
����������
�������

Citation: Zhao, J.; Zhang, L.; Cheng,

X.; Wang, J.; Li, Y.; You, J.

Programmable Transition between

Adhesive/Anti-Adhesive

Performances on Porous PVDF

Spheres Supported by Shape

Memory PLLA. Polymers 2022, 14,

374. https://doi.org/10.3390/

polym14030374

Academic Editor: Jean-Marie Raquez

Received: 20 November 2021

Accepted: 13 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Programmable Transition between Adhesive/Anti-Adhesive
Performances on Porous PVDF Spheres Supported by Shape
Memory PLLA
Jiaqin Zhao, Liang Zhang, Xiong Cheng, Jiayao Wang , Yongjin Li and Jichun You *

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University,
Hangzhou 311121, China; Jiaqin_Zhao@163.com (J.Z.); liangzhang1128@gmail.com (L.Z.);
2019112009005@hznu.stu.edu.cn (X.C.); jiayao-wang@outlook.com (J.W.); yongjin_li@hznu.edu.cn (Y.L.)
* Correspondence: you@hznu.edu.cn

Abstract: Superhydrophobic surfaces with switchable adhesive/anti-adhesive performances are
highly desired but still challenging. Herein, by loading porous poly (vinylidene fluoride) (PVDF)
spheres on a shape memory polylactic acid (PLLA) film, a quasi-superhydrophobic surface of com-
posite film (PVDF@PLLA) with the ability to tailor its surface structures/composition and related
adhesive behaviors was fabricated. The as-prepared surface is covered by porous PVDF spheres.
The combination of hydrophobicity of PVDF and hierarchical roughness resulted from porous spheres
contributing to the high contact angle and low sliding angle, corresponding to Cassie state and lotus
leaves effect. Upon uniaxial or biaxial tension, the distance among hydrophobic spheres is so high
that more and more hydrophilic defects (PLLA film) have been exposed to water droplets, accounting
for the quasi-superhydrophobic surface with a higher sliding angle. This is the reason for the Wenzel
state and rose petals effect. After heating, PLLA film recovers to its original state. The porous
PVDF spheres cover the whole film again, leading to the enhanced mobility of water droplets on the
surface. The transition between the rose petals effect and the lotus leaves effect is programmable
and reversible. Our result provides a novel strategy to tailor adhesive behaviors by combining
(quasi-)superhydrophobic surface with shape memory effect.

Keywords: adhesive/anti-adhesive performances; shape memory effect; porous spheres; PLLA; PVDF

1. Introduction

In nature, many plants and insects, including plant leaves, the wing of the butterfly
and the leg of the water strider, exhibit excellent superhydrophobicity [1–4]. A superhy-
drophobic surface, defined as the one with a water contact angle larger than 150◦, has been
widely used in various applications [5–12]. Both static water contact angle (CA) and sliding
angle (SA) have been employed to assess the performance of superhydrophobic surfaces.
The former corresponds to the wettability of certain liquids while the latter represents the
contact angle hysteresis. In the past few years, two typical superhydrophobic examples
of lotus leaves and rose petals have been paid much attention because of their interesting
properties [13–22]. Water droplets on the former exhibit high CA and low SA, while high
CA and high SA can be observed on the latter. In other words, lotus leaves and rose petals
correspond to anti-adhesive and adhesive surfaces, respectively, which play key roles in
many fields. For instance, the combination of them endows the surface containing micro-
arrays with a special ability in achieving programmable droplet motion and transportation
along a certain direction [21]. The transition between them, therefore, is highly desired but
still challenging.

