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Breast cancer stem cells (CSCs) are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that
pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with
aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG,
and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of
CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs.
Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells
in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce
apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin
J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres.This suppression
was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can
counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to
suppress the propagation of breast CSCs via reduction of NANOG.

1. Introduction

Breast cancer is a leading cause of cancer death among
women, as cancer recurrence andmetastasis occur frequently
in breast cancer patients [1, 2]. Accumulating evidence indi-
cates that CD24−/lowCD44+ breast cancer cells, also referred
to as “tumorigenic breast cancer cells” [3, 4], “breast cancer
stem cells (CSCs)” [5], and “stem-like breast cancer cells”
[6], possess stem cell characteristics, display resistance to
conventional therapies, and have high tumor-initiating and
metastatic ability [3, 4, 7–9].Therefore, the presence of breast

CSCs has been suggested to be the underlying cause of breast
cancer recurrence andmetastasis [2, 8, 9]. In order to improve
breast cancer therapeutics, efforts are now being directed
towards identifying strategies that target breast CSCs [2, 9].

Accumulating evidence supports that self-renewal reg-
ulators of normal stem cells may govern clinical behavior
of human cancer [10, 11]. For example, embryonic stem
cell (ESC) signature is associated with poor clinical out-
come in patient of breast cancer patients [12]. Among the
regulatory genes involved in pluripotent maintenance of
ESCs, NANOG was found to express a NANOGP8 retrogene
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locus in a wide variety of somatic and cancer cells [13–
15]. Recent work has shown that NANOG was functionally
involved in human tumor development and in regulating
cancer stemness [15, 16]. Knockdown of NANOG signifi-
cantly reduced the tumorigenic potentials of various cancer
cells including breast cancer [17]. NANOG has also been
identified in breast cancer cells and was found to mediate
multidrug resistance via activation of STAT3 signaling [18]
suggesting that NANOG is a potential target for breast cancer
therapeutics.

Herbal medicine has been proposed for utilizing a com-
plementary approach for control of breast cancer recurrence
and metastasis [19, 20]. However, whether the activity of
breast CSCs can be suppressed by treatment of herbal
medicine has never been addressed. In Chinese traditional
medicine, the roots of the fern Helminthostachys zeylan-
ica (L.) Hook. (Ophioglossaceae), known as “Ding-Di-U-
Gon”, is used as antipyretic and antiphlogistic agent to
treat inflammatory diseases, various hepatic disorders, and
possibly malignancy in pancreas [21–23].The rhizome of this
medicinal fern is also named as “tunjuk langit” in India which
has been used as a folk medicine to treat pulmonary disease
and even to cure impotency by the tribal people [24]. In
Malaysia, the rhizome is used as an antidiarrheal agent and
chewed with areca for whooping cough relief [25]. However,
efforts to evaluate the efficacy of such treatment on CSCs and
to identify responsible principles of its effect on cancer were
scarce.

In the present study, a group of natural cyclohexylmethyl
flavonoids isolated from the rhizomes of H. zeylanica had
been examined. Utilizing flow cytometry, we identified five
members of natural cyclohexylmethyl flavonoids that can
inhibit expansion of NANOG+ cells. Among these cyclo-
hexylmethyl flavonoids, ugonins J and K, which were the
main components of the ethyl acetate-soluble extract of the
rhizomes of H. zeylanica, were able to suppress propagation
of CD24−/lowCD44+ breast cancer stem cells both in vitro and
in vivo.

2. Materials and Methods

2.1. Cell Culture. Both human breast cancer cell lines MCF-7
andMDA-MB231were obtained fromBioresourceCollection
and Research Center (Hsin-Chu, Taiwan) and maintained
in either 𝛼-Minimum Essential Medium (𝛼-MEM) or L-15
medium (Invitrogen) supplemented with 2mM L-glutamine
(Sigma), 1.5 g/L sodium bicarbonate, 0.1mM nonessential
amino acids (Invitrogen), 1.0mM sodium pyruvate (Invitro-
gen), and 10% fetal bovine serum (FBS) (Invitrogen). Human
foreskin fibroblastHFF-1 cellswere imported fromATCCand
were maintained in ATCC-formulated Dulbecco’s modified
Eagle’s medium supplemented with 15% FBS (Invitrogen).

2.2. Chemicals. Doxorubicin (Dox) was obtained from
Sigma. Ugonins (J-S) were isolated and purified from the rhi-
zomes of Helminthostachys zeylanica [21]. All of the ugonins
used in the experiments were repurified by reversed-phase
HPLC to ensure the purity >99%.

