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Abstract
Background: Variants of concern (VOCs) of SARS- CoV- 2 have caused resurging waves of infec-
tions worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely 
between September 2020 and August 2021. We sought to elucidate how various control measures, 
including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the 
Netherlands.
Methods: We performed phylogenetic analyses on 39,844 SARS- CoV- 2 genomes collected under 
the Dutch national surveillance program.
Results: We found that all four VOCs were introduced before targeted flight restrictions were 
imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predom-
inantly from other European countries, continued during these restrictions. After their respective 
introductions into the Netherlands, the Alpha and Delta VOCs largely circulated within more popu-
lous regions of the country with international connections before asymmetric bidirectional transmis-
sions occurred with the rest of the country and the VOC became the dominant circulating lineage.
Conclusions: Our findings show that flight restrictions had limited effectiveness in deterring VOC 
introductions due to the strength of regional land travel importation risks. As countries consider 
scaling down SARS- CoV- 2 surveillance efforts in the post- crisis phase of the pandemic, our results 
highlight that robust surveillance in regions of early spread is important for providing timely informa-
tion for variant detection and outbreak control.
Funding: None.

Editor's evaluation
Han et al., analyze sequences from randomly sampled COVID- 19 cases in the Netherlands to 
understand the impact of flight restrictions on the importation of SARS- CoV- 2 variants. In line with 
prior observations and common wisdom, they find that targeted flight restrictions were not effec-
tive at preventing introductions of new lineages and that their early spread in the Netherlands was 
sustained by urban centers. These useful findings, based on unusually strong sequence collection 
techniques, can inform surveillance policy and improve basic understanding of the spread of SARS- 
CoV- 2 variants.
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Introduction
Coronavirus disease 2019 (COVID- 19) has resulted in excess morbidity and mortality across the world. 
In response, governments have implemented travel restrictions and nonpharmaceutical interventions 
in order to limit introductions and reduce transmission of severe acute respiratory syndrome corona-
virus 2 (SARS- CoV- 2; Brauner et al., 2021; Chinazzi et al., 2020; Flaxman et al., 2020). However, 
high levels of global infections have led to the evolution and emergence of variants of concern (VOCs) 
that are more transmissible, some of which encode putative mutations that evade immunity acquired 
from previous infection or vaccination (Harvey et al., 2021). These VOCs have led to resurging SARS- 
CoV- 2 outbreaks, hampering efforts to contain and control the pandemic worldwide. Of note, four 
such VOCs arose into global prominence in late 2020, including Alpha (Nextclade 20I; PANGO lineage 
B.1.1.7), Beta (20 H; B.1.351), Gamma (20 J; P.1), and Delta (21 J; B.1.617.2), causing substantial levels 
of transmission worldwide, with Alpha and Delta being the most common VOCs globally in 2021 
(Campbell et al., 2021).

The Alpha VOC was first reported in the United Kingdom (U.K.) during the fall of 2020 and found 
to be 43–90% more transmissible (Davies et al., 2021a; Volz et al., 2021) with greater mortality risks 
(Davies et al., 2021b; Grint et al., 2021) than previously existing variants. Of the 17 amino acids 
mutations found in Alpha, N501Y in the receptor- binding domain (RBD) of the spike protein was 
predicted to increase binding to the human angiotensin- converting enzyme 2 receptors (Starr et al., 
2020). This is also a common mutation found in Beta (Tegally et al., 2021) and Gamma (Faria et al., 
2021). On the other hand, the Delta VOC, first identified in India in October 2020 (Cherian et al., 
2021), encodes P681R mutation in the furin cleavage site in spike protein and R203M mutation in 
the nucleocapsid protein that improves infectivity (Syed et al., 2021). Delta has also been linked to 
increased disease severity, as well as greater and longer viral shedding (Ong et al., 2021). In the U.K., 
where the VOC was first detected in April 2021, epidemiological modelling estimated the VOC to be 
40–80% more transmissible than Alpha.

