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Abstract

Summary: In this report, we introduce an R package KMgene for performing gene-based associ-

ation tests for familial, multivariate or longitudinal traits using kernel machine (KM) regression

under a generalized linear mixed model framework. Extensive simulations were performed to

evaluate the validity of the approaches implemented in KMgene.

Availability and implementation: http://cran.r-project.org/web/packages/KMgene.

Contact: qi.yan@chp.edu or wei.chen@chp.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The gene-based tests are becoming an attractive complement to the

single variant tests used in GWAS (Liu et al., 2010). Compared to

single variant tests, gene-based tests are able to identify weak indi-

vidual signals by combining the effects of variants in the same gene,

and greatly reduce the number of multiple testing. One widely used

gene-based test is the sequence kernel association test (SKAT) (Wu

et al., 2011) based on a Kernel Machine (KM) regression frame-

work. Although SKAT was first developed for testing rare variants,

it could be easily applied to common variants. After SKAT was

introduced for testing independent samples with continuous and

binary traits, a number of methods and corresponding tools have

been developed to extend the approach to complex traits (Chen

et al., 2013, 2014; Wu et al., 2011; Yan et al., 2015a,b,c), such as

familial, multivariate and longitudinal traits. These methods are

based on a generalized linear mixed model (GLMM) framework.

Since SKAT has imbalanced power performance when the single

variant effects are in the same direction (i.e. all rare alleles are risk

or protective) or in different directions, the optimal version, SKAT-

O (Lee et al., 2012), was developed to balance these two scenarios.

However, most of the extended SKAT methods do not consider

the optimal tests balancing genetic effects. Several other R pack-

ages to support gene-based tests for familial data are available,

such as RVFam (https://cran.r-project.org/web/packages/RVFam).

They adapt linear mixed model (LMM) to their methods accounting

for pedigree. However, none of them can analyze multivariate traits

or longitudinal traits. In addition, those programs have different in-

put and output formats, making it difficult to use in practice for bio-

informaticians with limited genetics knowledge. Therefore, in this

report, we introduce KMgene, a one-stop solution that combines

SKAT-type methods for complex traits and extends them to include

their corresponding optimal tests. KMgene can perform association

tests between a set of genetic variants and familial, multivariate, lon-

gitudinal or survival traits (Table 1).

2 Materials and methods

In this study, we describe KMgene methods that use KM regression

under a GLMM framework, which can be employed to analyze a

large range of traits. In addition, KMgene incorporates survival

SKAT functions from R seqMeta package. Specifically, KMgene

works in two steps (refer to supplementary material for detailed der-

ivations). The first step with function names, prefix_Null_Model

(Supplementary Table S1), fits the model under the null hypothesis

(i.e. the genetic effects are zero). The estimates of covariate par-

ameters and covariance matrix are obtained at this step. The covari-

ance matrix can account for relatedness in families, correlation

between multivariate traits or between times for longitudinal data.
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The second step with function names, prefix (Supplementary

Table S1), constructs the test statistic and calculates the P-value. We

use the parameter estimates from step one to construct the test statis-

tic. Since the parameters are estimated under the null hypothesis and

used for all genes, they only need to be calculated once for the whole

genome-wide analysis, which greatly reduces the computation time.

According to our derivation, the test statistic follows a mixture of v2

distributions and thus we can compute the P-values analytically,

also leading to improvement in computation. The KM statistics can

be extended to the optimal test by combining with burden statis-

tics (refer to supplementary material for details). Analogously,

our optimal tests consist of two steps for fitting null models

(prefixO_Null_Model in Supplementary Table S1) and calculating

P-values (prefixO in Supplementary Table S1).

