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Abstract: The intestinal tract of a healthy human body hosts many microorganisms that are closely
linked to all aspects of people’s lives. The impact of intestinal flora on host health is no longer
limited to the gut but can also affect every organ in the body through various pathways. Studies have
found that intestinal flora can be altered by external factors, which provides new ideas for treating
some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a
natural antioxidant in various bioactive foods. In recent years, with the progress of research, there
have been many experiments that provide strong evidence for the ability of TP to regulate intestinal
flora. However, there are very few studies on the use of TP to modify the composition of intestinal
microorganisms to maintain health or treat related diseases, and this area has not received sufficient
attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the
essential role in maintaining suitable health. In addition, we highlighted the protective effects of
TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on
certain chronic diseases, which will help further explore measures to prevent related chronic diseases.

Keywords: tea polyphenols; antioxidant; intestinal flora; mucosa; chronic diseases

1. Introduction

According to available research data, the intestinal tract of a healthy adult hosts more
than 100 trillion microorganisms, a number equivalent to all the human body cells [1,2].
The complex microbial-host network is established early in life, and it is now indisputable
that gut microbes can influence the health of the human gut and even the brain [2–5].
Therefore, the intestine, which has many microorganisms, is also known as the “second
brain” of the human body and plays an irreplaceable role in all aspects of the body’s life
activities [6,7]. The studies obtained so far have shown that the composition and structure
of the intestinal microorganisms can be influenced by various factors, such as diet, physical
activity, age, medication [8–11]. Among the many factors that affect intestinal flora, dietary
factors have received the most attention because of their effectiveness, simplicity, and low
cost. Studies have found that different diets will lead to some differences in the intestinal
flora and the metabolites of intestinal microorganisms. For instance, the Mediterranean diet
(MD), synonymous with a healthy diet, has received strong recommendations from experts
because of its healthy nutritional structure [12,13]. Studies have shown that the microbial
diversity in the intestinal tract of people on the MD pattern has increased, with an increase
in the number of Bacteroides and Lactobacilli and a decrease in the number of Firmicutes; in
addition, the MD effectively promotes the production of short-chain fatty acids (SCFAs) by
intestinal microorganisms, which is of great help to human health [14,15]. Compared to the
healthy MD, the Western-type diet (WD) with higher fat intake also affects intestinal flora
and microbial metabolites. By comparing these two dietary patterns, scientists found only
a slight difference between the two in terms of intestinal microbial diversity. Still, there
is a significant difference between the two in terms of microbial metabolites, which leads
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to an increase in intestinal permeability in the WD, and this has laid a considerable risk
for human health [14–16]. The secret of the health benefits of the MD lies in the fact that it
is a high residue, low-fat diet, which is more conducive to improving the structure of the
intestinal flora and promoting the production of beneficial metabolites [12,15]. Moreover,
the nutritional structure of the MD contains a large number of bioactive components, such
as polyphenols and polysaccharides [17,18], whose effects on the intestinal flora deserve
further study.

As a typical representative of bioactive substances, TP is an excellent natural antiox-
idant [19,20]. TP is the general name of polyphenolic compounds used in tea; TP has
suitable antioxidant, antibacterial, anti-cancer, and other effects, so in various fields have
been widely used [20,21]. As research progresses, researchers have discovered a strong
relationship between TP and intestinal flora in recent years. Scientists have found that
TP has a significant regulatory improvement effect on disordered intestinal flora. The
composition structure of intestinal microorganisms has been changed under the influence
of TP, through which TP has been widely used in anti-obesity and hypoglycemia [22–24].
However, based on the importance of intestinal flora in maintaining health, there should be
a broader application for regulating intestinal flora through TP. Therefore, scientists are
turning their attention to the protection of the intestinal mucosa. This idea opens a new
door for TP to maintain the health of the body by regulating the intestinal flora and also
provides new ideas for the prevention and treatment of some chronic diseases [25–27].

