulting after applying WGCNA on the training dataset.

Dynamic tree cutting was used to identify modules with very similar gene expression profiles.

Therefore, 0.25 height cut was set as the threshold, which corresponds to a correlation of 0.75.

When similar genes were combined based on the threshold value, we obtained 22 modules.

When we analyzed p-values and correlation values, only three modules were extracted that

showed a relatively significant correlation (>0.3) between the normal colon and polyp

Fig 2. Network topology analysis for various soft thresholds. The left panel shows the scale-free fit index (y-axis) as a function of the soft threshold value (x-

axis); the right panel shows the average connectivity (y-axis) as a function of the soft threshold value (x-axis).

https://doi.org/10.1371/journal.pone.0267973.g002
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samples. These modules have opposite expression patterns for normal colon and polyp, i.e.,

the module genes are upregulated in normal colon, same genes downregulated polyp samples.

The total number of genes in these significant modules are given in Table 2.

Network clustering and identified submodules

The genes in the three significant modules of the training dataset (m19, m20, m21 marked in

Fig 3) were matched on FIN, and the resulting network structures were given as input to differ-

ent network clustering algorithms (MCL, FN, Spectral). The performance of each algorithm

was evaluated by using both internal and biological metrics, these results are summarized in

Table 3.

The annotated biological processes and pathways of genes found in 15 different submodules

were determined by applying an enrichment analysis; the results are listed in Table 4. As a

Fig 3. Correlation matrix resulting from WGCNA applied on the training dataset. Here, each cell indicates the Pearson correlation and p-value resulting

from the association between the respective module eigengenes (row) and phenotype (column).

https://doi.org/10.1371/journal.pone.0267973.g003

Table 2. Selected significant modules and the number of genes obtained on the dataset.

Module number Number of genes in the module

m19 205

m20 517

m21 35

Total 757

https://doi.org/10.1371/journal.pone.0267973.t002
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result of these analyzes, submodules 3, 9 of the FN algorithm and submodule 1 of the spectral

algorithm were found to be biologically more significant.

Enrichment analysis

An enrichment analysis was applied to the selected three submodules (3rd and 9th submodules

of FN, 1st submodule of Spectral algorithm). In order to summarize enriched terms and related

genes with a visual presentation, we drew a network plot in which nodes are either genes or

enriched terms (KEGG pathway, GO biological process, cancer hallmark term). The genes are

colored based on up-regulation (red) or down-regulation (green) expression behavior for

polyp samples.

The significantly enriched terms for the 3rd submodule of the FN algorithm are presented

in Fig 4. Most genes show a down-regulated expression (32 genes) in polyp samples. The only

one exception is the MSX1 gene which has an up-regulated expression. The significant KEGG

pathways are chemokine signaling pathway (CCL5, CCL18, CCL19, CCL21, CXCL12,

CXCL14, CXCL13), NF-kappa B signaling pathway (CCL19, CCL21, CXCL12), intestinal

immune network for IgA production (TNFRSF17, CXCL12), pathways in cancer (IGF1,

CXCL12). Some of the significant GO biological processes are cytokine-mediated signaling

Table 3. Performance comparison of clustering algorithms.

Evaluation Metric MCL(R) FN Spectral MCL(Python)

Modularity 0.146 0.364 0.327 0.213

Silhouette 0.004 0.023 0.019 0.021

Average_BHI 0.251 0.283 0.262 0.200

Average_WangBP 0.471 0.479 0.461 0.362

Average_WangMF 0.571 0.617 0.596 0.411

Considering both internal and biological evaluation metrics, it was seen that the FN and Spectral algorithms generally provided better clustering results. The

submodules detected by these algorithms were re-evaluated with individual BHI, Wang-BP Wang-MF metrics. First of all, submodules with the highest BHI, Wang-BP,

Wang-MF values were selected, then the presence of differentially expressed genes in the relevant submodule was considered.

https://doi.org/10.1371/journal.pone.0267973.t003

Table 4. Summary of significant submodules detected by the best performing FN and Spectral clustering algorithms.