It is well known that wettability is under the control of surface composition and
roughness. To achieve the transition between adhesion and anti-adhesion, much effort has
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been made according to the manipulation strategy of chemical composition and micro-
structures on the target surface, as well as the combination of them. Firstly, it is possible
to achieve this transition by varying chemical composition [18,19]. Su and his co-workers
introduced hydrophilic defects on polyelectrolyte multilayer (PEM) surfaces supported by
rough silica nanoparticles. These hydrophilic regions lead to the obvious collapse of water
droplets into gaps among neighboring particles. This is the reason for the transition from
an anti-adhesive state to an adhesive state [18]. Secondly, roughness plays an important
role in the transition [20,21]. Chen et al. realized the transition between lotus leaves
and rose petals effect by manipulating pillar array [21]. Upon stretching, the period
of micro/nanostructure on the homogeneous surface of the film increased remarkably,
accounting for the lower magnitude of surface roughness and the resultant transition
from pinning to rolling performance. Finally, simultaneous adjustment of the chemical
composition and surface geometry can act as an efficient method for this transition. In our
previous work, thermoplastic polyurethane electrospun fibers have been used as the bottom
layer to fabricate composite fabrics of TPU/MWCNTs (multi-walled carbon nanotubes) [22].
The attained fabrics exhibit high CA and low SA due to the existence of MWCNTs on
their surface, corresponding to the lotus leaves effect. Uniaxial tension produced reduced
surface roughness and complicated chemical composition of the surface, contributing to
the rose petals effect.

So far, some strategies for the transition discussed above have become available. In
the efficient rolling-pinning transition on a superhydrophobic surface with controllable
adhesive performance, however, there are still some open problems. On one hand, pro-
grammable transition, which means that the adhesive/anti-adhesive states can be fixed in
some cases while the transition can be triggered when required, remains challenging. On
the other hand, the developed strategy concerns either the requirement of special equip-
ment (e.g., a micro-array template in [20]) or high cost (MWCNTs in [22]), which does limit
its mass production and applications. A facile strategy for fabrication and transition has
been highly desired. In this work, therefore, it is proposed to achieve the programmable
transition according to the idea shown in Scheme 1, in which the shape memory PLLA films
are covered by porous PVDF spheres [23]. After preparation, the surface of PVDF@PLLA
composite film exhibits the lotus leaves effect because of the hydrophobic performance
and roughness resulting from neighboring spheres, corresponding to a high contact angle
and low sliding angle. Upon uniaxial or biaxial tension, there is obvious deformation on
PLLA films, leading to the exposed area which has not been covered by porous PVDF
spheres. This is the reason for the occurrence of hydrophilic defects (PLLA) on hydrophobic
PVDF surfaces, accounting for the enhanced contact angle hysteresis, i.e., rose petals effect.
The transition between them is programmable, reversible and easy to handle. It can be well
controlled based on shape fix and the recovery abilities of the shape memory effect of PLLA.
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2. Experimental Section
2.1. Materials

Polymethyl methacrylate (PMMA, Mw = 15,000 g/mol, PDI = 1.58) and PLLA (3001D,
Mn = 89,300 g/mol, PDI = 1.80) were purchased from Aldrich (Shanghai, China) and Nature
Works (Blair, NE, USA), respectively. PVDF samples were provided by Scientific Polymer Prod-
ucts Ins. The molecular weight and polydispersity of the PVDF were: Mw = 209,000 g/mol
and PDI = 2.0, respectively. P(MMA-co-GMA) (SZ-01, Mn = 40,000 g/mol, PDI = 2.0, the
structural formula is shown in Figure S1) containing 8 wt% GMA monomer units were pur-
chased from Aikechem (Hangzhou, China). Mn is the number-average molecular weight,
Mw is the weight-average molecular weight. PDI is the polydispersity index.