The four aforementioned VOCs were also introduced into the Netherlands, with the Alpha and 
Delta VOCs subsequently dominating infections in the country in 2021. In a bid to deter introductions 
and slow down the spread of VOCs, the Dutch government implemented targeted flight restrictions 
on countries where these VOCs had first emerged. Various non- pharmaceutical interventions were 
also implemented as the country experienced multiple waves of infections between 2020 and 2021. 
Since the end of 2020, the Dutch National Institute for Public Health and Environment scaled up its 
sequencing efforts under a random national surveillance program. This detailed surveillance program 
allows the monitoring of the introduction and spread of novel variants or specific mutations. Here, 
SARS- CoV- 2 positive samples were randomly collected across the country and 39,844 high- quality 
SARS- CoV- 2 whole genomes were sequenced between 22 September 2020 and 31 August 2021 (48 
calendar weeks). We analyzed these sequences alongside epidemiological data to identify importa-
tion risks of novel variants into the Netherlands and characterize their subsequent patterns of spread 
within the country.

Methods
Whole genome sequencing
A total of 39,844 nasopharyngeal samples were randomly collected across all 25 GGD municipal 
health services across all municipalities in the Netherlands and were sequenced for whole SARS- CoV- 2 
genomes. These samples were collected through nationwide community testing programs including 
at test buses and health facilities (https://www.rivm.nl/coronavirus-covid-19/onderzoek/kiemsurveil-
lance). Test- positive samples were randomly subsampled each week in each municipality to minimize 
case ascertainment bias. Only specimens with cycle threshold (Ct) values <30 were selected for whole 
genome sequencing.

As testing and samples were analyzed by 30–35 different laboratories across the country, different 
nucleic acid extraction methods were used (Herrebrugh et al., 2021). For samples analyzed by the 
laboratory of the Dutch National Institute for Public Health and Environment (38,260 samples; 96% 
of all samples analyzed), total nucleic acid was extracted using MagNApure 96 (MP96) with total 
nucleic acid kit small volume (Roche). RT- qPCR was performed on 5 μl total nucleic acid using TaqMan 
Fast Virus 1- Step Master Mix (Thermo Fisher) on Roche LC480 II thermal cycler with SARS- like beta 
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coronavirus (Sarbeco) specific E- gene primers and probe and EAV as described previously (Corman 
et al., 2020; Scheltinga et al., 2005).

Amplicon- based SARS- CoV- 2 sequencing for was performed using the Nanopore protocol ‘PCR 
tiling of COVID- 19 virus (Version: PTC_9096_v109_revE_06FEB2020)’ which is based on the ARTIC 
v3 amplicon sequencing protocol (Artic Network, 2020). Several modifications were made to the 
protocol as primer concentrations were increased from 0.125 to 1 pmol for the following amplicon 
primer pairs: in pool A amplicons 5, 9, 17, 23, 55, 67, 71, 91, 97 and in pool B amplicons 24, 26, 54, 64, 
66, 70, 74, 86, 92, 98. Both libraries were generated using native barcode kits from Nanopore SQK- 
LSK109 (EXP- NBD104, EXP- NBD114 and EXP- NBD196) and sequencing was performed on a R9.4.1 
flow cell multiplexing 2 up to 96 samples per sequence run. Consensus sequences (>50 x depth- of- 
coverage) are generated using an in- house bioinformatic pipeline developed by the Dutch National 
Institute for Public Health and Environment (https://github.com/RIVM-bioinformatics/SARS2seq/; 
Zwagemaker, 2022).

Epidemiological data
All epidemiological data including the breakdown of positive cases by age group and weekly number 
of laboratory- confirmed cases in each Municipal and Regional Health Service region are provided 
by the Dutch National Institute for Public Health and Environment (https://www.rivm.nl/en/node/ 
163991).

Phylogenetic analyses
We performed ancestral reconstruction analyses for each VOC lineage to identify likely overseas 
introduction into the Netherlands at the continental level, differentiating the Netherlands from the 
rest of Europe. As proportions of cases for each VOC lineage are unknown for most countries, we 
subsampled global sequences downloaded from GISAID (https://www.gisaid.org; dataset up to 6 
October 2021) by the proportion of COVID- 19 cases reported per week for each country using data 
from the Johns Hopkins University, Center for Systems Science and Engineering (CSSE) (http://github. 
com/CSSEGISandData/COVID-19). We aimed to sample 100 sequences each week. To ensure that 
countries that are underreporting cases (Gill et al., 2022) were included in our analyses, at least one 
representative sequence was included for each country with reported cases that week. The actual 
number of sequences sampled each week for each variant may differ because of sequence availability 
and the requirement to have at least one sequence from each country each week. For sequences 
from the Netherlands, we also subsampled Dutch sequences by randomly subsampling the number 
of sequences in each GGD region each week to the corresponding relative number of reported cases 
in the same week for that GGD region. As there may be certain weeks when our aforementioned 
strategy sampled less non- Netherlands sequences than Netherlands sequences, we would resample 
a larger number of non- Netherlands sequences accordingly such that there are at least twice as many 
non- Netherlands sequences as Netherlands sequences each week. The subsampling procedure 
yielded 6,365 (2,369), 1,531 (90), 1,274 (102) and 6,929 (1,035) Alpha, Beta, Gamma, and Delta global 
(Dutch) sequences, respectively.