Clustering

Algorithm

Submodule No Number of Genes BHI score Wang_BP Wang_MF Number of downregulated genes Number of upregulated genes

FN 2 116 0.317 0.337 0.654 14 0

3 92 0.158 0.299 0.475 32 1

4 39 0.083 0.246 0.406 14 1

5 29 0.393 0.441 0.697 5 0

7 43 0.161 0.308 0.526 8 1

9 17 0.367 0.569 0.741 2 0

10 11 0.427 0.718 0.849 2 0

24 4 0.500 0.740 0.779 0 0

1 128 0.307 0.333 0.624 20 1

Spectral 6 7 0.500 0.701 0.724 2 0

12 13 0.436 0.694 0.844 3 0

14 7 0.500 0.559 0.726 0 0

19 18 0.422 0.449 0.788 3 0

20 38 0.100 0.311 0.557 10 0

28 44 0.209 0.263 0.463 21 1

https://doi.org/10.1371/journal.pone.0267973.t004
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pathway (TNFRSF17, CD27, F13A1, NDN, CCL5, CCL18, CCL19, CCL21, CXCL12, CXCL13,

GREM2), cellular response to tumor necrosis factor (TNFRSF17, CD27, CCL5, CCL18,

CCL19, CCL21), negative regulation of cell growth (MSX1, FHL1, SLIT2), positive regulation

of MAPK cascade (CD27, IGF1, CCL5, CCL18, CCL19, CCL21), positive regulation of cell

adhesion (CCL5, CCL21, CXCL12, CITED2), regulation of cell proliferation (BMP5, CD27,

IGF1, PTN, SST, VIP, CXCL13). Some of the significant cancer hallmark terms are epithelial-

mesenchymal transition (MSX1, CXCL12, SCG2, SLIT2), KRAS signaling up (F13A1, ADAM-

DEC1), inflammatory response (CCL5, VIP), IL-6/JAK/STAT3 signaling (CXCL13).

The significantly enriched terms for the 1st submodule of the Spectral algorithm are pre-

sented in Fig 5. Most genes show a down-regulated expression (20 genes) in polyp samples.

The only one exception is the TLR4 gene which has an up-regulated expression. The signifi-

cant KEGG pathways are hematopoietic cell lineage (CD14, MS4A1, CD37, HLA-DPA1,

HLA-DQB1), inflammatory bowel disease (TLR4, HLA-DPA1, HLA-DQB1), intestinal

immune network for IgA production (HLA-DPA1, HLA-DQB1), JAK-STAT signaling path-

way (CSF2RB, IL10RA), toll-like receptor signaling pathway (TLR4, CD14). Some of the sig-

nificant GO biological processes are positive regulation of T cell proliferation (HLA-DPA1,

PTPRC, VCAM1), positive regulation of cytokine production (TLR4, CD14, HLA-DPA1),

positive regulation of interleukin-8 production (TLR4, CD14). Some of the significant cancer

hallmark terms are inflammatory response (CD14, CD69, IL10RA), KRAS signaling up

(CD37, IL10RA, GPNMB), IL-6/JAK/STAT3 signaling (CD14, CSF2RB), Interferon Gamma

Response (CD69, CSF2RB, IL10RA, VCAM1, SLAMF7), TNF-alpha Signaling via NF-kB

(CD69).

Fig 4. The gene-term graph in which the up / down regulated genes of the terms that are significant terms (A. KEGG pathway, B. Cancer Hallmark term, and

C. GO-BP) for the 3rd module of the FN algorithm.

https://doi.org/10.1371/journal.pone.0267973.g004
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When we analyzed the significant pathway and terms associated with the differentially

expressed genes of two submodules, the immune response and cytokine-mediated processes /

pathways became more apparent out of all other enriched terms. Therefore, we will continue

with the genes, which are members of these processes or pathways, in the biomarker identifica-

tion procedure.