2.2. Preparation of Sample

PVDF, PMMA and PLLA were dried in a vacuum oven overnight at 80 ◦C in order to
remove moisture before processing. The blend of PVDF/PMMA/PLLA/SZ-01 (w/w/w/w,
30/30/40/0.05, the total amount of sample preparation is 50 g) was prepared in a Haake
Polylab QC mixer (Thermo Fisher Scientific, Waltham, MA, USA) with a rotation speed
of 20 rpm for 3 min and then 50 rpm for 10 min at 200 ◦C. PVDF/PMMA/PLLA/SZ-01
films were hot-pressed at 200 ◦C and 10 MPa for 10 min. The films were melted for 30 min
to obtain round PVDF/PMMA mixed-phase at 200 ◦C and then isothermal crystallized at
145 ◦C. A Soxhlet extraction apparatus containing chloroform was used to selectively etch
PMMA and PLLA. After that, the PVDF microspheres were obtained by a freeze-drying
method. More details can be found in our previous work [23]. PLLA films were hot-pressed
at 200 ◦C and 10 MPa for 13 min. A rectangular PLLA film with the size of 2 cm × 3 cm was
taken and several drops of chloroform were dropped to make it swell. The PVDF spheres
were quickly coated on the swollen film to prepare our specimens. Uniaxial tension was
performed on PLLA films along direction A in a water-bath at 70 ◦C to certain draw ratios
(1.2, 1.3, 1.5). Biaxial tension was performed stepwisely. In other words, the specimen was
stretched along one direction to a certain draw ratio, followed by deformation in the other
direction to the same draw ratio.

2.3. Microstructure Characterization

The sample was soaked in liquid nitrogen for 5 min and cut in the middle with two
pairs of tweezers. The morphologies of composite film were observed by scanning electron
microscope (SEM, Hitachi S-4800, Tokyo, Japan) with an accelerating voltage of 5.0 kV. The
fraction of the exposed area (this parameter can be defined as the area which has not been
covered by porous PVDF spheres) on the composite film was carried out by ImageJ (Wayne
rasband National Institutes of Health, Stapleton, USA, software version: ImageJ 1.51j8).
Relevant data were obtained through the fraction of the exposed area on the composite film
in SEM images.

2.4. Drop Shape Analysis (DSA)

We used a rectangular PLLA film with the size of 2 cm × 3 cm to measure the CAs and
SAs. To test sample wettability, static contact angles (CAs) and sliding angles (SAs) were
measured by drop shape analysis (DSA, DSA-100, Krüss). The volume of droplets used
for the contact angle measurement is 3 µL, at a room temperature of 25 ◦C and humidity
of 21%. Five DSA tests were performed for each sample. The average value of them
has been adopted.

2.5. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical analysis (DMA) was carried out using DMA Q-800 (TA Instru-
ment, New Castle, PA, USA), and the specimens were tested with a heating rate of 3 ◦C/min
from 30 to 120 ◦C with a fixed amplitude of 5 µm and frequency of 5 Hz.
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3. Results and Discussion

Porous PVDF spheres were prepared according to the strategy discussed in our previ-
ous work [23]. In short, in a ternary blend of PVDF/PMMA/PLLA with compatibilizers
(SZ-01, 0.5 wt%), phase separation produced PVDF/PMMA mixed phase and PLLA phase.
The latter acted as a matrix due to the higher volume fraction. Upon etching with chloro-
form, both PLLA matrix and PMMA in mixed phase were removed, yielding porous PVDF
spheres with a diameter of several microns (Figure 1B). In the fabrication of porous PVDF
spheres, therefore, PMMA acts as the agency for narrow nanopores. On these spheres, there
are narrow pores in nanometers (Figure 1C) that resulted from the exclusion behaviors
of PMMA during the crystallization of PVDF (i.e., narrow pores from the crystallization
template) [24–26]. The PLLA film with a thickness of 300 µm was prepared by means
of hot-pressing. Several drops of chloroform (a good solvent for PLLA, poor solvent for
PVDF) were produced on PLLA film to swell the surface layer. Then, porous PVDF spheres
were placed and pressed slightly on the swollen PLLA film. In this way, the porous spheres
were embedded partly and fixed on the surface of PLLA film (Figure 1A). The free (un-
embedded) spheres were removed by blowing with compressed nitrogen. To assess the
water wettability on PLLA films and PVDF spheres, drop shape analysis (DSA) measure-
ments have been performed. The results are shown in Figure 1D–F. On neat PLLA films,
the water contact angle is roughly 85.7◦, suggesting a hydrophilic surface. To measure
the contact angle of porous PVDF spheres, multi-layers of them have been prepared on
transparent tape. In this case, water droplets come in contact with only PVDF spheres,
which is an efficient way to avoid the influence of the supporting layer on the contact
angle. As shown in Figure 1E, the angle reaches 144.8◦. This result makes it clear that
porous PVDF spheres are quasi-superhydrophobic. Figure 1F illustrates the water contact
angle on porous PVDF spheres supported by PLLA films, i.e., PVDF@PLLA. It exhibits
a magnitude of 143.4◦, which was similar to that of the porous spheres (Figure 1E) but
much higher than neat PLLA (Figure 1D). The high WCA of porous PVDF spheres can be
interpreted as follows: On one hand, PVDF itself is a well-known hydrophobic material,
which has been widely used in water treatment [27–29]. On the other hand, there is hier-
archical roughness on the surface of porous PVDF spheres. The roughness in the former
can be calculated according to the method shown in Figure S2. In microns, roughness
comes from the neighboring spheres (Figure 1A,B) while there are porous structures in
nanometers on each sphere (Figure 1C). The combination of hydrophobic property and
hierarchical roughness contributes to the quasi-superhydrophobicity. This is very similar
to the well-known lotus leaves effect, in which there are numerous waxy bumps in microns
and nanometers [13,16,17]. In Figure 1F, the composite PVDF@PLLA exhibits a similar
contact angle with Figure 1E. This result indicates that most of the PLLA film surface has
been covered with porous PVDF spheres. It is difficult for water droplets to come into
contact with PLLA, which is the reason for the resultant air-pockets and the consequent
Cassie state [30].

