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ABSTRACT Here, we report draft genome sequences for nine strains of “Candidatus
Nanosynbacter sp. HMT-352.” These strains and their sequences were used to interrogate
strain-level variations in host range, gene content, and growth dynamics among the phylum
“Candidatus Saccharibacteria.”

The nine “Candidatus Nanosynbacter sp. HMT-352” (hereafter, HMT-352) strains reported
here (Table 1) were recently isolated from the human oral cavity (1) and are the first

members of the phylum “Candidatus Saccharibacteria,” a major lineage of the Candidate
Phyla Radiation (CPR) (2), to be characterized at the strain level.

These nine HMT-352 strains were isolated from human saliva using a previously described
“baiting”method (1, 3). Briefly, saliva samples were centrifuged, filtered through a 0.45-mM fil-
ter, and cocultured in brain heart infusion medium (catalog number 237500; BD, NJ, USA) with
potential basibionts (bacterial hosts). The cocultures were incubated at 37°C and passaged at
a dilution of 1:10 every 2 days into fresh medium. A previously described modified MasterPure
DNA isolation kit (catalog number MGP04100; Epicentre, WI, USA) protocol (4) was used to iso-
late genomic DNA (gDNA) from both filter-isolated HMT-352 cells and the HMT-352-basibiont
cocultures. Briefly, bacterial cultures were mixed with glass beads (catalog number G8772;
Sigma, St. Louis, MO) and disrupted using a bead-beating homogenizer. gDNA isolation was
then performed according to the manufacturer’s protocol. The gDNA was randomly frag-
mented by sonication and then end-polished, A-tailed, and ligated with full-length
Illumina adapters. The library constructs were purified using the AMPure XP system (Beckman
Coulter, IN, USA) and checked for size distribution using a 2100 Bioanalyzer (Agilent
Technologies, CA, USA). The libraries were then sequenced on an Illumina NovaSeq instrument
(paired-end [PE] 150-bp reads).

Default parameters were used for the computational analyses except where oth-
erwise noted. The reads were quality controlled using iu-filter-quality-minoche from
illumina-utils v2.12 (5). For each new HMT-352 strain, genomes were assembled
using a previously described Anvi’o v7.1 workflow (1, 6) that employed both the
isolate and coculture genomic libraries. Briefly, for each strain, libraries from the
isolated HMT-352 were individually assembled using metaSPAdes v3.15.3 (7) and
binned using MaxBin2 v2.2.4-1 (8). The bins were then manually refined and reassembled
using both the isolate and coculture libraries. Genes were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v5.3 (9). All genomes were less than
5% redundant, between 83% and 85% complete, and contained between 732 and
801 genes (Table 1).
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The HMT-352 strains were compared to representative Candidatus Saccharibacteria
from eHOMD v15.22 (10) using full-length 16S rRNA sequences aligned with MAFFT v7.490
(11). All strains had more than 98% homology to the closest eHOMD species. The average
nucleotide identity (ANI) values over all alignable genome fractions, however, ranged
between 93% and 95%, at or below the extreme end of the accepted range for intraspecies
variation (12–14). Such substantial intraspecies genetic diversity is additionally apparent in
Fig. 1, which provides a comparison of the phylogenetic differences between the 16S rRNA,
select marker gene, and single-copy core gene trees. The unexpectedly high nucleotide di-
versity among these strains warrants further investigation and accentuates that broad phylo-
genetic characterization of the CPR is the next step in understanding these bacteria.

Data availability. Cultures of these strains are available upon request. The sequence
data have been deposited at NCBI under the BioProject accession number PRJNA784561.
The BioSample and SRA accession numbers are listed in Table 1. All code used to assemble
and analyze the genomes is available at https://www.borlab.org/resources.
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