Independent validation of biomarker proteins

As a validation procedure we compared the genes covered in three significant submodules (3rd

and 9th submodules of FN clustering, 1st submodule of spectral clustering) of the training set

with the genes obtained as the result of differential expression analysis of the validation sets. In

differential expression analysis of validation sets, there were 391 down-regulated and 236 up-

regulated genes for the GSE37364 set, while 286 down-regulated and 77 up-regulated genes

were found for the GSE68468 set.

When we compared the GSE37364 experiment with the 3rd submodule of the FN clustering,

most of the genes (25 genes) showed a down-regulated expression for both training and valida-

tion datasets (S1 Table). 17 of these genes (ADAMDEC1, BMP5, CCL19, CCL21, CCL5,

CITED2, CXCL12, CXCL13, F13A1, GREM2, IGF1, NDN, PTN, SCG2, SLIT2, SST,

TNFRSF17) are involved in significant biological processes as identified in the enrichment

analysis. MSX1 has up-regulated expression in both datasets. Comparing the GSE37364 exper-

iment with the 9th submodule of FN revealed the down-regulation of CSF2RB and IL10RA in

both training and validation set. In addition, these genes are involved in significant biological

processes and pathways based on enrichment analysis. On the other hand, the comparison of

GSE37364 experiment with the 1st submodule of the spectral clustering led 13 common genes

with a down-regulated expression in both data sets. 8 of these genes (GPNMB, HLA-DPA1,

Fig 5. The gene-term graph in which the up / down regulated genes of the terms that are significant terms (A. KEGG pathway, B. Cancer Hallmark term, and

C. GO-BP) for the 1st module of the Spectral algorithm.

https://doi.org/10.1371/journal.pone.0267973.g005
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MS4A1, NDN, VCAM1, CD14, CSF2RB, IL10RA) are involved in significant biological pro-

cesses. TLR4 has up-regulated expression in both datasets. CD14 has a down-regulated expres-

sion in both datasets.

When we compared the GSE68468 experiment with the 3rd and 9th submodules of the FN,

all of the common genes showed a down-regulated expression in both datasets (S2 Table). 13

of these genes (ADAMDEC1, CCL19, CCL21, CITED2, CXCL12, CXCL13, F13A1, FHL1,

GREM2, NDN, SLIT2, SST, VIP) are involved in significant biological processes. The compari-

son of GSE68468 experiment with the 1st submodule of the spectral clustering showed 6 com-

mon genes with down-regulated expression profiles for both datasets. Two genes (GPNMB,

NDN) are involved in significant biological processes.

As a summary, correlated results found between training and validation datasets confirm

the consistency of biomarker proteins identified by the integrated network-based analysis of

this study.

Targeting biomarker proteins

We performed a computational drug screening which searched the known compounds target-

ing biomarker proteins identified in this study. The analysis was performed using the R pack-

age (“rDGIdb”) of the DGIdb system, which integrates more than twenty compound-protein

interaction databases [55]. The compound groups with an inhibitory action were used for tar-

gets with significantly increased gene expression. The compound groups with an activator

action were used for targets with a significant decrease in expression. Based on this compound

action type filtering, we identified seven compounds for our biomarker proteins (Table 5).

Discussion

There is no identical study in literature that applies both WGCNA and tissue-specific network

clustering on adenomatous polyp samples so far. Therefore, we compare our results with

recent studies that perform various bioinformatics analysis on polyp and colorectal cancer

samples.

Meng and colleagues applied WGCNA to identify hub genes in the progression of colorec-

tal cancer [42]. They reported IL10RA as one of hub genes with a lower mRNA expression in

colorectal cancer samples compared to normal. This result is correlated with our finding in

which IL10RA also showed a decrease in polyp samples. Another study incorporated in silico

and in vitro methods and proposed several potential therapeutic targets for colorectal cancer

[41]. One of these targets was SST with a down-regulated expression in colorectal cancer sam-

ples, this result was also observed in our study. So, we speculate that some of the collected

polyp samples in this study would present malignant profiles. Differential expression and PPI

Table 5. The results of drug screening that targets biomarker proteins identified a result of clustering analysis. The expression type column shows gene expression

change of the gene. The action type was chosen according to the expression status of a target.