The intestinal mucosa, part of the immune system, plays an irreplaceable role in
maintaining human health. The intestinal mucosa is in constant contact with external
antigens and microorganisms, including harmful pathogenic microorganisms. As a critical
barrier, the intestinal mucosa keeps pathogenic microorganisms outside and makes specific
immune responses to protect the body from damage. In addition, the intestinal mucosa is a
necessary pathway for microbial metabolites to enter the body. Therefore, we can visually
see that the intestinal mucosa and intestinal microorganisms are closely related [28,29].
With the development of science and technology, our understanding of the intestinal
mucosa and the effect of intestinal microorganisms on the intestinal mucosa has improved,
and experimental results in recent years have confirmed that the intestinal mucosa and
intestinal microorganisms are in an interactive relationship [30–32]. Thinking further, we
can purposefully modulate the structural composition of microorganisms in the intestinal
tract to play a protective role in the intestinal mucosa, strengthening our immunity and
providing effective prevention of some related diseases.

Chronic diseases are a general term for diseases that do not constitute an infection
and have a long-term accumulation of damage that forms a disease form. Since many
people die from chronic diseases every year worldwide, the question of how to treat and
prevent chronic diseases more effectively and conveniently is one that we must address [33].
Common chronic diseases include cardiovascular, metabolic, and neurodegenerative dis-
eases; typical representatives include colorectal cancer (CRC), hyperlipidemia, diabetes,
Alzheimer’s disease, and inflammatory bowel disease (IBD). Past studies have confirmed a
strong link between intestinal flora and various chronic diseases [34]. Given the ability of
TP to regulate intestinal flora and the importance of intestinal microbes to the intestinal
mucosa, scientists have begun to investigate the prevention and treatment of related chronic
diseases by regulating intestinal flora [25,35,36]. To date, there has been some progress in
this area of research, which provides a whole new scenario for the prevention and treatment
of chronic diseases. In the future, through the regulation of daily dietary composition, the
purposeful and appropriate addition of TP and other bioactive substances to regulate the
intestinal flora and thus prevent and treat related chronic diseases will gradually become
a reality.

The regulatory effect of TP on intestinal flora is still under further research. A va-
riety of new functions are being discovered in the exploration, which can undoubtedly
benefit the whole human society. In this review, we outline the mechanisms by which
TP regulates intestinal flora and the vital role that intestinal flora plays in maintaining
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suitable health. In addition, we highlight the role of TP in protecting the intestinal mucosa,
treating and preventing some chronic diseases by modulating the structural composition of
microorganisms in the gut and provide an outlook on future developments in this field.

2. The Relationship between Natural Antioxidant TP and Intestinal Flora
2.1. TP

Tea as a beverage in people’s daily lives has a long history. There are many kinds
of tea; the most common varieties are green tea, black tea, and oolong tea. The world
has a huge consumption of tea every year. Nowadays, tea has become an inseparable
part of people’s lives [19,20]. According to modern research, drinking tea is suitable for
quenching thirst and very suitable for human health. The beneficial effects of tea on
the human body are due to the high content of bioactive substances in tea, including
TP, tea polysaccharides, theanine [37–40], of which TP is the most typical [22,39]. TP
is composed of various phenolic compounds in tea leaves together, mainly including
flavanols, flavanones, phenolic acids, anthocyanins, etc. Catechins, a group of compounds,
are the most important and occupy a large proportion of the TP [41]. Catechins include
(−)-epigallocatechin (EGC), (−)-epicatechin-3-gallate (ECG), (−)-epigallocatechin-3-gallate
(EGCG) and (−)-epicatechin (EC) [40,41]. As a natural antioxidant, TP has powerful
antioxidant and antibacterial abilities and can provide beneficial effects such as weight
loss and blood sugar reduction [24,42,43]. Nowadays, TP has been widely used in the
production of functional foods, edible films, and the treatment of related diseases [24,43,44].
TP as a research object still contains excellent potential; there are many mysteries that we
have not discovered; in recent years, researchers have found that TP has a huge impact on
the intestinal flora, based on the importance of intestinal flora for the living body, which
opened a new door for the study of TP.