2.3. Formation of Mammospheres. MCF-7 cells (1× 104 cells)
were grown in suspension culture in serum-free Dulbecco’s
Modified EagleMedium (DMEM) supplementedwith 2mM-
L-glutamine, 0.1mM nonessential amino acids, 20 ng/mL
human epidermal growth factor (R&D), 20 ng/mL basic
fibroblast growth factor (Millipore), 4𝜇g/mL heparin, and
5 𝜇g/mL insulin (Sigma) and 1x B27 supplement (Invitrogen).

2.4. Flow Cytometric Analysis. Cells were trypsinized and
washed three times with PBS before resuspension in Hanks’
Balanced Salt Solution (HBSS; Invitrogen) containing 2%FBS
and 10mMHEPES (Invitrogen).The cell densitywas adjusted
to 106/100 𝜇L in staining buffer before being stained with
antibodies FITC-conjugated anti-CD24 (BD Biosciences)
and APC-conjugated anti-CD44 (BD Biosciences) for 30
minutes. In some experiments, MCF-7 cells were stained
with anti-NANOG antibodies (Cell Signaling) followed by
staining with FITC-conjugated goat anti-rabbit IgG (BD
Biosciences). Stained cells were analyzed utilizing FACSCal-
ibur flow cytometry (BD Biosciences) after the addition of
propidium iodide (2 𝜇g/mL) to exclude dead cells.

2.5. Immunofluorescent Staining. MCF-7 cells (5 × 104 cell/
well) were seeded in the 24-well plate and cultured overnight.
After cellswere treatedwith different compounds for different
time course, cells were fixed by 4% PFA (Sigma) for 30
minutes at room temperature and permeabilized at room
temperature in 0.1% Triton X-100 for 30 minutes. After
blocking with 2% Roche blocking reagent, the cells were
incubated with primary antibody overnight at 4∘C and with
secondary antibody for 2 hours at room temperature. The
primary antibodies were used at the following dilutions:
rabbit anti-NANOG 1 : 100 (Cosmo Bio USA, Inc) and rab-
bit antiphospho-p53S15 1 : 400 (Cell Signaling). Cells were
counter-stainedwithHoechst dye (Sigma) to visualize the cell
nuclei. Images of the immunostaining were obtained using a
fluorescence microscopy (Leica Microsystems Inc).

2.6. Establishment of NANOG-Overexpressing and p53-
Overexpressing Cells. The lentiviral construct-pSin-EF2-
NANOG-Pur was obtained from Addgene (plasmid 16578)
[26]. In order to produce NANOG lentivirus, the day prior
to transfection, 293T cells were seeded at 2.4 × 106 cells
per 10-cm dish. Each 10-cm dish was transfected with
7.5 𝜇g pSin-EF2-Nanog-Pur 6.75 𝜇g pCMV-Δ8.91 packaging
plasmid, and 0.75𝜇g pMD.G envelope plasmid using
Genejuice transfection reagent (Novagen). Virus-containing
supernatant was collected and filtered through 0.45𝜇m pore
filters and stored at 4∘C. Virus was further concentrated by
ultracentrifugation for 2.5 hours at 26000 rpm in a Beckman
SW 28.1 rotor (Beckman Coulter), and the resulting virus
pellet was resuspended in PBS (pH 7.4) containing 1% BSA
at 4∘C overnight before being aliquoted and stored at −80∘C.
MCF-7 cells were first infected with NANOG lentivirus and
then NANOG-overexpressing cells were selected in 𝛼-MEM
containing 1 𝜇g/mL puromycin. The GFP-p53 plasmid was
obtained from Addgene (plasmid 12091) [27]. MCF-7 cells
(5 × 104 cell/well in 24-well plate) were seeded on coverslips



Evidence-Based Complementary and Alternative Medicine 3

and transfected with 0.25 𝜇g of GFP-p53 plasmid using
GeneJuice reagent (Merck Millipore).

2.7. Establishment of NANOG-Knockdown Cells. The lentivi-
ral shNANOG construct (TRCN0000004884) was obtained
from the National RNAi Core Facility (Institute of Molecular
Biology/Genomic Research Center, Academia Sinica), and
the lentivirus was generated as described in the previous sec-
tion. MCF-7 cells were infected with shNANOG lentivirus,
and thenNANOG-knockdown cells were selected in 𝛼-MEM
containing 1 𝜇g/mL puromycin.