All sequences were aligned to hCoV- 19/Wuhan/WIV04/2019 (WIV- 04; EPI_ISL_402124) using 
MAFFT v7.427 (Katoh and Standley, 2013). Likely problematic sites (https://github.com/W-L/Prob-
lematicSites_SARS-CoV2) along with untranslated regions in the 5’ and 3’ ends were masked. All 
maximum- likelihood (ML) phylogenetic trees were reconstructed using IQ- TREE (Nguyen et  al., 
2015) under the Hasegawa–Kishono–Yano nucleotide substitution model with a gamma- distributed 
rate variation among sites (HKY +G). We regressed the root- to- tip genetic distances against sampling 
dates using treetime v0.8.1 (Sagulenko et al., 2018) to assess the level of temporal signal, ensuring 
that none of the representative sequences were deemed molecular clock outliers.

Using these sequences, we then reconstructed approximate ML phylogenies using FastTree v2.1.11 
(Price et al., 2010). All phylogenetically neighboring overseas sequences placed within two nodes 
away from any Dutch sequence were retained. This further reduced the number of sequences to a 
representative set of 3671, 496 and 575 and 2180 sequences for Alpha, Beta, Gamma and Delta VOCs 
respectively. We then reconstructed an ML phylogenetic tree again under the HKY +G nucleotide 
substitution model using IQ- TREE after removing any molecular clock outlying sequences identified by 
treetime. Here, however, we included the WIV- 04 reference genome in the phylogeny reconstruction 
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which was used as an outgroup for tree rooting. We then time- scaled these ML phylogenies using 
treetime, which were then used as fixed tree topologies in BEAST v.1.10.4 (Suchard et al., 2018) to 
perform Bayesian discrete phylogeographical analyses at the continental level. Here, we performed 
100 million MCMC generations, sampling every 1000 steps.

We randomly downsampled sets of Alpha (n=1389) and Delta (n=1342) variant sequences collected 
in the Netherlands. To understand within- country source- sink dynamics during early introductions and 
proliferation patterns during later periods, we used BEAST v.1.10.4 to perform continuous phylo-
geographical analyses on these sequence data, using a relaxed random walk diffusion model and a 
Cauchy distribution model among branch heterogeneity in diffusion velocity (Lemey et al., 2010). We 
used HKY + G nucleotide substitution model and a Skygrid coalescent model (Gill et al., 2013; each 
grid point denoting one week) with a relaxed lognormal molecular clock. We inferred geographical 
coordinate input using the first four digits of postcodes (i.e. neighborhood level) associated with the 
sampled sequences. For sequences with identical postcodes, we randomly selected geographical 
coordinates corresponding to the postcode area using shapefiles provided by https://www.gadm.org. 
We performed two independent chains, each with 300 million MCMC generations for each variant 
analysis, sampling every 50,000 steps. The first 100 million steps were discarded as burn- in. Assess-
ment of convergence (effective sample size >200) for each chain was performed using Tracer v1.71 
(Rambaut et  al., 2018). The posterior distribution of trees from both chains were combined and 
resampled at every 100,000 steps to generate the maximum clade credibility tree. Customized scripts 
from the SERAPHIM package (Dellicour et al., 2016) were used to extract the inferred phylogeo-
graphic reconstruction.

All tree visualizations were performed using baltic (https://github.com/evogytis/baltic; Dudas, 
2021).

Aggregated mobility data
We used publicly available mobility data from Google COVID- 19 community mobility reports (https://
www.google.com/covid19/mobility/) which contain daily anonymized location histories as a measure 
of people’s movements. Google mobility data consisted of six categories that were measured relative 
to a baseline value. This baseline is the median mobility value between pre- pandemic weeks of 3 
January and 6 February 2020. Categories include residence, parks, retail and recreation, groceries and 
pharmacies, working place and transit. Data for different regions of the Netherlands were available. 
We calculated aggregated nationwide mean mobility by averaging values across all regions for all 
categories except for residence and parks where the former has a reversed effect on relative mobility 
while the latter is affected by climate.

