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ABSTRACT

Ovarian cancer is the most lethal gynecological malignancy in the western world. 
Despite recent efforts to characterize ovarian cancer using molecular profiling, few 
targeted treatment options are currently available. Here, we examined genetic 
variants, fusion transcripts, SNP genotyping, and gene expression patterns for 
early-stage (I and II) ovarian carcinomas (n=96) in relation to clinicopathological 
characteristics and clinical outcome, thereby identifying novel genetic features of 
ovarian carcinomas. Furthermore, mutation frequencies of specific genetic variants 
and/or their gene expression patterns were associated with histotype and overall 
survival, e.g. SLC28A2 (mucinous ovarian carcinoma histotype), ARCN1 (low 
expression in 0-2 year survival group), and tumor suppressor MTUS1 (mutation 
status and overall survival). The long non-coding RNA MALAT1 was identified as a 
highly promiscuous fusion transcript in ovarian carcinoma. Moreover, gene expression 
deregulation for 23 genes was associated with tumor aggressiveness. Taken together, 
the novel biomarkers identified here may improve ovarian carcinoma subclassification 
and patient stratification according to histotype and overall survival.

INTRODUCTION

Recent advances in our understanding of ovarian 
carcinoma contributed to the reclassification of the 
disease into five major histotypes (high-grade serous 
(HGSC), low-grade serous (LGSC), endometrioid (EC), 
mucinous (MC) and clear cell (CCC) carcinomas) based 
on differences in origin, morphology, and clinical and 
biological behavior [1–3]. Standard treatment options 
for ovarian carcinoma are currently limited to surgical 
cytoreduction, followed by platinum-based chemotherapy, 

despite the recent introduction of new promising treatment 
options, e.g. poly (ADP-ribose) polymerase (PARP) 
inhibitors as a targeted therapy for carriers of genetic 
variants in BRCA1/2, the use of antiangiogenic agents in 
combination with first-line treatment or as maintenance 
treatment, and the administration of intraperitoneal 
chemotherapy [4]. The majority of ovarian cancer patients 
are still currently treated with conventional treatment 
based on tumor stage and grade, regardless of histotype 
or other biological characteristics. Unfortunately, there 
are no alternative treatment regimens alone that have 
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been proven to be superior to conventional therapy, 
which in itself is inadequate since e.g. the overall 5-year 
survival rate is below 50% and the majority of advanced-
stage ovarian cancer patients develop recurrences 
[4–7]. Consequently, there is a profound need for novel 
biomarkers with improved prognostic and diagnostic 
value that may guide the selection of therapeutic targets 
and thereby improve personalized medicine based on an 
individual ovarian carcinoma patient’s clinicopathological 
and tumor characteristics [8].

Since the introduction of the revised 2014 World 
Health Organization (WHO) criteria for histotype diagnoses, 
few efforts have been made to identify novel molecular 
biomarkers that stratify ovarian carcinomas according to 
clinical outcome and the current histotypes. Surprisingly, 
relatively few studies have characterized histotype-specific 
genetic features in early-stage ovarian carcinomas (I and 
II) [9–11]. In addition, few studies have previously been 
performed on early-stage ovarian carcinomas to identify 
novel prognostic biomarkers [12]. One reason may be that 
the majority of all ovarian carcinomas are diagnosed at 
advanced stages III and IV [13].

Cancer is a complex disease comprised of 
genetic alterations that are accumulated during cancer 
development and progression. Although early-stage high 
grade ovarian carcinoma is rare, a recent report showed 
that early- and late-stage HGSC share many acquired 
genetic aberrations [14]. Therefore, early-stage tumors 
were chosen for the present study since they generally 
present less complex genetic profiles in comparison 
with late-stage tumors, thereby simplifying the analysis. 
Here, 96 primary ovarian carcinomas corresponding 
to the International Federation of Gynecology and 
Obstetrics (FIGO) stages I and II were profiled using 
RNA sequencing (RNA-seq) and genome-wide SNP 
genotyping. The present study thereby presents a good 
opportunity to characterize specific events associated 
with ovarian carcinogenesis and disease-specific genetic 
aberrations. The transcriptomic and genomic data were 
integrated with clinicopathological features and patient 
clinical outcome to characterize a) genetic aberrations 
associated with histotype or patient survival and b) novel 
prognostic and diagnostic biomarkers that may improve 
ovarian tumor classification and patient stratification. The 
current study thereby identifies novel genetic profiles and 
constitutes an important addition to existing research.

RESULTS

Landscape of genetic variation reveals few 
potentially deleterious variants in early-stage 
ovarian carcinoma

After removing common genetic variants found 
in the normal human population, the mean number of 
genomic and coding (exonic) variants per tumor was 

44,138.3±1,240.3 (±SEM; range, 19,884-80,024) and 
442.3±11.9 (range, 203-1,146), respectively. The variants 
are hereinafter termed tumor-specific variants. The number 
of tumor-specific variants was most prevalent within 
intronic regions of the genome, followed by variants 
within intergenic and non-coding RNA (ncRNA) regions, 
respectively (Figure 1A). In exonic regions, tumor-specific 
coding variants spanned 11,529 different genes and 
the most frequent variant type was synonymous single-
nucleotide variants (SNVs) followed by nonsynonymous 
SNVs (Figure 1B). Base-pair substitutions associated with 
A>G (39.4%) and T>C (38.4%) were most prevalent in the 
genomic regions and G>A (15.3%), C>T (15.2%), T>C 
(12.8%) and A>G (12.6%) were most prevalent in the 
exonic regions (Figure 1C–1D).

After conservative filtering, 8,187 tumor-specific 
coding variants (frameshift insertion, frameshift deletion, 
stopgain, or stoploss) were identified, which were 
predicted to have a disruptive effect on protein function 
(classified as potential deleterious variants, e.g. resulting 
in protein truncation, gain/loss of function or nonsense 
mediated decay). Among the 8,187 variants, potential 
deleterious variants were identified in 26 genes in at least 
30% of the samples. Frameshift insertion and deletion 
were more prevalent than stopgain and stoploss and no 
significant differences in variant types were detected 
between the different histotypes and survival groups.

The mutation frequency of recurrent deleterious 
variants, i.e. deleterious variants present in at least 30% 
of the patients, were also assessed for each histotype 
(HGSC, EC, MC, CCC) and survival group (0-2 years, 
2-5 years, 5-10 years or >10 years; Figure 2). Thirty-
eight and 49 recurrent deleterious variants were identified 
in the histotype and survival groups, respectively. To 
identify tumor-specific variants in ovarian carcinoma, 
the presence of the identified recurrent deleterious 
variants were evaluated in normal ovarian tissue samples 
(control cohort). All of the recurrent deleterious variants 
significantly differed in mutation rates between the study 
cohort and the normal controls (Supplementary Table 
1A-1B). Four recurrent deleterious variants corresponding 
to the CHD1L (99.0%), GFM1 (91.7%), MEIS1 (90.6%) 
and NFX1 (93.8%) genes were found in the majority of 
the tumor samples in the study cohort, but in none of 
the normal controls. Frameshift insertion in the UBR5 
gene was the only deleterious variant to be found in the 
COSMIC database. Only three deleterious variants in the 
KIAA0040 (study cohort 31.3%, control cohort 10%) and 
MAML3 (study cohort 18.8%, control cohort 53.3%) genes 
were also present in the control cohort.