2.8. Western Blotting Analysis. Whole-cell extracts were pre-
pared using RIPA buffer containing 150mM NaCl, 50mM
Tris HCl (pH 8), 1% NP-40, 0.5% sodium deoxycholate,
0.1% SDS, and protease inhibitors and phosphatase inhibitors
cocktails (Sigma). Whole-cell extracts of MCF-7 cells were
separated by 10% SDS-PAGE and subsequently transferred
to PVDF membrane (Millipore). Samples were incubated
in blocking buffer (0.1% Tween 20, 5% nonfat milk pow-
der in TBS) for 1 hour at room temperature. Afterwards,
the membrane was incubated with primary antibody in
blocking buffer overnight at 4∘C before being washed twice
with TBST (0.1% Tween in TBS) and incubated with the
appropriate secondary antibody in blocking buffer for 1 hour
at room temperature. The blot was developed using ECL
western blotting substrate (Millipore) and analyzed using
the luminescent image analyzer, LAS-4000mini (Fujifilm).
The primary antibodies were used at the following dilutions:
rabbit anti-NANOG, 1 : 1000 (Cell Signaling); rabbit anti-p53,
1 : 1000 (Cell Signaling); rabbit anti-p53-Ser15p, 1 : 1000 (Cell
Signaling); rabbit anti-p53-Ser392p, 1 : 1000 (Cell Signaling);
rat anti-ABCG2, 1 : 100 (Abcam); rabbit anti-Stat3, 1 : 2000
(Cell Signaling); rabbit antiphospho-Stat3Y705, 1 : 1000 (Cell
Signaling); rabbit antiphospho-Stat3S727, 1 : 1000 (Cell Signal-
ing); rabbit anticleaved PARP, 1 : 1000 (Cell Signaling); rabbit
anticleaved Caspase9, 1 : 1000 (Cell Signaling); and mouse
anti-𝛽-actin, 1 : 10000 (Sigma). The secondary antibodies
used were anti-rabbit HRP (1 : 1000, Santa Cruz) or anti-
mouse HRP (1 : 1000, Santa Cruz).

2.9. Analysis of the Promoter and p53-Binding Site of
NANOG and NANOGP8. To analyze the elements upstream
of NANOG and NANOGP8, the 5-kb upstream sequences
of the translation start sites of NANOG and NANOGP8
were retrieved from the human RefSeq files (NC 000012 and
NC 000015, resp.). The p53MH program (PMID: 12077306)
was employed to detect possible P53-binding site within the
5-kb sequence. The top 100 possible p53-binding sites were
extracted. For the identification of the most likely binding
site, the threshold of the percentage of maximum possible
score was set as 80%. The prediction of the promoter region
was carried out with CoreBoost HM (PMID: 18997002). The
score of 0.7 was set as a cutoff value for the plausible promoter
region.

2.10. Establishment of Orthotropic Tumor Xenografts in SCID
Mice. All animal experiments were approved by the
Academia Sinica Institutional Animal Care and Utilization

Committee. Four-week-old female SCID mice purchased
from BioLASCO were used to carry out MCF-7 xenograft
experiments. For tumorigenicity assay, eighteen mice
were divided into three groups (6 mice/group) and were
injected in the mammary fat pad with Control, NANOG-
overexpressing, or NANOG-knockdownMCF-7 cells (1×106
cells/60 𝜇L). To determine if ugonin J can suppress tumor
growth, eighteen mice were divided into three groups (6
mice/group) and were injected in the mammary fat pad with
MCF-7 cells (2 × 105 cells/60𝜇L). When the tumor volume
reached 50mm3 (set as Day 0), the tumor-bearing mice were
then administered a weekly dose of doxorubicin (12mg/kg,
dissolved in 100 𝜇L of DMSO) or ugonin J (50mg/kg,
dissolved in 100𝜇L of DMSO) interperitoneally for a total of
4 doses. Body weight of mice and tumor size were measured
weekly.

2.11. Histology and Immunohistochemistry. Tumor tissues
were fixed overnight at room temperature with 3.5%
formaldehyde solution containing 68.6% EtOH and 4.8%
acetic acid (FAA fixative) prior to being processed and
embedded in paraffin. 4 𝜇m thick sections were cut and
mounted on Superfrost plus slides (Thermo Scientific). For
immunohistochemical staining, sections were subjected to
antigen retrieval in Citric-acid based buffer (Vector Labo-
ratories) at 95∘C for 20 minutes. The sections were then
permeabilized with 0.1% (v/v) Triton X-100 in PBS for
30min and incubated in 2% blocking buffer (Roche) before
being incubated sequentially with primary, HRP-conjugated
secondary antibodies. Super Sensitive Polymer HRP IHC
Detection System (Biogenex Laboratories) was used to visu-
alize the positive cells. Sections were counterstained with
hematoxylin and mounted with Entellan Neu (Merck). The
primary antibodies were used at the following dilutions: rab-
bit anti-Nanog 1 : 150 (Cosmo Bio), mouse anti-MUC 1 1 : 100
(Abcam), and mouse anti-HCAM/CD44 1 : 100 (SantaCruz).