Results
SARS-CoV-2 infections and genotypes circulating in the Netherlands 
from September 2020 to August 2021
There were 1,792,759 laboratory- confirmed SARS- CoV- 2 cases in the Netherlands during the study 
period between 22 September 2020 and 31 August 2021 (week 39/2020 to week 34/2021; Figure 1A). 
Similar to the first wave of the pandemic in the Netherlands in Spring 2020, most reported cases were 
attributed to the more densely populated regions of the country including North and South Holland, 
as well as North Brabant (Figure 1B) where the first local clusters of SARS- CoV- 2 were also detected in 
March 2020 (Oude Munnink et al., 2020). 39,844 SARS- CoV- 2 positive nasopharyngeal samples were 
randomly selected from 25 Municipal and Regional Health Service (GGD) regions across the Nether-
lands during this study period and sequenced to obtain whole virus genomes as part of the national 
SARS- CoV- 2 genomic surveillance program.

Using NextClade lineage assignment (Aksamentov et al., 2021), the viruses sampled at the start 
of the study period were largely genotyped as clade 20 A and its daughter lineages, 20B and 20E 
(EU1) (Figure 1B–C). 20 A was the lineage that seeded the pandemic in Europe in March 2020. On 
the other hand, 20E (EU1) was first detected in Spain on June 2020 and spread widely across Europe 
due to the resumption of regional travel over summer 2020 (Hodcroft et al., 2021). Owing to rising 
case numbers, non- pharmaceutical interventions closing restaurants and nightlife establishments 
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Figure 1. SARS- CoV- 2 infections and VOCs circulating in the Netherlands from September 2020 to August 2021. (A) Weekly number of laboratory- 
confirmed SARS- CoV- 2 cases (1st panel from the top) and sequenced genomes (2nd panel). Lineage proportions of sequences colored by NextClade 
genotype designations (3rd panel). Breakdown of positive cases by age group from data provided by the Dutch National Institute for Public Health 
and Environment (4th panel). Aggregated weekly average percentage change in mobility to the baseline in the Netherlands from Google’s COVID- 19 

Figure 1 continued on next page
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were implemented on 14 October 2020. Cases dipped momentarily while both 20 A and 20E (EU1) 
remained co- circulating into December 2020.

The first Alpha sample was collected on 5 December 2020 in the national surveillance program 
prior to the full lockdown that closed all public venues, workplaces and schools on 15 December 2020. 
A curfew was also imposed later on 23 January 2021. A sharp drop in cases was observed after the 
implementation of the full lockdown. Alpha then displaced 20 A and 20E (EU1) over time to become 
the dominant circulating virus lineage by 16 February 2021 (week 6) for the rest of the lockdown 
period. Other VOCs such as Beta (N=422 sequences; first sequence was collected on 22 December 
2020) and Gamma (N=350 sequences; first sequence was collected on 27 January 2021) were also 
detected by random surveillance in The Netherlands around the turn of the year but did not circulate 
to the levels of Alpha.

Alpha caused a rebound in cases around mid- March 2021, after which case numbers stabilized 
and eventually began to decline at the end of April 2021. The Dutch government began taking steps 
to relax restrictions around the same time, starting with the end of curfew and resumption of higher 
education during the week of 27 April 2021. The first Delta sample was collected in the previous week 
on 15 April 2021 and continued to accumulate in frequency. By week 25 (29 June 2021), the Delta 
VOC accounted for 24% of all weekly genomes sequenced.

Most restrictions were lifted in the same week by 26 June 2021. As SARS- CoV- 2 prevalence declined 
over time, average nationwide mobility also increased steadily which eventually came close to pre- 
pandemic levels in June 2021 (mean percentage change relative to pre- pandemic baseline = –5.0% 
(s.d.=11.0%); Figure 1A). SARS- CoV- 2 prevalence was at its lowest then with only 8,690 reported 
positive cases that week. Within only 1 week after reopening, however, weekly cases soared above 
50,000 on weeks 26 and 27 (6–20 July 2021). With most infections attributed to Delta, the novel VOC 
replaced the Alpha VOC as the dominant lineage within the next 3 weeks as over 90% of randomly 
surveilled genomes were typed as Delta VOCs by mid- July.