PLLA is a typical shape memory polymer, in which the amorphous matrix and tiny
crystals of it play the role of the shape recovery phase and shape fixed phase, respectively.
In this work, the crystallinity of PLLA is 3.6% (determined by DSC, data not shown
here). The shape memory effect endows PLLA with the ability to be deformed at high
temperatures and be fixed by cooling down, which has been investigated in detail in our
previous work [31–33]. The glass transition temperature of PLLA (63.4 ◦C, determined
by means of dynamical mechanical analysis, Figure S3) acts as the switching temperature
of the shape memory effect. The surface morphology of the obtained composite film was
observed by means of SEM. In Figure 2, only typical SEM images have been shown since
they play key roles in the transition between adhesive and anti-adhesive performances.
After preparation, the whole surface of PLLA film has been covered by porous PVDF
spheres (Figure 2A), accounting for the high value of the water contact angle shown in
Figure 1F. This is the permanent shape of the composite film. In a 65 ◦C water bath (above
the switching temperature of PLLA), the composite film was stretched to the draw ratio
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of 1.5 in a certain direction (defined as direction A) to obtain a temporary shape followed
by cooling down to room temperature to fix it. To show the difference of distance among
neighboring spheres in direction A and direction B, the software of Nano Measurer has
been employed. The distance in direction A increases remarkably (>4 µm, Figure 2B) while
it is still comparable with that before deformation in the other direction (called direction B).
The composite film goes from isotropic to anisotropic upon uniaxial tension. After that, two
clamps were used to fix the edge of the composite film in direction A. Then, a secondary
tension process was carried out along the edge in the other direction (direction B). This
is so-called biaxial tension. Upon biaxial tension with a draw ratio of 1.5 in direction A
and direction B, the distance of the neighboring spheres in two directions is comparable
(Figure 2C). That is to say, the composite film changes back to an isotropic state again.
Of course, it is also facile to perform biaxial tension in another way, i.e., the tension in
two directions simultaneously (from Figure 2A–C directly). During uniaxial and biaxial
tensions, porous PVDF spheres embedded on the PLLA film surface remain still while
PLLA can be deformed. In this process, the covered area (defined as the area covered
by porous PVDF spheres) remains almost constant. At the same time, the whole area of
PLLA exhibits a much higher magnitude, leading to the higher area fraction of the exposed
PLLA area (defined as the area which has not been covered by porous PVDF spheres,
Figure 2B,C). The quantitative analysis will be discussed in the following sections. Upon
heating at 65 ◦C, the composite film recovers to its permanent shape in a relatively short
period (Video S1 and Figure S2) from either a uniaxial tension state (Figure 2B) or biaxial
tension state (Figure 2C). In Figure 2D, almost all the surface of composite PVDF@PLLA
film has been covered by porous PVDF spheres again, which resembles so closely with that
before deformation (Figure 2A).
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Figure 1. SEM images of PVDF@PLLA composite fracture surface (A), porous PVDF (B,C).
(D–F) shows the water contact angles (CAs) on neat PLLA film (D), porous PVDF spheres @tapes
(E) and PVDF@PLLA composite film (F).