Pathway analysis with Ingenuity Pathway Analysis 
(IPA), performed using genes corresponding to the 
potential deleterious variations, revealed an association 
with a number of cancer-related pathways. Biological 
processes significantly associated with the histotype 
and survival groups included cell cycle, cell death and 
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survival, cell morphology, cellular development, cellular 
movement and gene expression.

Histotype and survival group specific mutation 
frequency and its impact on gene expression 
patterns

The mutation frequency for several deleterious 
genetic variants also varied between the different 
histotypes and survival groups (Figure 2). Deleterious 
variants in the CASP8AP2 (HGSC 44.0%, EC 17.6%) 
and CLEC2B (HGSC 8.0%, EC 35.3%) genes showed 
significantly higher and lower mutation rates in HGSC 
compared to EC, respectively. In addition, the OSTM1 
(HGSC 32.0%, EC 35.3%, MC 100%, CCC 35.3%) 
and SEMA4D (HGSC 30.0%, EC 41.2%, MC 0%, CCC 
29.4%) genes showed significantly higher and lower 
mutation rates in MC compared to the other histotype 
groups, respectively. Genetic variants in the ACACA 
(EC 58.8%, MC 18.2%, CCC 23.5%) gene were more 
prevalent in the EC compared to both the CCC and MC 
groups. Deleterious variants in the IPMK (HGSC 22.0%, 
EC 17.6%, CCC 52.9%) gene were more prevalent in 
the CCC compared to the HGSC and EC groups, lower 

mutation rates in the UBR5 (HGSC 14.0%, MC 36.4%, 
CCC 5.9%) gene for CCC compared to the HGSC and 
MC groups, and lower in the BECN1 (HGSC 48.0%, EC 
64.7%, MC 72.7%, CCC 17.6%) gene for CCC compared 
to the other histotype groups, respectively. Lastly, the 
mutation rate for the SLC28A2 gene was significantly 
higher in MC compared to HGSC (HGSC 6.0%, 
MC 45.5%). With regard to the four survival groups, 
deleterious variants in the OSTM1 gene (0-2 years 100%, 
2-5 years 33.3%, 5-10 years 30.3%, >10 years 44.4%) 
showed significantly higher mutation rates in the 0-2 year 
survival group compared to the other survival groups 
(Figure 3, Supplementary Table 1A-1B).

Subsequently, differences in gene expression 
patterns for the potential deleterious variants were 
evaluated between the histotype and survival groups. The 
majority of the genes were differentially expressed in the 
different histotype (n=33, 89.2%) and survival groups 
(n=43, 89.6%) in comparison with the control cohort 
(Supplementary Table 2A-B). In addition, the expression 
of several genes also correlated with specific histotypes 
or survival groups. The AP2M1, GFM1, HIST1H1E and 
ZNF148 genes were significantly overexpressed and the 
BECN1 and NCOR1 genes significantly underexpressed 

Figure 1: Overview of tumor-specific genetic variation derived from whole-transcriptome RNA-seq. Box plots illustrating 
the number of genetic variants (A-B) in genomic and exonic regions based on location within the genome and variant type within the exonic 
region, and the number of base-pair substitutions (C-D) in genomic and exonic regions, present in the study cohort.
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in HGSC compared to the other histotypes. The SEMA4D 
gene was significantly overexpressed in the EC histotype 
compared to MC samples and ARV1 was significantly 
underexpressed in CCC in comparison with the other 
histotypes. Furthermore, ALMS1 was significantly 
underexpressed in the 0-2 year survival group compared to 
the 2-5 year and >10 year survival groups, while VWA3A 
was significantly underexpressed in the 0-2 year survival 
group compared with the 2-5 year and >10 year survival 
groups (Supplementary Table 2A-B).

To determine whether mutation status had an effect 
on the gene expression patterns of the potential deleterious 
variants, the expression levels for tumors harboring 

(variant carriers) or lacking (non-variant carriers) the 
recurrent deleterious variant were compared. In total, 15 
of the 52 (28.8%) different genes containing deleterious 
variants (AP2M1, ARHGAP11A, C3, CASP8AP2, 
HIST1H1E, IPMK, ITGB1BP1, MAGI3, MAML3, MTUS1, 
SDR16C5, SLC28A2, TTC3, VWA3A, ZHX1) identified in 
either the histotype or survival groups showed a significant 
difference in gene expression patterns between variant 
and non-variant carriers. Differential gene expression was 
also evaluated for deleterious variants showing significant 
differences in mutation rates within the histotype (15/38 
variants) or survival groups (4/49 variants; Figure 3). 
In at least one of the histotype comparisons, BECN1, 

Figure 2: Recurrent deleterious variants. Blue bars depict recurrent deleterious variants present in at least 30% of at least one of the 
histotype groups (A) or survival groups (B) across the study cohort. Orange bars designate deleterious variants found in the control cohort. 
Genes known to be associated with cancer, according to the COSMIC database, are indicated by *.
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CASP8AP2, GFM1, IPMK, MEIS1, SEMA4D, SLC28A2 
and UBR5 were differentially regulated between variant 
and non-variant carriers. Differences in gene expression 
patterns were predominantly dependent on histotype 
and not mutation status. However, the SLC28A2 gene 
showed a significant difference in gene expression 
patterns between variant and non-variant carriers in the 
MC histotype. In addition, the ARCN1, OSTM1 and POC5 
genes were differentially regulated between variant and 
non-variant carriers in at least one of the survival group 
comparisons, and the ARCN1 gene was differentially 
regulated between variant carriers in the 0-2 year and 5-10 
year survival groups. Moreover, frameshift insertion in 
MTUS1 was the only gene among the deleterious variants 
showing significant differences in gene expression 
patterns dependent on mutation status, which also had a 
protective effect on overall survival (OS) compared with 
non-variant carriers of the gene (Figure 4). No correlation 
was found between disease-specific survival (DSS) and 
the deleterious variants.