Stratifying the number of weekly reported positive cases by patient age group, the relative propor-
tions in case positive rates remained fairly consistent throughout the study period except for weeks 
26 and 27 where the rapid increase in cases was largely attributed to individuals aged between 15 and 
30 years (Figure 1A). One of the reasons behind widespread transmission among young adults then 
was super- spreading linked to nightlife venues (Koopsen et al., 2022). In response, the government 
shut nightlife establishments down again on 10 July 2021 (week 27). Case numbers fell promptly after 
but remained at over 30,000 new cases per week for the rest of the study period. The Delta VOC 
had in principle completely displaced Alpha by then with over 99% of randomly surveilled genomes 
sampled from August 2021 onwards.

Overseas introduction of variants of concern
To deter the introductions of novel VOCs into the Netherlands, travel restrictions were imposed on 
countries where the VOCs first emerged, including the United Kingdom between December 2020 
and March 2021 due to the emergence of Alpha; South Africa and Brazil between January and June 
2021 due to Beta and Gamma respectively; and India from April to June 2021 due to Delta. These 
travel restrictions include a ban on all incoming passenger flights except for those carrying cargo and 
medical personnel, on top of an entry ban for all non- European Union residents (Government of the 
Netherlands, 2021). On the other hand, travel within parts of the Schengen Area in Europe, which 
includes the Netherlands, remained largely possible during this period. To identify likely where and 
when VOCs were actually introduced into the country, we subsampled a representative set of Dutch 
and overseas sequences collected over the same time period. We then reconstructed time- scaled, 
maximum likelihood (ML) phylogenies and used these fixed trees to perform discrete trait analyses 
using a Bayesian approach to infer likely overseas introductions at the continental level. This was done 
by identifying subtrees subtending Dutch sequences with ancestral states that were attributed to an 

community mobility reports. Baseline mobility is the median value from a 5- week period between 3 January 2020 and 6 February 2020, prior to the 
COVID- 19 pandemic in Europe (5th panel). (B) Mean number of laboratory- confirmed cases per 100,000 inhabitants (data from the Dutch National 
Institute for Public Health and Environment; left panel); total number of sequenced genomes in different Municipal and Regional Health Service (GGD) 
regions over the entire study period (middle panel); Percentage of Dutch population residing in each GGD region (right panel).

Figure 1 continued
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overseas origin (Figure 2). All four VOCs were already introduced into the Netherlands prior to the 
targeted flight restrictions that were imposed on countries where these VOCs first emerged.

Importantly, besides countries where travel restrictions were in place, we estimated multiple likely 
introduction events from other foreign countries into the Netherlands for all four VOCs (Alpha, n=100; 
Beta, n=7; Gamma, n=12; Delta, n=213). Given disparities in global sequencing efforts (Brito et al., 
2021), the random surveillance strategy used in local sample collection, and low genetic diversity 
among SARS- CoV- 2 genomes used to reconstruct ancestral states, we are unable to fully and reliably 
quantify the number of introductions attributed to different geographical regions. However, many of 
the estimated regions for these ancestral states were in Europe (Alpha, 71% of all estimated over-
seas introduction events; Beta, 29%; Gamma, 71%; Delta, 79%; Figure 2). Furthermore, these Euro-
pean introductions continue to occur during the targeted travel ban period. Inspecting the nearest 
phylogenetic ancestral taxon to the aforementioned subtrees, we found that many of these nearest 
overseas neighboring tips were detected in Belgium, Germany, France and Denmark where borders 
between the Netherlands remained open as well as other countries (e.g. Spain, U.K., Poland, U.S.) 
where no targeted travel restrictions were set in place (Figure 2—figure supplement 1). There was 
also no isolated period in time in which these VOCs were introduced into the Netherlands - introduc-
tions likely occurred repeatedly during the period when these VOCs were also proliferating within the 
country.