2.12. Invasion Assay. 1 × 104 of MCF-7 cells suspended
in serum-free medium with or without ugonins J or K
was seeded into the top chamber of the matrigel-coated
insert (Millicell, 24-well plate, 8𝜇m, Millipore) in 100 𝜇L
serum-free medium. In the lower chamber, the well was
filled with serum-containing medium which was used as a
chemoattractant. After 24-hour incubation, cells that did not
invade through the pores were removed by a cotton swab.
Cells on the lower surface of the membrane were fixed with
methanol and stained with Giemsa solution (Merck). The
number of invasive cells/each well was counted under a light
microscope. Data are representative of three independent
experiments. ∗∗∗𝑃 < 0.001, ∗∗𝑃 < 0.01 versus compared
control.

2.13. Statistical Analysis. Experiments were repeated at least
three times with consistent results. Statistical differences
between groups were determined by unpaired Student’s t
test. The statistical significance was set at ∗𝑃 < 0.05,
∗∗

𝑃 < 0.01, ∗∗∗𝑃 < 0.001. FACS data were analyzed by
FlowJo software (Ashland, OR, USA). The statistical analysis
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Figure 1: NANOG expression plays an important role in cell proliferation and tumorigenesis. (a) Total cell number of MCF-7, NANOG-
overexpressing MCF-7, and NANOG-knockdown MCF-7 cells (0.9 × 105 cells in 12-well plates) were counted after 24, 72 hours of culture
(𝑛 = 3). (b) Mammosphere formation in sphere-forming medium for 28 days. Total mammospheres were counted under a microscope
at days 28. Mean of three independent experiments ± SEM. ∗∗𝑃 < 0.01, ∗𝑃 < 0.05 versus control mammospheres. (c) Eighteen SCID
mice were divided into three groups (6 mice/group). The MCF-7 orthotopic tumors in SCID mice were formed with vector control,
NANOG-overexpressing, and NANOG-knockdown MCF-7 cells (1 × 106). The tumor volumes of SCID mice were measured weekly. The
average tumor volume of MCF-7 tumors was removed from SCID after 4 weeks. ∗∗∗𝑃 < 0.001, ∗∗𝑃 < 0.01 versus vector control (d)
NANOG overexpression enhanced expression of the cancer stem cell marker SOX2 and MUC1 in tumor xenografts. Hematoxylin-Eosin
stain and Immunohistochemical detection (x200) for NANOG, SOX2 and MUC1 on vector control, NANOG-overexpressing and NANOG-
knockdown tumor xenografts.

for fluorescent staining used MetaMorph imaging analytical
software (Molecular Devices).

3. Results

3.1. A Critical Role of NANOG inModulating Proliferation and
Tumorigenicity of Breast Cancer Cells. We initially investi-
gated whether expression of NANOGplays an important role
in breast cancer growth. To address this question, we gen-
erated NANOG-overexpressing and NANOG-knockdown
MCF-7 cell lines. As shown in Figure 1(a), RNA interference-
mediated NANOG knockdown reduced breast cancer. And
overexpression of NANOG slightly increased the overall
growth rate. To further determine if NANOG is the key

component modulating self-renewal capability and tumori-
genicity of the tumorigenic breast cancer cells, we carried
out the mammosphere-forming assay and orthotropic tumor
xenografts experiments in female SCID mice. As shown in
Figures 1(b) and 1(c), NANOG-overexpressing cells formed
20% more of mammospheres and generated twofold larger
tumor xengrafts than controlMCF-7 cells. In contrast, knock-
down of NANOG not only significantly reduced the ability
to form mammospheres, but also dramatically reduced the
tumorigenicity of MCF-7 cells. Immunohistochemical anal-
ysis of tumor xengrafts (Figure 1(d)) further confirmed that
NANOG overexpression enhanced tumor development and
increased expressions of cancer stemness protein-SOX2 and
MUC1 in tumor xengrafts. Oppositely, NANOG-knockdown
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Figure 2: NANOG overexpression enhanced propagation of cancer stem cells. Control, NANOG-overexpressing and NANOG-knockdown
MCF-7 cells were double-stained with anti-CD24 and anti-CD44 antibodies followed by FACS analysis (𝑛 > 3). CD44+ cell population (top
panel) and CD24−/low in CD44+ cell population (bottom panel) were analyzed.

cells generated tiny tumor nodules with lower levels of SOX2
and MUC1.

Since NANOG knockdown suppressed mammosphere
formation and reduced levels of SOX2 and MUC1 in tumor
xengrafts, we next tried to determine if propagation of
CD24−/lowCD44+ breast CSC subpopulation in MCF-7 cells
is also regulated by NANOG [3, 4]. As shown in Figure 2,
we found that overexpression of NANOG increased the
proportion of CD24−/lowCD44+ CSC subpopulation inMCF-
7 cells from 6.8% to 25.8%. In contrast, NANOG knockdown
reduced the proportion of CD24−/lowCD44+ CSC subpopula-
tion in MCF-7 cells from 6.8% to 1.88%.These data indicated
that NANOG played an important role in modulating self-
renewal and tumorigenicity of breast CSC subpopulations.