Target Expression Type Compound Action Type Compound Description

GPR18 Down Arachidonoyl Glycine Agonist Endogenous agonist

Down Cannabidiol Agonist Active cannabinoid used as an adjunctive treatment

Down Anandamide Agonist

CSF2RB Down Sargramostim Agonist Immunostimulator for white blood cells as a chemotherapy drug

IL10RA Down Interleukin-10 Agonist Anti-inflammatory cytokine

TLR4 Up Resatorvid Antagonist Suppresses production of inflammatory mediators

Up Eritoran Tetrasodium Antagonist Toll-like receptor 4 inhibitor.

https://doi.org/10.1371/journal.pone.0267973.t005
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network analysis also revealed SST that was one of the genes with the highest AUC value in

terms of diagnostic efficiency in colorectal cancer [40]. The VIP and SST genes reported in

another study that applied network-based algorithms to find prognostic markers in colorectal

cancer [39]. A decreased mRNA expression of VIP in colorectal samples was mentioned,

which is also in parallel with our results since we observed down-regulated profile of VIP in

polyp samples. Another study highlighted IGF1 as one of the drivers in the transition between

adenoma and colorectal cancer, IGF1 was also identified in our study with a decreased expres-

sion profile in polyps [44]. Comparison of cancer free and cancer adjacent polyp samples pre-

sented several molecular changes between two polyp types [46]. In terms of mRNA expression,

GREM1, IGF2, CTGF, and PLAU showed significant changes between cancer adjacent and

cancer free polyps. There are common genes (BMP5, CCL18, MS4A1, MSX1, SCG2, SST,

STMN2, VIP) which are differentially expressed in our study as well. Only BMP5 and STMN2

has the same expression behavior (down-regulation) with this previous study. Other common

genes presented a reverse expression (down-regulation) in our study, this might indicate that

some of the collected polyp samples in this study have more similar molecular profile to cancer

adjacent polyps.

Almost all the genes analyzed in this study revealed decreased gene expression in polyp

samples except for TLR4 and MSX1. Since these targets have been associated with several can-

cers, they could be promising biomarkers in adenoma-to-carcinoma sequence. Moreover,

enrichment analysis points out their possible roles in either proliferation or invasion processes.

Along with TLR4 expression, the results also indicate alterations in immune response regard-

ing increased expression of MHC-II class genes and a shift in CD14 and chemokine profiles.

The results demonstrated that expressions of inflammatory bowel disease-related genes are

significantly altered in colon polyp. Considering chronic inflammation is a well-known mech-

anism in carcinogenesis, regulation of these genes could be potential biomarkers and thera-

peutic targets in a view of treating adenomas and prevention [9]. One such gene, TLR4 is a

major player in innate immunity and several studies correlated its role with colorectal carci-

noma earlier [56]. Our results indicate its upregulation also in colon polyps against normal tis-

sue, supporting its role in carcinogenesis. Recently, the function of this gene on promotion of

adenomas related with various pathways such as NF-κβ/STAT axis and NOTCH signaling

[34,57–60]. Also, gut microbiota and dysregulated immune response emerge as an essential

mechanism [20,58,61]. A striking example has been given by Tsoi and colleagues. They indi-

cate that a bacteria strain enriched in colon malignancies called Peptostreptococcusanaerobius

induce proliferation through TLR4 related ROS activity [61]. Similarly, Pastille et al. demon-

strated that blocking of TLR4 signaling abates progression of colitis-associated colon cancer

progression through reduced pro-inflammatory response [21]. They claimed that this blocking

treatment is superior to antibiotics during inflammatory phase due to observing less adverse

effects. Interestingly, CD14 a co-receptor of TLR4 is downregulated in our study, contrary to

TLR4 expression in adenoma. This result hints CD14-independent TLR4 function in colon

polyp progression. Moreover, CD14 have been demonstrated as essential in macrophage

polarization in response to LPS and IL-4 co-stimulation [62]. Considering inhibition of M2

polarization is CD14 dependent, downregulation of CD14 reprograms macrophages to M2

polarization which could support malign transformation and tumor associated microenviron-

ment in colon adenomas through immune evasion and cytokine profile.