Analysis of fusion transcripts identified a 
commonly occurring fusion transcript partner

In total, 3,735 fusion transcripts were identified 
in the initial analysis, of which approximately 10.4% 
(n=388) of the identified fusion transcripts were flagged by 
FusionCatcher as having a high or very high probability of 
being false positives and therefore removed from further 
analysis. Among the remaining 3,344 fusion transcripts 
(mean fusion transcripts per tumor 34.7±4.4 (±SEM); range, 
0-266), 1,503 unique fusion transcripts were identified. 
The top ten most common fusion transcripts in the study 
cohort were AHNAK-MALAT1 (n=24), MALAT1-AHNAK 
(n=20), RPPH1-MALAT1 (n=19), MALAT1-RPPH1 
(n=19), MALAT1-MUC16 (n=14), MUC16-MALAT1 
(n=13), SYNE2-MALAT1 (n=11), MALAT1-RMRP (n=11), 
COL3A1-MALAT1 (n=10), MALAT1-COL1A2 (n=9). The 
long non-coding RNA (lncRNA) MALAT1 was involved 
in the majority of recurrent fusion transcripts found in at 
least five of the study cohort samples (Figure 5A). Overall, 

Figure 3: Significant mutation rate differences between histotype (A) and survival groups (B). Bar plots showing the genes comprising 
recurrent deleterious variants which show at least one significant difference (*P<0.05, **P<0.01, ***P<0.001) in mutation rates between any 
of the histotype or survival groups.
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the majority (76.2%) of the fusion transcripts had one gene 
partner spanning non-coding exonic regions (no known 
coding DNA sequence (CDS)), such as MALAT1. A total of 
675 fusion transcripts had MALAT1 as its 5’ fusion partner 
and 701 fusion transcripts had MALAT1 as its 3’ fusion 
partner. A small proportion (12.7%) of the fusion transcripts 
were predicted to be in exonic regions (out-of-frame/
coding-coding (4.9%), coding-3’UTR (3.1%), in-frame/
coding-coding (4.8%), promotor-coding (3.7%)), 2.0% in 
untranslated regions and 5.1% in intronic regions (Figure 
5B). Interchromosomal fusions were more common than 
intrachromosomal fusions and the most abundant fusion 
transcripts in the study cohort were fusion events involving 
chromosome 11. More specifically, the most abundant 

intrachromosomal fusions were found on chromosome 
11 and the most abundant interchromosomal fusions 
were found between chromosomes 1 and 11 (Figure 5C). 
In addition, 17 fusion gene partners (CDKL1, EEF2K, 
ERBB2, HK1, IRAK2, MAST4, MASTL, OXSR1, PAK1, 
PI4KA, PIP4K2B, PIP5K1B, PKM, PRKDC, TJP2, TTN 
and WDFY2) were identified as being in-frame kinases. 
Forty-seven percent of the fusion transcripts contained 
gene partners with inverted orientation and 18 reciprocal 
fusion transcripts (gene A-gene B, gene B-gene A) were 
found among the fusion transcripts present in at least 
four samples (n=74). The reciprocal fusion transcripts 
(AHNAK-MALAT1, MALAT1-AHNAK) were found in 
35.4% (n=34) of the samples. MUC16-NEAT1 (n=5) was 

Figure 4: The effect of mutation status on gene expression and overall survival. (A) Frameshift insertion in the gene SLC28A2 
caused a significant mutation and histotype-specific effect on gene expression. (B) Frameshift insertion in the gene ARCN1 showed a 
significant differential gene expression patterns between the 0-2 years and 5-10 years survival groups. (C-D) In the gene MTUS1, a 
significant difference in gene expression and overall survival was seen for variant carriers comprising the frameshift insertion. Significance 
is indicated by * P<0.05, **P<0.01, ***P<0.001.
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the most commonly found fusion transcript not involving 
MALAT1. MALAT1 and AHNAK were both significantly 
overexpressed in the study cohort compared with the control 
cohort. The 11q13.1 locus spanning MALAT1 was the most 
commonly involved locus spanning at least one fusion gene 
partner (linked to 19.6% of all unique fusion transcripts).

Circos plots were used to summarize the genomic 
rearrangements (genetic variations, copy number 
alterations and fusion events) in the ovarian carcinoma 
samples (Figure 6). SNP genotyping showed that the 
fusion events identified on the RNA level were frequently 
associated with DNA breakpoints (DNA gains or losses). 
Generally, DNA loss was observed more often than DNA 
gain. Dual-color FISH was performed on tumor touchprint 
preparations from at least two different tumor samples to 

validate fusion transcripts with MALAT1 as the 5’ fusion 
partner in combination with the AHNAK, RPPH1, MUC16, 
RMRP, SYNE2, COL3A1, COL1A2, EIFA2, MACF1, C3, 
CANX and XIST as the 3’ fusion partners. FISH analysis 
showed intratumoral heterogeneity with few tumor cells 
containing the fusion transcript of interest. A validated 
fusion transcript between MALAT1 and MUC16 as well as 
the genomic sequence at its fusion transcript break point 
is shown in Figure 6.

Differential gene expression analysis was 
performed between the four most commonly occurring 
fusion transcripts (AHNAK-MALAT1, MALAT1-AHNAK, 
MALAT1-RPPH1 and RPPH1-MALAT1) within the 
study cohort (Figure 7). Significantly higher gene 
expression levels were seen in samples harboring specific 

Figure 5: Frequency of the identified fusion transcripts across the study cohort.  Bar plots illustrating (A) the identified fusion 
transcripts recurrent in at least five samples in the study cohort, (B) the distribution of the predicted effect of the fusion transcripts across 
the genome, (C) the number of unique fusion partners in the top 20 chromosome pairs.
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fusion transcripts, e.g. MALAT1 gene expression for 
the MALAT1-AHNAK fusion transcript, AHNAK gene 
expression for AHNAK-MALAT1, and RPPH1 gene 
expression for MALAT1-RPPH1 and RPPH1-MALAT1.

Oncofuse was used to identify fusion transcripts 
with oncogenic potential. In total, 105 of the 3,344 
(3.1%) true fusion transcripts were identified across the 
study group as being significant driver fusion transcripts 
(Supplementary Table 3). Six of the most frequent 
fusion partners containing the MUC16, AHNAK, SYNE2, 
COL3A1, COL1A2 and MACF1 genes were found to 
be significant driver fusion transcripts. Five of the 17 
identified kinase fusion gene partners (EEF2K, ERBB2, 
MAST4, PAK1, TTN) were also proposed by Oncofuse 
to be driver fusions. MALAT1 was not identified in any 
significant driver fusion transcript. Pathway analysis 

using the significant driver fusion transcripts revealed an 
association with cancer-related pathways, including cell 
death and survival, cell morphology, cellular development, 
cellular growth and proliferation, and cellular movement.

Histotype and survival group specific fusion events

The occurrence of AHNAK-MALAT1 fusions varied 
among the different histotypes (HGSC (26%), LGSC 
(0%), EC (17.6%), MC (36.4%), CCC (23.5%)) and 
survival groups (0-2 years (44.4%), 2-5 years (22.2%), 
5-10 years (24.2%) and >10 years (22.2%)). Moreover, 
the occurrence of the fusion transcripts MALAT1-MUC16 
(71.4%), MUC16-MALAT1 (61.5%) and COL3A1-
MALAT1 (60.0%) were most commonly found in HGSC, 
whereas SYNE2-MALAT1 (72.7%) in CCC.