2.2. Biotransformation of TP by Intestinal Flora

In our daily life, we can take in TP from outside by drinking tea. The results of in vitro
experiments simulating gastrointestinal digestion of TP show that the direct use of TP
by the human body is very low, the absorption rate in the small intestine is only 10–20%,
and in addition, the investigation also found that after gastrointestinal ingestion of TP, the
antioxidant activity measured in the duodenal stage was significantly lower than that in
the colonic stage, so it can be inferred that intestinal microorganisms play an extremely
critical role in the metabolism and transformation of TP [45,46]. Past studies have con-
firmed that microorganisms will use a more significant portion of TP in the intestine for
further metabolism, and these metabolites are partly absorbed into the blood and partly
excreted in the feces [47]. Moreover, studies have shown that intestinal microorganisms
can biotransform TP left in the colon, which is further transformed by decarboxylation,
demethylation, and dehydroxylation by intestinal microorganisms, eventually producing
smaller metabolites, such as phenolic acids [45,48,49]. The flavanols catechins (flavan-3-ols),
which is the most important of the TP, undergoes C-ring fission and several dehydrogena-
tions by the action of intestinal microorganisms, resulting in phenylpentanoic acid and
phenyl-γ-valerolactones, which is then converted by intestinal microorganisms into various
phenols and hydroxybenzoic acids [26,50,51]. Moreover, a study on the in vitro fermen-
tation of EGCG by intestinal microorganisms showed that EGCG underwent sequential
ester hydrolysis by intestinal microorganisms and was eventually degraded into a series of
metabolites such as 3-(3′,4′-dihydroxyphenyl) propionic acid and 4-phenylbutyric acid [52].
These small metabolites can be absorbed by the intestinal mucosa into the portal circulation,
flow to the liver, and then transfer to various body organs [53]. TP has excellent antioxidant,
antibacterial and antiviral properties after intestinal microorganisms’ transformation and
plays an essential role in maintaining suitable health.



Antioxidants 2022, 11, 253 4 of 17

2.3. Effects of TP on Intestinal Flora

As an antioxidant, TP has a particular antibacterial effect, which has a certain role in
shaping the structure of the composition of microorganisms in the intestine and can affect
the metabolites of intestinal microorganisms in the intestine. After research on animal
models, human experiments, and in vitro fermentation, the experimental results show that
TP can provide some stimulation to some beneficial bacteria in the intestine and inhibit the
growth of harmful microorganisms, improving the composition structure of intestinal mi-
croorganisms. In addition, TP can also affect the type and content of microbial metabolites
in the intestine, promoting the production of beneficial metabolites and reducing harmful
metabolites, thereby further maintaining the health of the body [52,54–57].

So far, many experiments have demonstrated the effect of TP on the regulation of
intestinal flora. Liu et al. [52] found that EGCG treatment stimulated beneficial bacteria such
as Christensenellaceae, Bifidobacterium, and Bacteroides and inhibited pathogenic bacteria such
as Bilophila, Enterobacteriaceae, Fusobacterium varium compared to the blank control group
by in vitro fermentation experiments. In another experiment, Yuan et al. [54] provided
strong evidence through human experiments that tea consumption can regulate human
intestinal flora. According to studies in recent years, it was found that intestinal flora
disorders accompany poor diet or inappropriate uses of drugs, and researchers found that
this phenomenon can be better improved by using TP. The experiment by Li et al. [23]
caused intestinal flora disorders in mice through the use of antibiotics, followed by oral
administration of TP to observe the effect of TP on the regulation of disordered intestinal
flora. The results showed that TP significantly alleviated the antibiotic-induced decrease in
intestinal flora abundance and diversity and increased the relative abundance of probiotic
bacteria such as Eubacterium, Roseburia, and Lactobacillus. In addition, TP can also be used
to regulate intestinal flora disorders caused by high-fat diet. Wang et al. [58] found that
mice fed a high-fat diet showed significant intestinal flora disorders, a decrease in the
diversity of mouse intestinal microorganisms, and a significant increase in the Bacteroidetes
to Firmicutes ratio, but subsequent modulation by TP significantly improved the abundance
and diversity of microorganisms in the mouse intestine, and also reversed the high ratio of
Bacteroidetes and Firmicutes caused by the high-fat diet. In addition, the experiment also
revealed that after the conditioning with TP, the mice showed a significant increase in the
levels of butyric acid and acetic acid, both of which are important microbial metabolites. In
another experiment, similar experimental results were obtained. The results of Li et al. [22]
showed that TP reduced the relative abundance of Clostridiales and Synechococcus phylum
and increased the relative abundance of thick-walled bacteria in the intestine of mice on a
high-fat diet. So far, it is indisputable that TP can regulate intestinal flora. From the results,
it is clear that this regulation is usually beneficial to human health.