3.2. Identification of Bioactive Cyclohexylmethyl Flavonoids
Targeting NANOG+ Breast Cancer Cells. We have explored
that NANOG possibly played a critical role in modulating
self-renewal expansion and tumorigenicity of breast CSCs.
We therefore then assume identification of bioactive natural
components from herb medicine that can suppress that
NANOG would be beneficial for developing a complemen-
tary approach for control of breast CSC-driven recurrence
and metastasis. Since the dietary flavonoids were reported
to possess the ability to suppress the prostate CSCs via
inhibitingNANOG [28], a group of natural cyclohexylmethyl

flavonoids isolated from the rhizomes ofH. zeylanica that had
been examined. Initially, anMTT colorimetric assaywas used
to determine cytotoxicity of cyclohexylmethyl flavonoids
to two breast cancer cell lines (MCF-7 and MDA-MB231)
(Table 1). Among these flavonoids, ugonins J and K were
found to display cytotoxicity (IC

50

< 25 𝜇M) to breast cancer
cells. In contrast, these two ugonins were less cytotoxic to
normal foreskin fibroblasts (HFF). Utilizing flow cytometry,
we identified five members of natural cyclohexylmethyl
flavonoids that inhibited expansion of NANOG+ population
in both MCF-7 and MDA-MB 231 cells (Figures 3(a) and
3(b)). Among these natural cyclohexylmethyl flavonoids,
based on using immune-fluorescent staining, we validated
that either treatment of ugonins J or K, both compounds were
themain component of the ethyl acetate-soluble extract of the
rhizomes ofH. zeylanica, significantly reduced the expression
level of NANOG and MUC1 in MCF-7 cells (Figure 3(c)).

3.3. Downregulation of NANOG Mediates the Suppressive
Effect of Ugonin J on Propagation of Breast Cancer Stem
Cells. The ability of formation of mammospheres is known
as one of self-renewal characteristics of breast CSCs; we
then determined if treatment of ugonin J can suppress
mammosphere-forming ability. In comparing with NANOG
overexpression increased mammosphere formation, pre-
treatment with ugonin J completely inhibited formation of
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Table 1: Structures and activities of ugonins.

Compound name Chemical structure
IC50 (𝜇M)

HFF-1 cellsa MCF-7 cellsb MDA-MB231 cellsb

Ugonin J

OH

OHO

H2C
H

CH3

OH

OOH

CH3

42.1 15.1 22.5

Ugonin K

OH

O

H2C
H

CH3

OH

OOH

CH3

H3CO

41.0 15.7 22.9

Ugonin L

OH

O

H3C
H

CH3

OH

O

H3CO

H3C

O

ND∗ 33.9 54.1

Ugonin P

OH

OHO

H3C

CH3

OH

OOH

CH3

>100 63.1 >100

Ugonin Q

OH

OHO

H2C

CH3

OH

OOH

CH3

HO

100 >100 67.7

Ugonin R

OH

O

H3C

CH3

OH

OOH

CH3

HO

HO

ND 58.8 48.9
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Table 1: Continued.

Compound name Chemical structure
IC50 (𝜇M)

HFF-1 cellsa MCF-7 cellsb MDA-MB231 cellsb

Ugonin S

OH

O

H3C
H

CH3

OH

O
H3C

O

HO

ND 65.9 83.8

Ugonin M

OH

O

CH3
OH

O

H3C

O

HO

CH3

OH

>100 >100 >100

Ugonin N

OH

O

OH

O

H3C

HO

CH3

OH

H3C
O

H

100 65.5 67.2

Ugonin O

OH

O

OH

O

H3C

HO

CH3
H3C

O
H

O

>100 >100 >100

∗ND: not determined. aHFF-1: human foreskin fibroblasts and bMCF-7/MDA-MB-231: human breast adenocarcinoma cell lines.

mammospheres in control MCF-7 cells (Figure 4(a)). In
contrast, NANOG overexpression partially counteracted the
suppressive effect of ugonin J on mammosphere formation.
We then determined if ugonin J can reduce the malignant
features of MCF-7 cells including invasion ability, and IL-6
secretion led to STAT3 phosphorylation in mammospheres
(Figure 4(b)) [29]. Treatment with ugonin J or K for 24
hours significantly suppressed invasion ability of MCF-7
cells. Moreover, treatment of 28-day mammospheres with
ugonin J for 24 hours significantly reduced IL-6 secretion
and STAT3 phosphorylation in both control mammospheres
and NANOG-overexpressing mammospheres (Figures 4(c)
and 4(d)). These results suggest that ugonin J-mediated
downregulation of NANOGmay be a key event affecting the
propagation of breast CSCs.