Figure 6: Genomic rearrangements for ovarian sample OV315, MALAT1 gene expression pattern, and FISH validated 
fusion transcript. (A) Circos plot illustrating the genomic rearrangements in the ovarian carcinoma sample OV315, containing 49 fusion 
transcripts. MALAT1, located on chromosome 11, was frequently involved in fusion events. Track 1: Chromosome cytobands, wherein 
the centromere is shown as a red bar. Track 2: Genetic variants in exonic regions identified with RNA-seq data are shown as dark gray 
bars. Track 3: B allele frequency of SNP genotyping data. Track 4: Log R ratio of SNP genotyping data, where copy number gains and 
losses are depicted in green and red, respectively. Track 5: Fusion transcripts identified with RNA-seq data, wherein intrachromosomal 
and interchromosomal gene fusions are shown in red and blue lines, respectively. (B) Gene expression patterns for MALAT1 within the 
study cohort and control cohort (the maximum counts value for MALAT1 within the study cohort ranged to 721344 counts). Significance is 
indicated by *P<0.05, **P<0.01, ***P<0.001. (C) FISH with interphase cells using tumor imprints for sample OV315 showing the MALAT1 
gene (green) and the MUC16 gene (red). Yellow hybridization signals (white arrows) indicate overlapping signals representing the presence 
of a fusion transcript. Signals from the gene native sites are also seen as separate green and red signals. (D) Genomic sequence at the fusion 
transcript break point of MALAT1-MUC16. Chromosomal positions of the fusion break points are indicated by black arrows.
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The driver fusion transcripts were distributed 
across the histotype (HGSC (34.0%), EC (35.3%), MC 
(18.2%) and CCC (47.1%)) and survival groups (0-2 year 
(44.4%), 2-5 year (25.9%), 5-10 year (39.4%) and >10 
year (37%)). TTN-SLC7A2 was present in two ovarian 
carcinoma samples, OV170 and OV177. Consequently, 
TTN was also significantly underexpressed in the 2-5 year 
survival group compared with long-term survivors (>10 
year survival group). HGSC sample OV368 harbored eight 
different driver fusion transcripts comprising SPARC as 
the common fusion partner, one of which was the SPARC-
POSTN fusion transcript. One sample (HGSC sample 
OV341) had three different driver fusion transcripts 
involving ERBB2/HER2.

Gene expression analysis uncover differentially 
expressed genes associated with tumor 
aggressiveness

Gene expression profiles for patient samples 
belonging to the 0-2 year, 2-5 year and 5-10 year survival 
groups (short-time survivors) were compared with the 

>10 year survival group (long-time survivors) for overall 
survival. In total, 127 (0-2 years vs >10 years), 134 (2-5 
years vs >10 years) and 19 genes (5-10 years vs >10 years) 
were differentially expressed (adjusted P<0.05; 1.5-fold 
change cutoff). Twenty-three genes were recurrently 
deregulated in at least two of the survival group 
comparisons (Figure 8A). Underexpression was generally 
more pronounced (lower log2-ratio) in the 0-2 year 
survival group than the other short-term survival groups 
(adjusted P<0.05, 1.5-fold change cutoff). Overexpression 
was also more pronounced (higher log2-ratio) in the 0-2 
year survival group. Pathway analysis showed that 
the differentially expressed genes were involved in 
cancer-related pathways such as cellular functions and 
maintenance, cellular movement, cellular assembly and 
organization, protein synthesis, cellular development, cell-
to-cell signaling, and cellular growth and proliferation. In 
addition, MMP1 was the only gene associated with tumor 
aggressiveness to play a role in at least five of the cancer-
related biological processes. Three of the differentially 
expressed genes (CCDC114, CCDC173, CCDC40) are 
members of the CCDC gene family relating to cellular 

Figure 7: Differential gene expression analysis between the two most commonly found fusion transcripts in the study 
cohort. Box plots showing the gene expression patterns of patients harboring the fusion transcript versus patients lacking the fusion 
transcript for AHNAK-MALAT1, MALAT1-AHNAK, MALAT1-RPPH1 and RPPH1-MALAT1 within the study group. Significant correlations 
are marked with *P<0.05, **P<0.01, ***P<0.001.
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movement, functions and maintenance. The majority of 
the differentially expressed genes are known to be cancer-
related, several of which are involved in female genital 
tract cancer.

Differential gene expression analysis was then 
performed by further stratifying the study cohort by both 
histotype and survival group. To avoid compromising 
the validity of the results due to small sample sizes, this 
analysis was only performed using three of the survival 
groups (2-5 years, 5-10 years and >10 years) for HGSC. 
The MTRNR2L1 gene was significantly overexpressed in 
the 2-5 year group compared with long-term survivors 
(log2 fold change = -4.0) and 5-10 year group compared 
with long-term survivors (log2 fold change = -2.7; 
Figure 8B).

DISCUSSION

Due to intertumoral heterogeneity, tumors with 
similar histopathology and presumed tissue of origin 
may have distinctly different clinical behaviors and 
respond differently to the same treatment. It is therefore 
important to improve personalized medicine using robust 
physiological biomarkers. Multi-omics approaches enable 
a comprehensive identification and evaluation of novel 
cancer biomarkers [15]. Here, whole-transcriptome 
RNA sequencing and whole-genome SNP genotyping 
analysis were performed on early-stage ovarian tumors 
in relation to clinicopathological features and clinical 
outcome to identify novel prognostic and/or diagnostic 
biomarkers, and improve histotype classification and 
patient stratification. This study presents an important 
addition to existing research due to its complete genome 

characterization of a large sample size of early-stage 
ovarian carcinoma specimens since few studies have 
previously characterized histotype-specific genetic 
features in early-stage ovarian carcinomas [9–11]. 
Moreover, few studies relate to complete genome studies 
on non-serous ovarian carcinoma histotypes [11, 16, 
17] and there are few studies on early-stage HGSC. It 
has however been shown that early-stage HGSC show 
similar genetic aberrations to late-stage HGSC [14]. 
In the present investigation, TP53 mutation analysis 
showed that mutation frequencies were highest in HGSC, 
which is in line with frequency rates observed in late-
stage HGSC [18]. Overall, we identified (a) recurrent 
deleterious tumor-specific genetic variants, not previously 
associated with cancer or tumor aggressiveness, that may 
have potential diagnostic value due to the absence of the 
variants in normal tissue, (b) expressed fusion transcripts 
predominantly in ncRNAs, in particular MALAT1, and 
(c) potential prognostic genes associated with tumor 
aggressiveness that may play a pivotal role in cancer-
related processes. In summary, these results present a 
comprehensive characterization of ovarian carcinoma with 
respect to histotype and overall survival highlighting the 
genetic complexity of ovarian carcinomas.