TP has a regulatory effect on intestinal flora and influences the production of intesti-
nal microbial metabolites, including SCFAs, lipopolysaccharides (LPS), and secondary
bile acids. Through extensive animal experiments, the researchers found that the content
of SCFAs in the intestine of animals treated with TP would be increased, and this phe-
nomenon led to some new thoughts [52,59]. Ding et al. [60] found that six-brewed tea
extract increased the abundance of several microorganisms that may produce SCFAs in the
intestine of mice, including Lactobacillus, Bacteroides, and Ruminococcaceae, and this finding
could provide a solid basis for the increased content of SCFAs in the intestine of animals
treated with TP. Moreover, in another study, the researchers obtained the aqueous extract
of black tea by steeping it in hot water, and the phenolic compounds were determined
by high-performance liquid chromatography to test the inhibition of α-glucosidase and
α-amylase activities. It was found that the higher the phenolic compounds, the better the
inhibition effect on α-glucosidase and α-amylase activities. Therefore, it was concluded
that TP had an inhibitory effect on α-glucosidase and α-amylase activities [61]. We can
further consider that most of the SCFAs come from indigestible carbohydrates that reach the
intestine through fermentation by intestinal microorganisms, and this experimental result
represents that TP can allow more carbohydrates available to intestinal microorganisms to
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enter the intestine as substrates for the production of SCFAs. SCFAs not only strengthen
the body’s immune system but are also chemical mediators of intestinal communication
with the brain and play a key role in maintaining the body’s health [62,63]. Secondary
bile acids, another important intestinal microbial metabolite, are obtained from primary
bile acids that flow into the intestine through a series of transformations by intestinal
microorganisms. Experiments by Sinha et al. [64] showed that disturbed intestinal flora
inhibited the production of secondary bile acids and contributed to the development of
intestinal inflammation. The ameliorative effect of TP on intestinal flora has been demon-
strated by experimental results showing that TP increases the abundance of secondary bile
acid-producing microorganisms in the intestine, such as Bacteroides and Bifidobacterium [52].
Secondary bile acids act on immune cells and enhance the body’s immune system [65]. In
addition to promoting the production of certain microbial metabolites, TP can also inhibit
the production of certain metabolites, such as LPS. Studies have shown that excessive
LPS can cause liver damage and related inflammatory responses, while TP can reduce the
relative abundance of lipopolysaccharide-producing microorganisms, which can effectively
reduce the accumulation of LPS and maintain human health [66,67]. The metabolites of
intestinal flora have great potential for further research, and we can hypothesize whether,
in the future, we can have beneficial effects on the human body by promoting or inhibiting
the production of one or more metabolites? Further research is needed on this point.

In summary, the interaction between TP and intestinal microorganisms is shown in
Figure 1. Interestingly, as research continues to develop, new findings have been made
regarding the effects of TP on intestinal flora. Zhou et al. [68] found that TP was able to alter
the microbial tricarboxylic acid (TCA) cycle and urea cycle in the rat intestine, and by doing
so, improved the energy conversion efficiency of the rats, which was helpful in lowering
blood glucose and lowering cholesterol levels. Research on the interaction between TP and
intestinal flora continues to advance, and we look forward to another breakthrough in this
area in the future.
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3. TP Regulates Intestinal Flora for the Protection of Intestinal Mucosa
3.1. The Importance of Maintaining a Healthy Intestinal Mucosa