The pro-tumoral or anti-tumoral activities of chemokines previously reported which may

be also necessary for polyp formation [35]. The colon polyps demonstrated decreased expres-

sions in CCL5, CCL18, CCL19, CCL21, CXCL12, CXCL14 and CXCL13 genes in this research.

These chemoattractant cytokines play crucial role in recruitment of immune cells into tumor

microenvironment and regulation of inflammatory response. The downregulated chemokines
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are mostly related with pro-tumoral activities. Several studies indicate them as a poor prognos-

tic marker. However, these immune regulators could also support immunity in some cancers.

Similarly, decrease in CCL5, CCL21 and CXCL12 chemokines are related with reduced cell

adhesion which could enhance invasive character for polyp [63–65]. Also, receptor profile on

both tumor and immune cells manages the response. In these regards, the downregulated che-

mokines could be associated with either tumor suppression or progression. But decoy recep-

tors and dysregulated tumorigenic signals could support polyp progression due to

chemokines’ dual nature before the stage of malign transformation.

HLA-DPA1 and HLA-DQB1 genes take essential role in immunity. These two genes

encode MHC Class II proteins over antigen presenting cells such as macrophages and den-

dritic cells, that present foreign or aberrant peptides to T cells. Downregulation of these genes

could be part of immune evasion mechanisms. Several studies suggest that absence of

HLA-DPA1 and HLA-DQB1 are correlated with poor prognosis of some cancers [66–69].

Low expression of HLA-DPA1 is associated with pediatric adrenocortical tumors [70]. On the

other hand, HLA-DQB1 is more likely associated with autoimmune diseases [71,72]. There are

limited studies on relationship of HLA-DQB1 with adenomas or malignities [68,73]. Zhang

and colleagues indicate that this gene is a favored prognostic marker for early-stage lung ade-

nocarcinomas [68]. Our results point out that both HLA-DPA1 and HL-DQB1 declined in

colon adenomas. Therefore, we suggest that these two MHC class II family genes might con-

tribute immune evasion in pre-malignant stage of colon tumors.

MSX1 takes role in infamous metastatic step called Epithelial Mesenchymal Transition

(EMT) which is also defined as a cancer hallmark [9]. The process refers to a cellular differenti-

ation in which epithelial cells gain mesenchymal features such as stem-like morphology, loss of

cell polarity, increased migration, and invasion abilities [74]. Since MSX1 advances the inva-

sive phenotype due to EMT, the upregulation of this gene could be beneficial in tumor pro-

gression. Moreover, the results point out that downregulation of SCG2, CXCL12, and SLIT2

genes are also correlated to this reprogramming behavior. Therefore, the expression changes

in favor of EMT support the idea that colon adenomas could initiate to advance both invasive

and metastatic features in pre-malignant period. Several studies endorse this proposition as

they also discuss that EMT related pathways would involve in polyp formation [44,68,75].

Enrichment analysis illuminates that MSX1 upregulation, on one hand, induces EMT, on the

other hand, hinders cell growth. This homeobox protein emerges as a tumor suppressor in var-

ious tumors such as breast, cervical, and glioblastomas. It inhibits tumor growth by suppress-

ing proliferation signals and motivates cells to apoptosis [28,29,76]. Tao and colleagues also

suggest this transcriptional factor inhibits migration and invasion in gliomas through the

WNT / β-catenin pathway [29]. Nonetheless, several other studies conclude MSX1 as an onco-

driver associated with increased invasion capacity and malignant phenotype [32,77,78]. Sun

et al. indicated this factor as potential biomarker and therapeutic target for colorectal cancers

[32]. Therefore, we could discuss that MSX1 might increase the response to over proliferative

signal in colon adenomas as a brake mechanism, yet it could support invasive and metastatic

phenotype to favor malign transformation given by its dual nature. If so, this transcriptional

factor emerges as potential regulator of colon malignancies.