Within-country transmission dynamics of the Alpha and Delta VOCs
To further elucidate the transmission dynamics of the Alpha and Delta VOCs within the Netherlands, 
we performed continuous phylogeographic analyses using separate downsampled sets of Alpha and 
Delta sequence data (Figure 3). For the first four weeks since the initial detection of both VOCs within 
the country, introductions and phylogenetic branch movements were mostly concentrated in the more 
populous regions of the country, including North and South Holland, Utrecht and North- Brabant, 
forming a core of early dominant locations. During this period, dispersal events to regions outside of 
these GGD regions occurred as well but are relatively less frequent. However, as local infections were 
seeded in these areas, bidirectional exchanges in phylogenetic branches between different regions 
emerged throughout the country. These bidirectional exchanges continued to increase as prevalence 
of the VOC grew over time, even amidst a strict lockdown in the case of Alpha (Figure 4). In particular 
for the Delta VOC, we observed a rapid spike in inter- regional spread upon the week of 22–28 June 
2021, with >400% estimated increase in total phylogenetic branch movements by 6 July 2021 (week 
26). This significant rise in inter- regional exportation events likely contributed to the soaring case 
numbers observed between weeks 25 and 27 (22 June – 13 July 2021).

Discussion
Even if international travel restrictions are in place, the Netherlands is still highly vulnerable to impor-
tation risks of novel SARS- CoV- 2 variants from its regional neighbors due to border policies within the 
European Union. As such, this regional vulnerability is not unique to the Netherlands and has been 
reported in other European countries as well (Lemey et al., 2021; Michaelsen et al., 2021; Osnes 
et al., 2021). Importantly, regional introductions of novel lineages often drive new waves of infections 
in Europe (Lemey et al., 2021). Prior to September 2020, the dominant variant lineages (i.e. 20 A 
and 20E (EU1)) that circulated the Netherlands were already seeded by imports from its European 
neighbours (Hodcroft et al., 2021; Nadeau et al., 2021; Oude Munnink et al., 2020). In fact, the 
initial introduction of SARS- CoV- 2 in the Netherlands in February 2020 were attributed to travelers 
who visited Northern Italy where the earliest sustained European SARS- CoV- 2 transmission network 
was seeded (Oude Munnink et al., 2020; Worobey et al., 2020). Here, we showed that all four VOC 
lineages detected in the country up to August 2021 also originated mainly from its European neigh-
bors. Importantly, regional importation risks persisted throughout the period these VOCs circulated 
the country and overlapped with periods where targeted flight restrictions were imposed on countries 
where these VOCs first emerged. The emergence of the Omicron VOC in southern Africa in November 
2021 (Viana et al., 2022) again led to reactionary targeted flight restrictions by several countries in 
the Global North, including the Netherlands which was still amidst a surging Delta infection wave. 
However, the Omicron VOC was already detected in samples collected one week before the imposed 
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 Research article      Epidemiology and Global Health | Microbiology and Infectious Disease

Han et al. eLife 2022;11:e78770. DOI: https:// doi. org/ 10. 7554/ eLife. 78770  8 of 15

Figure 2. Likely overseas introduction of VOC lineages into the Netherlands at the continental level. For each VOC lineage, a time- scaled maximum 
likelihood phylogeny using the Dutch and their nearest overseas neighboring sequences was inferred. Discrete trait analyses were performed to infer 
the likely continental region of ancestral states. Subtrees or singletons with ancestral nodes attributed to an overseas origin but subtend only Dutch 

Figure 2 continued on next page
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flight restriction and did not prevent it to rapidly become the dominant VOC circulating in the Nether-
lands by the end of 2021 (https://www.rivm.nl/coronavirus-covid-19/virus/varianten/omikronvariant). 
Previous studies showed that travel restrictions are only useful if restrictions barred arrivals from most 
countries provided that local incidence is low in the first place (Russell et al., 2021).

Due to disparities in global genomic surveillance efforts and the lack of travel history information 
among the sampled Dutch individuals, we could not make more precise and accurate phylogeographic 
inferences on overseas introduction of VOCs into the Netherlands (Lemey et al., 2020). Furthermore, 
there were countries that are underrepresented or missing in our subsampling of non- Netherlands 
sequences. While we ensured that at least one sequence from each country with confirmed cases and 
genomic data was included in our analyses (see Methods), there may be overseas introductions that 
we could not account for. We repeated our overseas phylogeographic analyses with an independent 
bootstrap subsample of sequence data (Figure 2—figure supplements 2–3). There are differences 
in the estimated distributions of countries with nearest overseas neighboring sequences to Dutch 
subtrees (Figure 2—figure supplements 1 and 3). However, our conclusions that there were multiple 
introductions from other European countries before and after travel restrictions were imposed on 

sequences are drawn. Shaded plot area denotes the timespan when a targeted flight restriction was imposed on the country where the VOC lineage 
first emerged (i.e. (A) Alpha, United Kingdom.; (B) Beta, South Africa; (C) Gamma, Brazil; (D) Delta, India).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution of countries of the nearest overseas neighboring taxon to Dutch subtrees.