Several genetic variants had high mutation rates 
across the entire study group in comparison with normal 
ovarian controls, e.g. recurrent deleterious variants in 
the CHD1L, GFM1, MEIS1 and NFX1 genes, suggesting 
specificity to cancer. Similar mutation rates were identified 
for these genes in a breast cancer cohort [19]. Interestingly, 
no genetic variants were specific for either ovarian or 
breast cancer suggesting similarities between the genetic 
variants found in both cancer forms. Furthermore, 

Figure 8: Gene expression patterns associated with tumor aggressiveness. (A) Column bars depict overall gene expression 
patterns associated tumor aggressiveness when comparing short-term survivors (0-2y, 2-5y, 5-10y) with long-term survivors (>10y). Pathway 
analysis using IPA showed that the majority of the genes play a crucial role in cancer-related biological processes and/or associated with 
cancer (P<0.05). (B) Column bars showing overall gene expression patterns associated tumor aggressiveness in HGSC when comparing 
survivors in the survival groups 2-5 years and 5-10 years with long-term survivors (>10y), respectively. Significant log2-values (P<0.05) 
are indicated by *.
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genetic variants in CHD1L, GFM1, MEIS1 and NFX1 
have previously been reported in other cancer types (the 
type of genetic variant was not specified) but at lower 
frequency than reported here, such as genetic variants 
in CHD1L for 10% of primary CNS lymphomas, GFM1 
for 5.7% of cholangiocarcinomas, MEIS1 for 5.7% of 
uterine carcinosarcomas, and NFX1 for 6.7% of malignant 
peripheral nerve sheath tumors [20]. The majority of the 
recurrent deleterious variants were not found in the control 
cohort indicating tumor specificity. Two of the identified 
genes, NCOR1 and ASPM, have previously been identified 
as mutational cancer driver genes (high confidence driver) 
by Tamborero et al. [21].

Of the 52 different genes harboring recurrent 
deleterious variants found in at least one of the histotype 
or survival groups, frameshift insertion in the UBR5 
gene was the only deleterious variant that has previously 
been associated with cancer according to the COSMIC 
database. This finding suggests that the present study 
identified novel deleterious variants associated with 
cancer. Moreover, novel mutation signatures in relation to 
histotypes were identified. Among these, increased DNA 
methylation of the CASP8AP2 gene has previously been 
associated with less sensitivity to cisplatin and taxol in 
a breast cancer cell line (MDA-MB-231) [22], elevated 
UBR5 gene expression levels have been observed in 
cisplatin-resistant ovarian cancer patients in comparison 
with cisplatin-responsive patients [23], and SEMA4D 
has been shown to play a role in progression of multiple 
cancers, such as ovarian cancer [24]. The IPMK gene 
has been shown to be involved in cell cycle arrest and 
apoptosis in ovarian cancer [25] and the BECN1 gene 
has been suggested to be a tumor-suppressor gene and 
its expression levels to be associated with ovarian cancer 
prognosis [26]. To our knowledge, no association with 
ovarian cancer has previously been found for the genetic 
variants in the CLEC2B, ACACA, OSTM1 and SLC28A2 
genes. As next-generation sequencing analyses become 
more commonly used in the clinic, these novel mutation 
signatures may help to improve subclassification of 
the histotypes. The deleterious variant in the OSTM1 
gene may be of prognostic importance, since it showed 
significantly higher mutation rates in the 0-2 year survival 
group compared to the other survival groups.

Several of the genes comprising the deleterious 
variants also had an effect on gene expression patterns. 
Significant overexpression of AP2M1, GFM1, HIST1H1E, 
and ZNF148, and underexpression of BECN1 and 
NCOR1 were identified in HGSC compared to the other 
histotypes. Out of these genes, only the AP2M1 gene 
(DNA amplification) has previously been associated 
with HGSC [27]. Moreover, the SEMA4D gene was 
significantly overexpressed, and the ARV1 gene was 
significantly underexpressed in CCC in comparison 
with the EC and MC histotypes. With regard to survival 
groups, ALMS1 and VWA3A may be used as prognostic 

biomarkers, since they were significantly underexpressed 
in the 0-2 year survival group compared to the 2-5 year 
and >10 year survival groups, and 2-5 year and >10 
year survival groups, respectively, wherein the VWA3A 
gene has previously been associated with survival [28]. 
However, the observed changes in gene expression pattern 
were primarily associated with specific histotype or 
survival groups rather than a result of the genetic variant. 
These findings indicate that the gene expression patterns 
were influenced by other molecular mechanisms than the 
genetic variation in specific indels (insertions/deletions) 
and SNVs (single-nucleotide variants). Of the 15 genes 
showing significant changes in gene expression patterns 
in the presence of potential deleterious variants, SLC28A2 
was the only gene with differential gene expression 
patterns that could be attributed to mutation status in the 
MC histotype, as well as, between variant carriers in the 
HGSC and MC histotypes. Consequently, only histotype-
specific changes in gene expression were observed for the 
remaining genes containing genetic variants, which may 
suggest that histotype and/or other molecular mechanisms 
play a role in determining the gene expression levels for 
these genes. In the survival groups, ARCN1 showed a 
significant difference in gene expression patterns between 
variant carriers in the 0-2 year and 5-10 year survival 
groups, suggesting that ARCN1 may have a tumor 
suppressor effect as elevated expression thereof indicated 
longer survival times. The deleterious frameshift insertion 
in MTUS1 was particularly interesting since it resulted in 
a significant difference in both gene expression patterns 
and overall survival compared to non-variant carriers. 
The elevated gene expression levels in variant carriers 
compared to non-variant carriers caused by the frameshift 
insertion may be explained in that the MTUS1 degradation 
site may have been removed. Interestingly, a protective 
effect for overall survival was shown for the deleterious 
variant in MTUS1, suggesting that the genetic variant has 
a tumor-suppressor effect. Although the tumor suppressor 
effect of MTUS1 has been shown in multiple cancer 
forms [29–31], this is the first report to our knowledge 
correlating both MTUS1 gene expression and mutation 
status with overall survival.

Fusion events may play an important role in the 
development of epithelial cancers, since they may be 
strong driver mutations and promote genomic instability 
[32]. High resolution RNA-seq can be used to identify 
fusion transcripts that are expressed within tumor tissue. 
The majority of the identified fusion transcripts had one 
gene partner spanning non-coding exonic DNA regions, 
suggesting that the majority of fusion transcripts do not 
generate a corresponding fusion protein, but may influence 
the expression of the fusion partner. These fusion 
transcripts may have arisen by chance due to genomic 
instability. Only 12.7% of the identified fusion transcripts 
were predicted to be in coding regions, e.g. in-frame, out-
of-frame or promoters (5’ UTRs). Out-of-frame fusion 
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transcripts are also assigned to this group since they may 
be placed back in-frame through alternative splicing or 
genetic variations. Almost half of the fusion transcripts 
had an inverted orientation of their fusion partners, 
indicating fusion transcript formation via inversion 
events. Interestingly, we identified a higher prevalence of 
interchromosomal fusion events than intrachromosomal 
fusion events, which is in contrast to previous reports in 
cancer [33, 34]. These differences may be the result of 
multiple interchromosomal fusions on chromosome 11, 
which predominantly spanned ncRNAs. Moreover, several 
interesting in-frame kinase fusions were identified which 
may be targetable with kinase inhibitors.