Upon uniaxial tension, the distances of PVDF porous spheres in two directions are
different, suggesting the anisotropic composite film. Therefore, a series of uniaxial tensions
with various draw ratios were carried out. Figure 3A,B shows the contact and sliding
angles during uniaxial tension. The original film surface exhibits a high contact angle
(143◦) and low sliding angle (37◦, Video S2), corresponding to the enhanced mobility, anti-
adhesive performance and lotus leaves effect. In direction A (Figure 3A), the contact angle
decreases from 143◦ to 132◦ while the sliding angle increases from 37◦ to 90◦ (Video S3)
upon uniaxial tension (Figure 3A). Here, 90◦ means that the droplets cannot roll down even
when the specimen was placed vertically. The lower and higher magnitudes of contact
angles and sliding angles indicate the adhesive state and rose petals effect. When the
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specimen is put into a water bath (65 ◦C), it recovers to the initial state upon thermal
stimuli. Both contact angle and sliding angle are comparable with those in an as-prepared
specimen. A similar thing happens in direction B. However, uniaxial tension produces
higher sliding angles in direction A. The sliding angle difference between direction A and
direction B increases with the increasing draw ratio. It is 5◦ and reaches 21◦ in the case of a
draw ratio of 1.2 and 1.5, respectively. These results confirm that composite film exhibits
anisotropic wettability after uniaxial tension. Biaxial tension yields isotropic wettability in
two directions (Figure 3C). The contact angle decreases to 135◦, 133◦, 132◦ with a draw ratio
of 1.2, 1.3 and 1.5, respectively. At the same time, the sliding angles increase monotonously.
Obviously, it changes from an anti-adhesive state (lotus leaves effect) to an adhesive state
(rose petals effect). After recovery, the film surface goes back to the lotus leaves effect
(i.e., low sliding angle). According to the discussion above, the original and deformed films
exhibit the lotus leaves effect and rose petals effect, respectively. The transition between
them can be repeated.
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The reversible transition shown in Figure 3 can be attributed to the exposed area
fractions among porous PVDF spheres which are under the control of deformation and
recovery of shape memory PLLA films. At the very beginning, the whole surface of PLLA
films has been covered by PVDF spheres. The surface of the composite film exhibits the
quasi-superhydrophobicity resulting from the hydrophobic property of PVDF and hierar-
chical roughness from neighboring spheres and narrow pores on each sphere (Figure 1B,C).
When water droplets contact the surface of composite films, they slip easily along the
surface since there are numerous air pockets among spheres. The whole surface resembles
lotus leaves so closely, on which there are hierarchical waxy dumps. This is the reason
for the anti-adhesive state shown in Figure 3. Upon uniaxial or biaxial tension, porous
PVDF spheres remain still while the supporting PLLA film has been deformed. As a result,
more and more area has been exposed to water droplets (Figure 2B,C). The exposed area
of the composite film surface was statistically analyzed using the Image J software. As
shown in Figure 3D, the exposed area fraction increases remarkably (from 7% to 36%) after
stretching. The exposed PLLA film surface can be regarded as the hydrophilic defects
since PLLA itself exhibits a water contact angle of 85.7◦ (Figure 1D). On the composite
film (PVDF@PLLA) surface, therefore, the increase of area fraction of the hydrophilic part
contributes to the slightly lower contact angle and enhanced adhesive behaviors (higher
sliding angles) shown in Figure 3A–C. During the rolling-down of water droplets, it is the
exposed PLLA surface (hydrophilic part) that prevents the continuous mobility of them.
When the specimen is heated above the switching temperature of shape memory PLLA,
the supporting film recovers to its permanent shape, resulting in the complete coverage of
its surface by porous PVDF spheres again (<10% exposed area, Figure 3D). It is difficult for
water droplets to contact PLLA film due to the Cassie state on PVDF. In this case, the wetta-
bility and adhesion of composite film were determined by porous PVDF spheres. Then,
the surface of the composite film switches back to the lotus leaves effect (Figure 3A–C).
During the transition discussed above, the Wenzel and Cassie states play key roles in
determining the contact angle as well as sliding angles. The distance between hydrophobic
PVDF spheres depends crucially on deformation. When the area of hydrophilic defect (i.e.,
exposed PLLA) is small, the repulsive effect of porous PVDF spheres is so strong that it is
impossible for water droplets to come in contact with PLLA, corresponding to a Cassie state.
In the case of a higher area fraction of hydrophilic defect, the water droplet can contact
PLLA directly, producing a Wenzel state. In this work, therefore, the composite surface
exhibit a mixed state of Cassie and Wenzel states because of the different diameters of PVDF
spheres ranging from 2 to 15 µm and the hydrophilic defects with different exposed areas.