As early as decades ago, scientists began to study the association between the intestinal
mucosa and human health, and up to now, scientists have concluded that the intestinal
mucosa is an important immune barrier in the human body and plays an irreplaceable
role in maintaining human health [69–71]. The intestinal mucosal barrier consists of four
main components, the biological barrier (mainly composed of beneficial microorganisms
lodged in the intestine) [72,73], the mechanical barrier (mucus and intestinal epithelial cells
(IECs), etc.) [74,75], the chemical barrier (Lysozyme, antimicrobial peptide, secretory phos-
pholipase A2, etc.) [76] and the immune barrier (macrophages, secretory immunoglobulin
A, etc.) [77,78]. Let us first look at the mechanical barriers in the intestinal barrier. The
mechanical barrier consists of mucus, IECs, and cell junctions. The mucus layer in the
intestine is composed of Mucin2 (MUC2) proteins secreted by goblet cells, which form a
huge network structure in the intestine [79]. It was found that two layers of mucus usually
cover the intestinal epithelium, the outer layer is sparse, and the inner layer is compact [80].
Through their study, Hansson et al. [79] found that the inner mucus layer is free of bacteria,
which is good evidence that the mucus layer has a strong ability to block bacteria. IECs
and cell junctions form the last line of defense of the mechanical barrier, which prevents
pathogenic microorganisms and toxins from reaching here from entering the body and
plays the role of absorbing water and nutrients [81]. Antimicrobial peptides, lysozyme,
and other antimicrobial chemicals in the intestine together form a chemical barrier, and
they are mainly found in the mucus layer, where they play a key antibacterial role [82].
Larsen et al. [83] showed that lysozyme-treated mice reduced the colitis response induced
by dextran sulfate sodium (DSS) and effectively maintained intestinal microbial homeosta-
sis compared to normal-fed control mice. In addition, when external harmful substances
break through the mechanical and chemical barriers and cause infection, the IECs can send
signals to the intrinsic immune cells in the intestinal mucosa, prompting the intestinal
mucosa’s immune barrier to function remove the invading harmful substances [84]. The
intestinal epithelium and underlying lamina propria have a large number of immune cells,
including mast cells, neutrophils, macrophages, T cells, and B cells, which are capable of
making an immune response when they receive a signal to remove an antigen by recogniz-
ing it and either directly engulfing it or producing secretory immunoglobulin A [85,86]. The
biological barrier is mainly composed of beneficial microorganisms lodged in the intestinal
tract, which are large in number and can inhibit the growth and reproduction of harmful
microorganisms by competing with them for living space with nutrients; in addition, the
metabolites of beneficial microorganisms can also play the role of antibacterial and enhance
the defense ability of the intestinal mucosa barrier [87,88]. There is much more to the
connection between intestinal flora and the intestinal mucosa, as explained in more detail
in the next section. In summary, the human intestinal tract maintains a dynamic “offensive
and defensive balance,” the importance of maintaining the health of the intestinal mucosa
is self-evident; damage to the intestinal mucosa will lead to chronic colitis, colon cancer,
and other chronic diseases, seriously endangering our health.