MALAT1 lncRNA has been associated with 
overexpression in various cancers and linked to 
unfavorable overall survival when overexpressed 
[35]. MALAT1 was significantly overexpressed in the 
study cohort compared to the normal controls, which 
is consistent with recent studies linking MALAT1 
overexpression with significantly increased cell 
proliferation and invasion in ovarian cancer [36, 37]. To 
our knowledge, MALAT1 has not previously been reported 
to be involved in fusion events in ovarian carcinomas. 
MALAT1 was highly promiscuous (forming fusions with 
multiple partners) in the present study, suggesting that 
the majority of the fusions occurred at the RNA level. 
Nevertheless, FISH analysis demonstrated that several 
MALAT1 fusions also occur at the DNA level. However, 
the fusions were observed in few cells indicating extensive 
clonal heterogeneity. The most commonly identified fusion 
transcript across the study cohort, AHNAK-MALAT1, 
was found in 25.8% (n=24) of the samples and this 
frequency is even higher (35.4%, n=34) if the reciprocal 
fusion transcript (AHNAK-MALAT1, MALAT1-AHNAK) 
is taken into account. These numbers are extremely 
high considering the heterogeneous nature of ovarian 
carcinomas. Few fusion transcripts involving MALAT1 
were specific for a particular histotype or survival group. 
Previous reports have identified several fusion transcripts 
in HGSC, including BCAM-AKT2 (7%), CDKN2D-
WDFY2 (20%) and ESRA-C11orf20 (15%), wherein the 
majority of the samples were in late-stages, but absent in 
the present study [38–40]. A further study identified nine 
recurrent fusion transcripts (present in at least 2/220), 
whereof two fusion transcripts CRHR1-KANSL1 and 
COL14A1-DEPTOR were also found in the present study 
cohort [41].

Oncofuse identified 105 potentially oncogenic 
fusion transcripts. Six of the most common fusion partners 
containing the MUC16, AHNAK, SYNE2, COL3A1, 
COL1A2 and MACF1 genes were identified as significant 
driver fusion transcripts. MALAT1 was not present as a 
fusion partner among the 105 driver fusion transcripts. 
This may suggest that MALAT1 has not previously been 
identified as a fusion transcript and further research is 
necessary to elucidate its role in ovarian tumorigenesis. 

However, Lanzós et al. [42] recently identified MALAT1 
as a high confidence candidate of being a cancer driver 
lncRNA. 

In the gene expression analysis, 23 genes were 
found to be differentially expressed in at least two of 
the survival group comparisons, and associated with 
tumor aggressiveness. These genes may be seen as 
common cancer genes rather than ovarian cancer specific 
genes associated with tumor aggressiveness, since the 
histotypes have different origin and clinical behavior. 
Interestingly, the majority of the differentially expressed 
genes was involved in cancer-related pathways and/or 
were associated with cancer, such as female genital tract 
cancer. For example, ARG2 and MMP1 expression have 
been found to correlate with poor prognosis in gastric and 
ovarian cancer, respectively [43, 44]. MTRNR2L1 was 
significantly underexpressed in both the 2-5 year survival 
group and 5-10 year survival group compared with long-
term survivors (only HGSC samples taken into account). 
Little is known about the function of the MTRNR2L1 gene 
and it has not previously been associated with HGSC.

In summary, we have identified several novel genetic 
aberrations associated with histotype and/or clinical 
outcome for early-stage ovarian carcinomas. In addition, 
several potential diagnostic and prognostic biomarkers 
were identified. Potential diagnostic biomarkers include 
the recurrent deleterious tumor-specific genetic variants 
which were only found in the study cohort but absent in 
the normal controls, among which 15 genetic variants were 
identified with significant differences in mutation rates 
between the histotype groups, e.g. frameshift insertion 
in OSTM1 (higher mutation rates in MC compared with 
the other histotype groups), frameshift deletion in BECN1 
(lower mutation rates in CCC compared with the other 
histotype groups), and absence of the frameshift insertion 
in SEMA4D in MC. In addition, the SLC28A2 gene 
showed a significant difference in gene expression patterns 
between variant and non-variant carriers in the MC 
histotype. Lastly, MALAT1 expression may also be used 
as a diagnostic biomarker as it was significantly higher 
in the study cohort compared to the normal controls. 
Potential prognostic biomarkers include the recurrent 
deleterious tumor-specific genetic variants which differed 
between the survival groups, e.g. frameshift insertion in 
OSTM1 (higher mutation rates in 0-2y compared with 
the other survival groups). The frameshift insertion in 
MTUS1 presented a potential tumor-suppressor effect due 
to the mutation-dependent gene expression patterns and its 
protective effect on OS in variant carriers. Moreover, the 
23 differentially expressed genes associated with overall 
survival (tumor aggressiveness) may be used as prognostic 
biomarkers. Further studies need to be performed in order 
to validate the clinical significance these aberrations may 
have on ovarian carcinoma subclassification and patient 
stratification using e.g. immunohistochemistry and in vivo 
functional studies.
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Table 1: Clinicopathological characteristics of the 96 patients (grouped by histotype) with ovarian carcinoma

No. of patients (%)
All Histotype P-value

HGSC LGSC EC MC CCC

All 96 50 (52) 1 (1) 17 (18) 11 (11) 17 (18)
Mean age NA
 mean age (range) 63 (25-86) 63 (32-86) 78 64 (25-83) 61 (39-80) 63 (42-84)
Overall survival 0.118
 0-2y 9 (9) 2 (4) 1 (100) 1 (6) 3 (27) 2 (12)
 2-5y 27 (28) 17 (34) NA 5 (29) 2 (18) 3 (18)
 5-10y 33 (34) 18 (36) NA 5 (29) 3 (27) 7 (41)
 >10y 27 (28) 13 (26) NA 6 (35) 3 (27) 5 (29)
Cause of death 0.035
 Ovarian carcinoma 48 (50) 32 (64) 1 (100) 3 (18) 2 (18) 10 (59)
 Other cancer 13 (14) 7 (14) 0 3 (18) 3 (27) 0
 Other 21 (22) 5 (10) 0 6 (35) 4 (36) 6 (35)
 Not available 1 (1) 0 0 0 0 1 (6)
 Alive* 13 (14) 6 (12) 0 5 (29) 2 (18) 0
Stage 0.145
 I 64 (67) 29 (58) NA 12 (71) 9 (82) 14 (82)
 II 32 (33) 21 (42) 1 (100) 5 (29) 2 (18) 3 (18)
Tumor grade EC NA
 FIGO grade I 2 (2) NA NA 2 (12) NA NA
 FIGO grade II 9 (9) NA NA 9 (53) NA NA
 FIGO grade III 6 (6) NA NA 6 (35) NA NA
Dualistic model** <0.001
 Type I 46 (48) 0 1 (100) 17 (100) 11 (100) 17 (100)
 Type II 50 (52) 50 (100) 0 0 0 0
CA125 0.094
 <35 26 (27) 8 (16) 0 7 (41) 5 (45) 6 (35)
 35-65 16 (17) 13 (26) 0 0 2 (18) 1 (6)
 >65 54 (56) 29 (58) 1 (100) 10 (59) 4 (36) 10 (59)
Ploidy 0.213
 near diploid 25 (26) 15 (30) 0 7 (41) 2 (18) 1 (6)
 aneuploid 69 (72) 35 (70) 1 (100) 9 (53) 8 (73) 16 (97)
 Not available 2 (2) 0 0 1 (6) 1 (9) 0
Chemotherapy 0.315
 Yes 95 (99) 49 (98) 1 (100) 17 (100) 11 (1) 17 (100)
 No 0 0 0 0 0 0
 Not available 1 (1) 1 (2) 0 0 0 0