KRAS signaling related CD37, IL10RA, GPNMB had decreased gene expression patterns in

polyp samples. GPNMB may be involved in growth delay and reduction of metastatic poten-

tial. A significantly higher methylation rate was found for the GPNMB gene in African Ameri-

can patients compared to Iranians [79]. The gene might play a role in the high incidence and

aggressiveness of colorectal cancer in the African American population. The hypermethylation

of the GPNMB gene is proposed as a marker of colon carcinogenesis. Another study showed

that higher methylation profile of GPNMB led to a lower expression in adenoma and
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colorectal cancer samples [80]. So, the loss of GPNMB expression may cause tissue disruption

and more invasive cells. This evidence is correlated with our observation, its expression loss

might fasten the development of malignant polyps. IL10RA showed higher expression in

healthy colon samples compared to colorectal cancer [81]. They claimed that IL10RA regulates

immune system response in cancer environments. The loss of IL10RA expression in our

results also supports limited immune response which can eventually cause the malignant pro-

file of polyps.

Conclusions

This study has analyzed 150 samples collected from eight different GEO projects covering

both normal colon and adenomatous polyp tissue samples. In-silico pipeline was created with

a holistic approach that applies co-expression analysis, tissue-specific PPI construction, net-

work clustering, and pathway analysis. By integrating all these network-based approaches, we

aimed to find molecular-level evidence of why the tissue transitioned to the polyp state before

it became malignant. To the best of our knowledge, such a comprehensive network-based

analysis was applied for the first time on colon polyp samples.

Construction of tissue-specific interaction networks have introduced a system level repre-

sentation of real colon tissue to our computational model. Since the proteins without any

expression in colon tissue were eliminated from the original PPI network, eventually only

expressed ones remained in the colon-specific network. Usage of clustering methods on the

colon-specific network revealed functionally conserved protein modules which were priori-

tized based on biological evaluation metrics. Finally, this analysis strategy highlighted bio-

marker proteins with highly similar molecular functions. Two independent cohorts also

validated most of the biomarkers with similar differential gene expressions. As a summary,

integration of systems biology methods and tissue-specific protein interactions revealed more

significant biomarkers that can facilitate diagnosis and treatment of colon polyps.

The most significant biomarkers are TLR4 and MSX1 with upregulated expressions as well

as several chemokines with downregulated expressions. TLR4 can be targeted by two com-

pounds identified in a database search. Some of these genes take crucial role on EMT program

and regulation of adhesion which induce more invasive and pre-metastatic phenotype to

colon polyps even though they also play tumor suppressors as they hinder cell proliferation

and tumor growth in pre-malignant stage. Moreover, TLR4 and aberrant chemokine profile

indicate that inflammatory and immune mechanisms involved in polyp formation. Although

these variances induce mostly anti-tumor response, a wide range of dysregulated survival sig-

nals and absence of regulatory proteins such as CD14 support tumor progression through M2

polarization and invasiveness. The invasive character could eventually favor malign transfor-

mation. Therefore, these alterations emerge as potential prognostic markers which could

reveal malignant potential in adenomas. As a future work these findings will be confirmed by

wet lab experiments to enlighten the roles of these targets as well as further investigations on

inflammatory mechanisms and EMT programs in adenoma-to-carcinoma sequence.

Supporting information

S1 Fig. Hierarchical clustering result on 10 data sets without batch effect removed.

(TIF)

S2 Fig. Hierarchical clustering result on 10 datasets whose batch effect was removed by

combat method.

(TIF)
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