3.2. The Relationship between Intestinal Microorganisms and Intestinal Mucosa

It is not surprising that the intestinal flora has a close relationship with the intestinal
mucosa, which is in an environment of direct contact with external microorganisms and
naturally interacts with the intestinal flora, a view that scientists have long confirmed.
Microorganisms in the intestine include beneficial commensal microorganisms and harmful
pathogenic microorganisms. An incomplete intestinal mucosal barrier will increase the
potential of pathogenic microorganisms to invade the organism. In one experiment, re-
searchers inoculated mice with a defective intestinal mucus layer and wild-type mice with
Citrobacter rodentium, a laxative pathogenic microorganism. They found that mice with a
defective intestinal mucus layer had a higher mortality rate than wild-type mice, suggesting
that the lack of a mucus layer leads to an increased chance of infection with pathogenic
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microorganisms [89]. For that matter, scientists have demonstrated that colonization of
the intestinal tract by intestinal flora will affect the formation of the mucus barrier. By
way of analogy, the experiments of Wrzosek et al. [90] found that B. thetaiotaomicron and
F. prausnitzii in the gut can regulate the intestinal mucus layer by promoting the differentia-
tion of goblet cell and the glycosylation of mucins, the production and main components of
which we have already mentioned in the previous section. The interaction between the in-
testinal flora and the intestinal mucosal barrier is also reflected in the influence of intestinal
microorganisms on the intestinal mucosal immune system. Past studies have found that in-
testinal flora can activate Toll-like receptors (TLRs), an important class of protein molecules
involved in innate immunity that recognize microbes and activate the body to produce
an immune response, playing an important role in maintaining gut homeostasis [91,92].
Activation of TLRs triggers the myeloid differentiation primary response protein MYD88
and further leads to the activation of the transcription factor nuclear factor-κB (NF-κB), an
important nuclear transcription factor in cells that controls the expression of regulatory
genes such as inflammation, immunity, and cell proliferation [93,94]. Danne et al. [95] found
that Helicobacter hepaticus, a commensal microorganism in the mouse intestine, induces
early IL-10 production by macrophages in the intestine and interacts with the receptor
TLR2 to exert some anti-inflammatory effects. In addition, the metabolites of intestinal
microorganisms have a significant impact on the intestinal mucosal barrier.

By using non-absorbable but fermentable dietary fiber in the intestine, intestinal mi-
croorganisms further metabolize it to produce metabolites of SCFAs, commonly including
butyric acid, acetic acid, and propionic acid [96,97]. SCFAs play an essential role in main-
taining the normal function of the intestinal mucosa. Most intuitively, SCFAs provide
energy and maintain the homeostasis of IECs [98,99]. In contrast, the role played by SCFAs
in the intestinal immune system has attracted more attention. In the intestine, SCFAs play
a role in regulating intestinal mucosal immunity mainly by stimulating G protein-coupled
receptors (GPR) on IECs and T cells [100]. Kim et al. [101] performed an experiment in
which mice deficient in GPR41, GPR43 and control mice were induced to develop an in-
flammatory response and fed SCFAs. The experiment results revealed that SCFAs activated
GPR41 and GPR43 on IECs and, in turn, activated the value-added protein kinase signaling
pathway, which induced the production of chemokines and cytokines during the immune
response and helped mice cope with inflammation. Furthermore, studies on butyric acid
found that butyric acid can promote regulatory T cells by inducing tolerogenic dendritic
cells (DCs) [102]. Thus, SCFAs, as important intestinal microbial metabolites, also maintain
a close relationship with the intestinal mucosa.

Symbiotic microorganisms in the gut serve as an important biological barrier in
the intestinal mucosal barrier, and the relationship between intestinal microorganisms
and intestinal mucosa is shown in Figure 2. Of course, although we have made many
breakthroughs in this field, there are still many uncharted areas waiting to be explored. We
need to think further about what are the hidden associations between intestinal flora and
intestinal mucosa that we have not noticed, such as whether intestinal microbes can interact
with immune cells that we have not noticed or whether we can use a bioactive substance to
purposefully modulate intestinal flora and strengthen the defenses of the intestinal mucosa.