* Alive per 2016.01.01.
** Dualistic model according to Kurman, R.J. et al., The Dualistic Model of Ovarian Carcinogenesis, Revisited, Revised, 
and Expanded, 2016.
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MATERIALS AND METHODS

Patients and tumor samples

Primary invasive ovarian carcinomas from 96 
patients diagnosed between 1994 and 2006 were obtained 
from the fresh-frozen tumor bank at the Sahlgrenska 
University Hospital Oncology lab (Gothenburg, Sweden). 
Clinicopathological characteristics and overall survival 
data were obtained from the National Quality Registry at 
the Regional Cancer Center West (Gothenburg, Sweden) 
and the Cancer Registry at the National Board of Health 
and Welfare, respectively. Of the available fresh-frozen 
samples in the tumor bank, patients were chosen for 
inclusion in the study cohort according to the International 
Federation of Gynecology and Obstetrics (FIGO) stage 
I and II, as well as overall survival calculated from the 
date of initial diagnosis to the date of death of any cause 
and stratified into four survival groups, i.e. 0-2 years, 2-5 
years, 5-10 years and >10 years.

The tumor specimens were reclassified according to 
current WHO criteria [1–3, 45] with regard to histotype 
and histological grade by pathologists at Sahlgrenska 
University Hospital using four micrometer full-face 
FFPE sections stained with hematoxylin and eosin. The 
histotype distribution in the present study was relatively 
consistent with previous reports. However, a slightly 
higher number of HGSC samples (52%) and lower number 
of EC (18%) and CCC (18%) were used in the present 
study than has previously been reported for early-stage 
ovarian carcinomas (HGSC (35.5%), LGSC (1.9%), EC 
(26.6%), MC (7.5%), CCC (26.2%)) [46]. All procedures 
were performed in accordance with the Declaration of 
Helsinki and approved by the Regional Ethical Review 
Board (Gothenburg, Sweden; case number 767-14). 
The Regional Ethical Review Board approved a waiver 
of written consent to use the tumor specimens. The 
clinicopathological features of the 96 cases with regard 
to the histotype reclassification are shown in Table 1 and 
overall survival in Supplementary Table 4. All 96 patients 
underwent laparotomy and debulking cytoreductive 
surgery.

Control cohort

Approval for access to the Cancer Genome Atlas 
(TCGA) genomic data was obtained through the database 
of Genotypes and Phenotypes (dbGaP; project #11044). 
Raw sequencing data for 30 normal ovarian solid tissue 
samples (control cohort; Supplementary Table 5) was 
retrieved from TCGA-OV data collection through the 
Genomic Data Commons Data Portal (GDC Data Portal) 
[18, 47]. The normal controls had been analyzed by whole 
exome sequencing (WXS) and mapped against GRCh38. 
To minimize batch differences between the study cohort 
and the control cohort, the raw data for the control cohort 

was converted to FASTQ format using the BEDTools (v. 
2.25.0) module and compressed using the gzip module 
in Uppsala Multidisciplinary Center for Advanced 
Computational Science (UPPMAX). The FASTQ files 
were thereafter processed using the same pipeline as 
the study cohort for variant calling and differential gene 
expression analysis (see below).

Whole-transcriptome RNA-seq

Total RNA was extracted from the tumor samples 
using the RNeasy Lipid Tissue Mini Kit (Qiagen), 
followed by RNA concentration and integrity assessment 
using Nanodrop ND-1000 (Nanodrop Technologies) in 
combination with QuBit (ThermoFisher Scientific) and 
the RNA 6000 Nano LabChip Kit with Agilent 2100 
Bioanalyzer (Agilent Technologies), respectively. Samples 
with an RNA integrity number (RIN) of 6 or higher were 
processed at the Science for Life Laboratory (National 
Genomics Infrastructure, Stockholm). Illumina TruSeq 
strand-specific RNA libraries (Ribosomal depletion using 
RiboZero human) containing 125 bp pair-end reads were 
obtained for each sample on a HiSeq2000 sequencer 
(Illumina). Read alignment yielded approximately 9.7 
to 22.3 million aligned reads per sample (median, 19.4 
million aligned reads). Computations were performed on 
resources provided by SNIC through UPPMAX under 
Project SNIC b2015239.
Quality control of raw RNA-seq data

A quality control check of the FASTQ files was 
performed using default FastQC parameters (v. 0.11.2) 
and compiled using MultiQC (v. 0.6). Low quality bases 
(Phred quality scores below 20) and adapter sequences 
were removed utilizing the TrimGalore wrapper script (v. 
0.4.0). FastQC and MultiQC were thereafter performed 
on the trimmed FASTQ files examining the quality of the 
trimmed reads and ensuring that all adapter sequences 
had been removed [48]. A principal component analysis 
(PCA) was performed on the variance stabilizing 
transformation data (vsd) values on raw gene counts for 
each sample using DESeq2 (v. 1.14.0) in R/Bioconductor 
(v. 3.2.5).

Variant calling

Genetic variants were identified according to the 
Genome Analysis Toolkit (GATK) (v. 3.6) Best Practices 
protocol, Broad Institute (https://software.broadinstitute.
org/gatk/guide/article?id=3891). More specifically, the 
trimmed FASTQ files were aligned to the human reference 
genome hg19 (GRCh37) using the STAR (v. 2.5.0c) 
aligner in a two-pass approach [49]. MultiQC was run on 
Log.final.out-files received from the mapping with STAR 
to control the mapping quality of each sample. One sample 
had below 80 % uniquely mapped reads, and was hence 
removed from the study cohort (OV386 = 52.4% uniquely 

https://software.broadinstitute.org/gatk/guide/article?id=3891
https://software.broadinstitute.org/gatk/guide/article?id=3891
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mapped reads). This sample is not accounted for under the 
“Patients and tumor samples” section above.