Figure supplement 2. Likely overseas introduction of VOC lineages into the Netherlands at the continental level (based on phylogenetic analyses using 
an independently subsampled set of sequence data from that used in Figure 2).

Figure supplement 3. Distribution of countries of the nearest overseas neighboring taxon to Dutch subtrees.

Figure 2 continued

Figure 3. Source- sink dynamics the Alpha and Delta variants of concern (VOC) within the Netherlands during the first four weeks after their respective 
detection. (A) Alpha (between 2 and 29 December 2020); (B) Delta (between 20 April and 18 May 2021).

https://doi.org/10.7554/eLife.78770
https://www.rivm.nl/coronavirus-covid-19/virus/varianten/omikronvariant
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countries where VOCs first emerged remain evident in the bootstrap analysis (Figure  2—figure 
supplement 2).

We also found that early introductions of VOCs, specifically the Alpha and Delta VOCs, are more 
likely found in populous regions of the Netherlands, including Utrecht, North, and South Holland 
where larger cities are located that are also international and regional travel hubs. These areas consti-
tute a core cluster of dominant source locations that also exported infections to the rest of the country 
during first few weeks after the VOC’s introduction into the Netherlands. As the number of infections 
in areas outside of these dominant source locations increase over time, bidirectional exchanges would 
also become more frequent. This type of asymmetric spatial spread dynamics had been previously 
shown in the U.K. as well and was found to enhance the intrinsic transmissibility of Alpha (Kraemer 
et al., 2021). Additionally, enhanced mobility has also been previously linked to the resurgence of 
outbreaks across Europe (Hodcroft et al., 2021; Lemey et al., 2021). Recent work also showed that 
increased mobility and population mixing drove the rapid dissemination of Delta in the U.K. (McCrone 
et al., 2021). While our analyses do not provide a causal relationship between the relaxation of non- 
pharmaceutical interventions and frequency of export events, the asymmetric exportation frequencies 
from dominant source locations, increased human mobility in weeks 25–27 across the country as well 

Figure 4. Estimated number of phylogenetic branch movements and growth rate estimations of Alpha and Delta VOCs in the Netherlands. Solid line 
shows the number of branch movements from early dominant source regions including North and South Holland, Utrecht and Brabant. Dashed line 
shows number of branch movements from areas outside of these early dominant source locations.

https://doi.org/10.7554/eLife.78770
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as the intrinsic higher transmissibility of Delta relative to Alpha likely all contributed to the widespread 
spike in cases in the Netherlands.

Novel and fitter variants of SARS- CoV- 2 will likely continue to emerge in the future. Our results, 
along with others, show that unless well- coordinated actions are taken across Europe to mitigate 
importation risks (Ruktanonchai et  al., 2020), targeted travel restrictions implemented by indi-
vidual European countries will neither prevent nor slow down the introduction of novel variants. Our 
work also shows that early within- country spread of VOCs may be taken into future consideration 
in future genomic surveillance strategies, especially as countries are gradually considering scaling 
down SARS- CoV- 2 surveillance efforts. Both the Alpha and Delta VOCs were first detected in the 
early dominant source locations, usually those that are more populous with greater international 
connections, and circulated mostly within these areas during the initial period after introduction. As 
such, a robust level of surveillance efforts should still be maintained in these dominant source loca-
tions to provide timely actionable information on novel variant detection as well as infection control. 
These surveillance efforts should encompass a minimal level of clinical diagnostic testing capacity 
be maintained to ensure clinical genomic surveillance remains sensitive enough for early detection 
of novel variants (Han et al., 2022). Wastewater surveillance could also be included to facilitate 
early variant detection and identify cryptic transmissions amid falling testing rates (Karthikeyan 
et al., 2022).

Data availability
All sequencing data have been deposited in the GISAID database (https://www.gisaid.org) under the 
accession codes listed in . All codes for our analyses are available at https://github.com/AMC-LAEB/ 
nl_sars-cov-2_genomic_epi_2022; Han, 2022.
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