3.3. Benefits of TP on Intestinal Mucosa by Intestinal Microbial Structure

The importance of the intestinal mucosa has been known for a long time, and scientists
have started long research to discover ways to improve it. In their exploration, scientists
found a close relationship between intestinal flora and intestinal mucosa and began to
improve intestinal mucosa by regulating intestinal flora. Researchers found that among the
various substances that can regulate intestinal flora, TP has numerous advantages, which
have attracted the widespread attention of scientists. There is a follow-up further research.
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Past studies have pointed out that TP themselves are helpful for the protection of
intestinal mucosa; TP can inhibit the generated lipid peroxide radicals, generate less
active polyphenol radicals, and terminate the oxidation chain reaction of free radicals.
In addition, TP can also improve superoxide dismutase, glutathione peroxidase, and
many other antioxidant enzymes, more efficient in removing free radicals [103,104]. The
experiments of Grzybowska-Chlebowczyk et al. [105] pointed out that the presence of
free radicals is an important factor in triggering IBD. Another investigation showed that
Java tea extract effectively scavenged free radicals in mice induced by a high-fat diet and
played a protective role against oxidative damage in the intestine of mice [106], so it can be
inferred that the effect of TP in removing free radicals can protect the intestinal mucosa
from oxidative damage and effectively prevent the occurrence of intestinal inflammation.
Nowadays, scientists have turned their attention to intestinal microorganisms, which are
closely related to the intestinal mucosa, expecting that the regulatory effect of TP on the
intestinal microorganisms can produce some protection for the intestinal mucosa.

Through scientists’ ongoing efforts, new discoveries have been made on the role of TP
in protecting the intestinal mucosa by affecting intestinal microorganisms. Firstly, TP has a
certain inhibitory effect on harmful microorganisms in the intestinal tract, it was pointed
out that TP could inhibit the growth and toxic properties of Fusobacterium nucleatum in the
intestine, which has been shown to be associated with the development of IBD, and the
experimental results showed that TP could prevent the formation of Fusobacterium nucleatum
biofilm and exert some inhibitory effect on the activity of the biofilm already formed, in
addition, the study also indicated that TP was able to attenuate Fusobacterium nucleatum-
mediated hemolysis and hydrogen sulfide production [107]. Secondly, TP can improve the
disorder of intestinal flora and intestinal damage caused by pathogenic microorganisms.
Zhang et al. [108] investigated the effects of TP on the regulation of intestinal flora disorders
in Salmonella typhimurium-infected mice and the mechanism of reducing the damage to
the intestinal tract. The experimental results showed that TP reduced inflammation and
oxidative stress markers and increased the levels of antioxidant enzymes and tight junction
proteins in mice, which effectively improved intestinal flora disorders and reduced the
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damage to intestinal mucosa. Finally, TP can promote the production of metabolites
SCFAs by intestinal microorganisms, thus achieving protection of the intestinal mucosal
barrier. Wu et al. [25] regulated the intestinal flora of mice by giving them oral EGCG, and
the experimental results showed that the regulation by EGCG significantly increased the
relative abundance of SCFAs-producing bacteria (such as Ackermania) and the production
of SCFAs in the intestine of mice.

In summary, the effect of TP on intestinal microorganisms to protect the intestinal
mucosa has been supported by numerous experimental results. In the future, based on the
powerful antioxidant ability of TP and their effect on the regulation of intestinal flora, there
will be highly effective products with TP as the primary raw material for the prevention
or treatment of chronic colitis, colon cancer, and other chronic diseases closely related
to the intestinal mucosa. In recent years, the research on the prevention and treatment
of such chronic diseases with TP has made new progress and gradually become another
new treatment option for patients with related diseases, which is undoubtedly a blessing
for patients.

4. Intestinal Flora Protects the Intestinal Mucosa to Prevent Related Chronic Diseases
4.1. Prevention of Chronic Colitis

IBD is a common chronic inflammatory disease of the intestinal tract that includes
mainly ulcerative colitis (UC) and Crohn’s disease (CD) [109,110]. It has been reported
that IBD is present worldwide, affecting millions of people worldwide, and is on the
rise in countries with westernized lifestyles [111,112]. Even today, the causes of IBD
are still unclear. Scientists generally believe that it is caused by multiple factors, mainly
environmental, genetic, infectious, and immune factors. In recent studies, it was found that
intestinal flora disorders are considered a new factor in the pathogenesis of IBD, which
opens a breakthrough in the prevention and treatment of IBD [113]. Nowadays, IBD puts
pressure on the health care system of every country, and the prevalence is increasing year
by year, so how to effectively treat and prevent IBD has become a major problem that we
urgently need to solve.