3.4. P53-Dependent Pathway Mediates Downregulation of
NANOG by Ugonin J Treatment. NANOG is a pluripotent
regulator of embryonic stem cells, and previous studies have
shown that p53 binds to the promoter of NANOG and
suppresses NANOG expression after DNA damage [30, 31].
However, it has recently been shown that there are 11NANOG
pseudogenes [32].NANOGP8 has been recognized as a retro-
gene andwas recently found to be expressed in various cancer
tissues and several cancer cell lines including breast cancer
MCF-7 cells. We therefore determined if NANOGP8 can also
be regulated by p53. The p53MH program was employed to
detect possible P53-binding site within the 5-kb sequence in
the NANOG and NANOGP8 promoter regions. As shown
in Figure 5, both NANOG and NANOGP8 promoter regions
contained several potential binding site for p53.



8 Evidence-Based Complementary and Alternative Medicine

300000

200000

100000

0

M
ea

n 
of

 ce
ll 

nu
m

be
r (

M
CF

-7
)

∗∗∗
∗∗∗

∗∗∗ ∗∗∗

∗∗∗

∗∗∗
∗∗∗

∗∗∗

∗∗

C
on

tro
l

FT
C
10
𝜇

M

ug
on

in
J1
0
𝜇

M

ug
on

in
K
10
𝜇

M

ug
on

in
M
10
𝜇

M

ug
on

in
N
10
𝜇

M

ug
on

in
O
10
𝜇

M

ug
on

in
P
10
𝜇

M

ug
on

in
Q
10
𝜇

M

ug
on

in
R
10
𝜇

M

ug
on

in
S
10
𝜇

M

ug
on

in
T
10
𝜇

M

NANOG+ cells

(a)

M
ea

n 
of

 ce
ll 

nu
m

be
r (

M
D

A-
M

B2
31

) 200000

150000

100000

50000

0

∗∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗

∗

C
on

tro
l

FT
C
10
𝜇

M

ug
on

in
J1
0
𝜇

M

ug
on

in
K
10
𝜇

M

ug
on

in
M
10
𝜇

M
ug

on
in

N
10
𝜇

M

ug
on

in
O
10
𝜇

M
ug

on
in

P
10
𝜇

M

ug
on

in
Q
10
𝜇

M

ug
on

in
R
10
𝜇

M
ug

on
in

S
10
𝜇

M
ug

on
in

T
10
𝜇

M

ug
on

in
L
10
𝜇

M

NANOG+ cells

(b)

Control ugoninJ ugoninK
NANOG NANOG

knockdownoverexpressing

(c)

Figure 3: Natural product screening to reduce NANOG+ subpopulation of MCF-7 cells. ((a) and (b)) Screening for natural products by
reducingNANOG+ population assay.MCF-7 cells andMDA-MB231 cells (9×104 cells in 12-well plates) were treated with natural products for
72 hours beforeNANOG levels weremeasured. Total NANOG+ cells were calculated and datawere shown asmean± SEM from3 independent
experiments. ∗∗∗𝑃 < 0.001 or ∗∗𝑃 < 0.01 versus control cells. (c) Immunofluorescent staining ofNANOG (green) andMUC1 (red) on control,
treated with ugonins (J, K), NANOG-overexpressing, and NANOG-knockdown MCF-7 cells.

To further determine if p53 pathway can be activated
by ugonin J treatment. Time-course experiments were per-
formed and showed that treatment of ugonin J (Figure 6(a))
did in fact increase phosphorylation of p53 at ser15 and ser392
and also activated the apoptotic pathway, as evidenced by
cleaved forms of Poly (ADP-ribose) polymerase (PARP) and
caspase 9 in western blot analysis. In order to determine
whether the downregulation of NANOG in MCF-7 cells
with ugonin J treatment was directly mediated by p53, we
generated p53-overexpressing MCF-7 cells. A 60% reduction
of NANOG+ cells was found in p53-overexpressing MCF-
7 cells, combined treatment with ugonin J further reduced
90% of NANOG+ cells. In contrast, treatment of pifithrin-𝛼
(p53 inhibitor) rescued the reduction of NANOG induced by

ugonin J (Figures 6(b) and 6(c)). The results suggested that
activation of p53 pathway mediated the effect of ugonin J on
suppression of the NANOG expression.