In brief, the GATK SplitNCigarReads tool was 
used to remove false positive calls caused by splicing 
inaccuracies from the STAR aligner. Base quality score 
recalibration (BQSR) was performed using GTF files 
(dbsnp_138.hg19.vcf, dbsnp_138.hg19.vcf.idx, Broad 
Institute). The genetic variants were called using the 
HaplotypeCaller. Hard filters were applied filtering 
clusters of at least three SNPs, which were in a window 
of at least 35 bases and based on Fisher Strand (FS>30) 
and quality by depth (QD<2). The filtered genetic variants 
were annotated with ANNOVAR [50] and thereafter 
further filtered with the 1000 Genomes Project dataset 
(1000g2015aug) [51, 52] and dbSNP (hg19_snp138) 
with a minor allele frequency (MAF) threshold of 0.01 
to remove common genetic variants found in the human 
population. Potential deleterious variants predicted to have 
an effect on the amino acid sequence were identified by 
filtering conservatively for the Sequence Ontology terms 
frameshift insertion (SO:0001909), frameshift deletion 
(SO:0001910), stopgain (SO:0001587), or stoploss 
(SO:0001578) [53, 54]. The genetic variants were matched 
against the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database (v.70, Aug. 2014) [55] to annotate 
known genetic variants associated with cancer.
Differential gene expression analysis

Raw read counts, i.e. the number of sequences that 
map to each transcript of the human reference genome 
(hg19 assembly), were calculated using htseq-count in 
the htseq (v. 0.6.1) module in UPPMAX on name sorted 
STAR (1-pass mode) BAM files. Fragments per kilobase 
of exon per million fragments mapped (FPKM) values 
were computed by running the Cufflinks (v. 2.2.1) module 
on STAR (1-pass mode) BAM files sorted by coordinates. 
Differentially expressed transcripts were determined using 
normalized count values of the tumor samples in the study 
and control cohort. DESeq2 (v. 1.14.0) in R/Bioconductor 
(v. 3.2.5) was used to compare gene expression levels 
between patients belonging to different histotype and/or 
survival groups to identify the differentially expressed 
transcripts.
Identification and validation of fusion transcripts

FusionCatcher [56] (v. 0.99.5a) with the associated 
databases ENSEMBL, UCSC and RefSeq was used to 
identify fusion transcripts. FusionCatcher implemented 
Bowtie (v. 0.12.6), BLAT (v. 35), STAR and Bowtie2 (v. 
2.2.3) to identify fusion junctions and align the fusion 
transcripts to the GRCh37 human reference genome 
assembly. Identified fusion transcripts marked with fusion 
descriptions indicating fusion genes of high or very high 
probability of being a false positive fusion transcript were 
removed [57].

The Oncofuse tool [58] was used to predict the 
oncogenic potential of the identified fusion transcripts 

across the study cohort (tissue type: EPI (epithelial 
origin)). A functional prediction score was assigned to 
each fusion transcript describing the probability of the 
fusion transcript being a driver event (Bayesian probability 
scores < 0.5).

Fluorescence in situ hybridization (FISH)

Dual-color interphase FISH was performed 
using a selection of recurrent fusion transcripts across 
the study group identified by FusionCatcher. More 
specifically, bacterial artificial chromosome (BAC) 
clones covering each fusion partner were selected from 
BACPAC Resources Center, Children’s Hospital Oakland 
Research Institute, CA, USA (Supplementary Table 
6) and validated on normal metaphase chromosome 
preparations. BAC DNAs corresponding to each fusion 
transcript were extracted (Qiagen Plasmid Maxi kit) 
and separately labeled for dual-color FISH by nick 
translation with biotin-16-dUTP (detected by FITC) 
and digoxigenin-11-dUTP (detected by Rhodamine) 
(Roche Diagnostics, Mannheim, Germany), respectively. 
Touchprint preparations were prepared from fresh-frozen 
tumors corresponding to the RNA sequenced ovarian 
tumor samples. Biotin-16-dUTP and dioxigenin-11-
dUTP labeled probes were co-hybridized to denaturated 
interphase nuclei slides overnight at 37 °C. The hybridized 
slides were counterstained with DAPI and mounted in an 
antifade solution (Vectashield DAPI, Vector Laboratories, 
Burlingame, CA, USA). Sample evaluation and image 
acquisition were performed using a Leica DMRA2 
fluorescent microscope (Leica, Leica Microsystems, 
Wetzlar, Germany) equipped with an ORCA Hamamatsu 
CCD (charged-couple devices) camera and filter cubes 
specific for green fluorescein isothiocyanate (FITC), 
red rhodamine, and UV for blue 4′,6′-diamidino-2′-
phenylindole dihydrochloride (DAPI) counterstain 
visualization. Image preparation was performed using 
CW4000 software, QFISH.

Ingenuity pathway analysis (IPA)

Pathway analysis was performed using Ingenuity 
Pathway Analysis (Ingenuity Systems, Redwood City, 
USA) to identify cancer-related biological functions 
associated with the identified genetic variants, 
differentially expressed genes and fusion transcripts. The 
biological functions were generated using Fisher’s exact 
test (P<0.05).

Genome-wide SNP genotyping

Genomic DNA was extracted (Wizard Genomic 
DNA Purification Kit, Promega) followed by phenol 
chloroform purification with Phase Lock Gel Light (5 
Prime) for nine samples in the study cohort comprising 
a FISH verified fusion transcript. Genome-wide SNP 
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genotyping analysis (Illumina Infinium HumanOmni2.5-8 
v. 1.3 Beadchips) was performed on the purified DNA at 
the SCIBLU Genomics DNA Microarray Resource Center 
(SCIBLU), Department of Oncology, Lund University.

The identified genetic variants and fusion transcripts 
were correlated to copy number alterations and DNA 
breakpoints present in the SNP genotyping data. The 
RNA-seq (genetic variants and fusion transcripts) and SNP 
genotyping data were visualized as circos plots using the 
Circos (v. 0.66) module in UPPMAX.

Statistical analyses

A comparison of genetic variant frequency and gene 
expression levels dependent on genetic variants or fusion 
transcripts was performed between the study and control 
cohorts, histotype and/or survival groups using a 0.05 
p-value cutoff in Microsoft Excel with the TTEST function 
or analysis of variance (ANOVA) in R/Bioconductor (v. 
3.2.5) as appropriate. All p-values are two-sided. Survival 
rates according to mutation status were calculated with 
Kaplan-Meier curves and tested with log-rank test 
(survival, v. 2.40-1). Univariate Cox proportional hazard 
models were calculated for mutation status using DSS (the 
time from initial diagnosis to ovarian cancer-related death) 
and OS (the time from initial diagnosis to death from any 
cause). Statistical significance is indicated as *P<0.05, 
**P<0.01 or ***P<0.001.

Data availability

The RNA-seq and SNP genotyping data have 
been deposited in the NCBI Gene Expression Omnibus  
(http://www.ncbi.nlm.nih.gov/geo/) under accession 
number GSE101109.
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