Input to the KMgene package are traits, covariates and genotypes

pre-grouped in genes and coded as 0, 1, 2 for the number of copies of

minor allele (i.e. additive genetic model). The additive genetic model

coding can be easily converted from plink (Purcell et al., 2007) format

by using option –recodeA. The genotypes should have no missing val-

ues. A conservative approach for handling missing genotypes is to as-

sign them to the homozygous reference genotype (i.e. 0), or one can

conduct a thorough genotype imputation. It also requires family pedi-

gree when analyzing familial data. The output is gene-level P-values.

3 Performance

3.1 Simulations
In the simulation studies, we evaluate the methods’ validity by

checking their type I error rates (refer to supplementary material for

each simulation scenario details). The QQ plots indicate that all of

the methods in KMgene package retain the correct type I error rates

(Supplementary Fig. S1).

3.2 Computation
The optimal KM test takes more computational time than regular

KM test due to a more complex model. In KMgene, the model fitting

continuous multivariate familial (MF) traits has the most complex

form. Thus, we used MF-KM and MFO-KM to estimate the compu-

tation. For MF-KM, analysis of a region of 60 variants on 300 trios

took 147.61 s (147.33 s for fitting the null model) on a single com-

puting node with a 3 GHz CPU and 4 GB memory, and 183.92 s

(182.49 s for fitting the null model) for MFO-KM. Based on this

simulation, it could take approximately 1.6 h for MF-KM and 8.0 h

for MFO-KM to analyze the whole genome (assuming 20 000 genes

with an average of 60 variants each, for 1 200 000 total variants).

The GLMM based tests are more reliable with larger sample size,

but larger sample size costs dramatic computation increase. The

computation time increases faster as the sample size increases than

as the gene size increases (Supplementary Fig. S2). Although large

genes take much more time to process than small genes, we

anticipate that using multiple CPUs, genome-wide data analysis

could be completed within hours using all the methods in KMgene.

3.3 Real data example
The functions in KMgene have been applied to several real data

studies (Chen et al., 2013; Maity et al., 2012; Yan et al., 2015b,c).

Here, as an illustrative example, we apply MFKM_Null_Model()

and MFKM() to carry out a gene-based genome wide association

test of the correlated lung function phenotypes FEV1 (Forced

Expiratory Volume in One Second) and FEV1/FVC (Forced Vital

Capacity) ratio (Yan et al., 2015). We identified COL6A6 associ-

ated with these two traits (Fig. 1) and COL6A6 is known to be in

the chronic obstructive pulmonary disease related regions based on

Rat Genome Database (RGD) (Shimoyama et al., 2015).

4 Conclusion

In conclusion, this R package adapts GLMM to conduct gene-based

tests for complex traits and uses Cox model for survival trait. KMgene

can handle genome-wide genotypic datasets with reasonable computa-

tional time. KMgene currently uses the linear kernel that is the most

commonly used kernel in genetic studies. Moreover, to speed up compu-

tation for large datasets, we can implement our package in Cþþwith

the help of R libraries, for example, ‘Rcpp’ and ‘RcppParallel’. We will

add more kernel options (e.g. quadratic and IBS kernels) in the package

and hope to incorporate our ongoing method for analyzing multiple

types of omics data in this package in near future.
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Table 1. A summary of functions in KMgene package

Regular (KM) Optimal (KM-O) Interaction (KM-Int)

Continuous family (F-KM) Chen et al. (2013) Extended NA

Binary family (Fb-KM) Yan et al. (2015a) Extended NA

Continuous multivariate (M-KM) Maity et al. (2012) Extended NA

Continuous multivariate family (MF-KM) Yan et al. (2015b) Extended NA

Continuous longitudinal (L-KM) Yan et al. (2015c) Yan et al. (2015c) Extended

Survival (CoxKM)a Chen et al. (2014) NA NA

aIncorporated from R seqMeta package.

Fig. 1. (A) Genome wide gene-based results of MFKM on lung function data.

Each dot represents P-value of a gene. (B) QQ plot of P-values from the lung

function analysis, with 95% pointwise confidence band (gray area)
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