3.5. Ugonin J Could Suppress Propagation of Breast Cancer
Stem Cells In Vivo. To further determine whether ugonin
J can suppress the propagation of tumorigenic breast CSCs
in vivo, MCF-7 cells (2 × 105 cells) were injected into the
mammary fat pads of female SCID mice. When the tumor
volume reached 50mm3 (Day 0), the tumor-bearing animals
were administered 4 doses of doxorubicin (12mg/kg) or
ugonin J (50mg/kg). As shown in Figures 7(a) and 7(b),
ugonin J treatment significantly inhibited tumor propagation.
Immunohistochemical analysis of tumor xengrafts further
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Figure 4: NANOG overexpression counteracts the suppressive effect of ugonin J on propagation of breast cancer stem cells. (a) Control and
NANOG-overexpressing MCF-7 cells (1 × 104 cells in 24-well plates) were treated with ugonin J for 3 days prior to mammosphere formation
in mammosphere forming medium for 28 days. Total mammospheres were counted under a microscope at days 15 and 28. Mean of three
independent experiments ± SEM. ∗∗∗𝑃 < 0.001 versus control mammospheres. (b) Invasion assay of MCF-7 was performed on matrigel
with or without ugonins J or K treatment. Data was shown as mean ± SEM from three independent experiments. ∗∗∗𝑃 < 0.001, ∗∗𝑃 <
0.01 versus control. (c) Control, NANOG-overexpressing cells (4 × 105 cells in 6-well plates), mammospheres, and NANOG-overexpressing
mammospheres (1000 spheres in 6-well plates) were treated with ugonin J for 24 hours before protein extraction. Western blot probed for
STAT3 and phospho-STAT3 Tyr705. Equal amounts of protein were used (40 𝜇g per lane). (d) Mammospheres were formed for 15 days from
control and NANOG-overexpressing mammospheres (20 spheres in 96 plates) before treatment with or without 10𝜇Mugonin J for 24 hours.
Medium was collected and analyzed by ELISA to determine the production of IL-6 (𝑛 = 3). Data was shown as mean ± SEM. ∗𝑃 < 0.05
versus control.

confirmed that treatment with ugonin J suppressed NANOG
expression. In contrast, some Dox-treated cancer cells still
expressed NANOG (Figure 7(c)) which can explain how
tumors can still be slightly propagated (Figure 7(a)). These
results suggest that ugonin J can suppress the propagation of
breast CSCs in vivo via reduction of NANOG.

4. Discussion
NANOG is a transcriptional factor that plays key roles in the
self-renewal and maintenance of pluripotency in embryonic

stem cells [31]. There are 11 NANOG pseudogenes [32].
NANOGP8 has been recognized as a retrogene and was
recently found to be expressed in various cancer tissues and
several cancer cell lines including theMCF-7 cells used in the
current study. We have previously shown that activation of
p53 by disrupting porphyrin homeostasis in embryonic stem
cells resulted in suppression of NANOG expression [33]. In
the current work, we observed a similar phenotype, where
treatment of MCF-7 cells with cyclohexylmethyl flavonoids
induced activation of p53, which in turn led to the reduction
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Figure 5: P53-binding site existed in the regulatory region of NANOG and NANOGP8. The upper panel presents the detection of the p53-
binding site in the 5-kb upstream sequence of the translation start site of a gene. The percentage of maximum possible score stands for the
possibility of being a p53-binding site. The cutoff value was set as 80% to unveil the p53-binding site candidates. The most likely p53-binding
site is indicated by asterisk.The lower panel exhibits the prediction of the promoter region.The triangle indicates the possible promoter region
with the score of more than 0.7. ∗𝑃 < 0.05 or ∗∗𝑃 < 0.01.

of NANOG expression. This suggests that NANOG expres-
sion is regulated by a similar mechanism in both breast CSCs
and embryonic stem cells. Recent work further indicates that
NANOGcould be upregulated by beta-catenin through inter-
action with Oct3/4 [34]. We have evaluated the possibility by
immunohistochemical analysis and Top/Fop flash assay (data
not shown) and found that ugonin J treatment decreased the
level of beta-catenin in tumor xengraft. However, the activity
of beta-catenin was extremely low in bothMCF-7 andMDA-
MB231 cells. We therefore proposed that it is possible that
Ugonin J treatment causes concomitant downregulation of
beta-catenin and NANOG in breast cancer, but, in absence
of wnt/beta-catenin, ugonin J is capable to downregulate
NANOG expression through p53 activation. P53, a well-
known tumor suppressor protein, involves regulating cell

cycle, senescence, and apoptosis responses against the cell
suffering from stress such as hypoxia or DNA damage. In
most cancers, p53 is either lost or mutated to allow cancer
cells to expand and progress [35]. Recent reports raised the
possibility to suppress tumor growth by restoring wild-type
p53 to cancer cells [36]. Our current work further highlights
the importance of restoring the function of p53 in CSCs.