To show the anisotropic wettability clearly, our attention has been paid to the com-
posite film before and after uniaxial tension (Figure 4). On the as-prepared specimen,
both contact angles and sliding angles in two directions are similar (143◦ and 37◦ re-
spectively, Figure 3A). Upon uniaxial tension with the draw ratio of 1.5, contact angles
in direction A and direction B exhibit different magnitudes (132◦ and 135◦, respectively,
Figures 3A and 4A). The sliding angles increase remarkably and are different in two direc-
tions. In direction B, it is 68◦ while the water droplet cannot move even when the specimen
is placed vertically in direction A (i.e., 90◦). Based on the difference in sliding angles in the
two directions, the PVDF@PLLA composite film surface can be used for controlled droplet
transportation. For this purpose, a specimen containing two regions has been prepared
(Figure 4B). In region one, the surface of the composite film is in the original (or recovered)
state while it is stretched along the red arrow direction in region two. To achieve the droplet
movement on the attained surface, the specimen was placed in two cases at a tilted angle
of 70◦ (Videos S4 and S5). This value is higher than 68◦ but lower than 90◦. In case I, the
water droplet exhibits mobility driven by gravity in region one since the original state
corresponds to the lotus leaves effect. In region two, it is hard for it to move due to the
enhanced adhesive performance resulting from the exposed hydrophilic defects of PLLA
(Figure 2B) and the resultant rose petals effect (Figure 3). Consequently, the droplet has
been captured. In case II, however, the droplet can pass the whole surface including two
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regions easily, which can be attributed to the lower sliding angles and lotus leaves effect
(Figure 3).
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4. Conclusions

In this work, the programmable transition between adhesive/anti-adhesive perfor-
mances has been achieved on the surface of composite PVDF@PLLA film (i.e., porous PVDF
spheres on shape memory PLLA). After preparation, the whole surface of the composite
film is covered by porous PVDF spheres. The combination of hydrophobic PVDF and
hierarchical roughness from neighboring spheres and narrow pores on each sphere endows
the surface with a high contact angle and low sliding angle, corresponding to a Cassie
state, anti-adhesive performance and lotus leaves effect. The shape memory effect makes it
facile to deform PLLA film at a high temperature by means of uniaxial or biaxial tension.
The higher distance among porous PVDF spheres resulting from enlarged PLLA film pro-
duces some exposed hydrophilic defects (i.e., PLLA) which can prevent the continuous
mobility of water droplets. This is the reason for the Wenzel state, adhesive performance
and rose petals effect. After thermal stimuli, the supporting PLLA film recovers to its
initial state. In this case, the surface of the composite film is covered by porous PVDF
spheres again, resulting in the lotus leaves effect. The composite film works successfully
in controlled droplet transportation. Our results provide an efficient solution for the pro-
grammable and switchable transition between adhesive and anti-adhesive performances
on (quasi-)superhydrophobic surfaces.
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