Recent work has further demonstrated that NANOG
transcribed from the NANOGP8 locus is important in
tumorigenesis [16]. RNA interference-mediated NANOG
knockdown inhibited tumor development in xenograft ani-
mals and decreased long-term clonal and clonogenic growth
of cancer cells [16, 17]. These results are consistent with our
findings that overexpression of NANOG enhances the overall
growth rate of MCF-7 cells and downregulation of NANOG
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Figure 6: P53-dependent pathway mediates the downregulation of NANOG by ugonin J treatment in MCF-7 cells. (a) MCF-7 cells were
treated with 10𝜇M ugonin J for 6, 24, and 72 hours before protein extraction. Western blot probed for anti-ABCG2, NANOG, p53, phospho-
p53 Ser15 and 392, and cleaved PARP and caspase 9 antibodies. Equal amounts of protein were used (40 𝜇g per lane). (b) Relative percentage
of NANOG+ population inMCF-7, p53-overexpressingMCF-7, and pifithrin-𝛼 (p53 inhibitor)-treatedMCF-7 (0.9×105 cells in 12-well plates)
were treated with 10𝜇M ugonin J and counted after 48 hours of culture (𝑛 = 3). ∗∗𝑃 < 0.01 versus J-treated control. (c) Pifithrin-𝛼 treatment
rescued the reductive effect of Nanog.MCF-7 cells were treated with ALA and ugonin J for 72 hours. Nanog (red) and phospho-p53ser15 (blue)
expression was analyzed by immunofluorescent staining.

by ugonin J treatment suppresses propagation of breast
CSCs. However, the mechanisms, involved in regulating
transcription of NANOG from the NANOGP8 locus during
breast carcinogenesis, remain to be determined.

We have tried to determine the structure-activity rela-
tionship (SAR) of several cyclohexylmethyl flavonoids with
high potency to suppress NANOG that may possess the
specific structural features. We proposed that 6, 6-dimethyl-
2-methylene-cyclohexylmethyl groups on the C-6 position
are important for the potency of ugonins J and K to suppress

propagation of breast CSCs. In contrast, the bulky isoprenyl
group attached to position 2 of the B ring (found in ugonins
M, N and O) may reduce the potency. In addition, the free
rotation of the bulky isoprenyl moiety (ugonins J and K) may
contribute more stereohindrance and lipophilic properties
compared with the cyclizedmoiety with C-4 by ether-linkage
(ugonins L and S), as the double bond in the cyclohexane
(ugonin P) disrupts the chair form of the cyclohexane
moiety and reduces its lipophilicity. And one hydroxyl group
attached to the cyclohexyl ring (ugonins Q and R) might
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Figure 7: Effect of ugonin J on the growth of MCF-7 orthotopic tumor model. (a) SCID mice bearing MCF-7 orthotopic tumor were
administrated weekly once with Doxorubicin (12mg/kg) or ugonin J (50mg/kg). Each group used 6 mice. The tumor volumes of SCID
mice were measured weekly when the treatment began. (b) The average tumor volume of MCF-7 tumors was removed from SCID after 4
weeks. ∗∗∗𝑃 < 0.001, ∗∗𝑃 < 0.01 versus DMSO control or Doxorubicin. (c) Hematoxylin-Eosin stain and immunohistochemical detection
(×200) for NANOG and MUC1 on control, doxorubicin-treated, and ugonin J-treated tumor xenografts.

increase the hydrophilicity, which would also reduce the
potency. It has been reported that derivatives of ambrein
and agelasine that possessed cyclohexylmethyl groups are
capable to suppress the expansion ofmultiple cancer cell lines
[37, 38]. This may explain why ugonins J and K exhibited
relatively high potency to suppress propagation of breast
CSCs.

CD24−/lowCD44+ breast CSCs have been suggested to be
the underlying cause of breast cancer recurrence and are
a critical target for breast cancer therapies. H. zeylanica
have been used in Chinese traditional medicine for treating
inflammatory diseases and various hepatic disorders. In

the present study, we have identified two cyclohexylmethyl
flavonoids, ugonins J and K, which were the main com-
ponents of the rhizomes of H. zeylanica and were able to
suppress propagation of breast CSCs in mammosphere cul-
tures and in tumor xengrafts. The current work also found
that the suppressive effect of ugonin J on propagation of
breast CSCs was mediated by activation of p53 which in turn
led to reduction of NANOG. Overexpression of NANOG
counteracted the suppressive effect of ugonin J. The current
findings suggest that the rhizomes of H. zeylanica can possi-
bly be used as complementary medicine for reducing CSC-
mediated breast cancer recurrence.
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