After a long period of research and exploration, it is known that abnormalities in the
immune system of the intestinal mucosa are an important cause of the development of
IBD. Given the protective impact of commensal microorganisms in the intestine on the
intestinal mucosa and the destructive effect of harmful microorganisms, the treatment,
and prevention of IBD by regulating the intestinal flora does have great research potential,
and a large number of scientists are now researching this area. Stool samples are often
used as a proxy for the microbial composition of the intestine, and studies have found
some differences in the microbial communities of stool samples from healthy individuals
compared to those from patients with IBD, as evidenced by significantly lower microbial
diversity and differences in the composition and structure of microorganisms [114–116]. In
an experiment that provides strong evidence that a therapeutic effect can be achieved in
chronic colitis by regulating intestinal flora, Burrello et al. [117] investigated the effect of
fecal microbiota transplantation (FMT) effects on immune-mediated immunity mucosal
inflammatory pathways in chronic colitis. The experiment was conducted by using DSS
to induce the development of colitis in mice (with symptoms similar to IBD), and then by
having the mice orally consume mucus from regular biological donors and feces to modu-
late their intestinal flora; the experimental results showed that therapeutic FMT was able
to reduce colonic inflammation by modulating the expression of pro-inflammatory genes,
antimicrobial peptides, and mucins in mice suffering from chronic intestinal inflammation.
Thus, they provided the conclusion that FMT can control chronic intestinal experimental col-
itis by inducing synergistic activation of anti-inflammatory immune pathways. In addition,
metabolites of intestinal microorganisms, mainly SCFAs and secondary bile acids, have
been shown to have a therapeutic and preventive effect on IBD. The protection of the in-
testinal mucosa by SCFAs and their role in the intestinal immune system make them closely
associated with IBD. Studies have shown that SCFAs maintain intestinal epithelial home-
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ostasis by activating the inflammasome to produce IL-8 and also have an anti-inflammatory
effect by modulating immune cells in the intestinal mucosal immune system [118–120] and
that the production of SCFAs is an important marker of the maturation of the intestinal
mucosal immune system [121]. It has been found that the oxidative damage to the intestinal
mucosa of patients with UC is caused by insufficient levels of butyric acid, which can be
produced by beneficial microorganisms such as Bifidobacterium and Lactobacillus in the
intestine [122,123]. Interestingly, Ashton et al. [124] found that by examining the concentra-
tions of SCFAs in stool samples from multiple IBD patients, the concentrations of SCFAs
in stool from IBD patients did not show a consistent pattern compared to controls, with
some patients showing an increase in both overall and relative concentrations and others
showing a decrease in both overall and relative concentrations. The researchers speculate
that this phenomenon is due to the varying severity of inflammation in the intestinal tract
of the patients; the less severe the inflammation, the intestinal epithelium absorbs, the
more SCFAs. This experiment suggests that more factors should be taken into account
when investigating the association between SCFAs and IBD. The beneficial metabolites of
intestinal flora go far beyond SCFAs; metabolites produced by intestinal flora metabolizing
bile acids have also been shown to have some anti-inflammatory effects [125,126]. Thinking
further, the wide variety of metabolites of intestinal flora, some of which we have not yet
studied, may also have a therapeutic effect on IBD.

Today, drug therapy for IBD is still the primary method; there are some drugs
through the regulation of intestinal flora to achieve the anti-inflammatory effect, such
as mesalamine [127], but the drugs have certain side effects after long-term use, so scien-
tists have long hoped to find an alternative to anti-inflammatory medications. From the
perspective of regulating intestinal flora and protecting intestinal mucosa, TP has received
attention. The therapeutic and preventive effects of TP on IBD are mainly reflected in the
influence of certain signaling pathways involved in inflammation and the regulation of
intestinal microorganisms. The protective effects of TP on the intestinal mucosa and the
regulation of intestinal microorganisms have been described in detail above. In addition,
as a natural antioxidant, TP has a number of advantages over common anti-inflammatory
drugs. First of all, TP can be obtained directly from the diet, which is easy and fast to obtain.
In addition, a study comparing TP with sulfasalazine, a drug commonly used to treat IBD
patients, showed that TP had fewer side effects than sulfasalazine while playing an anti-
inflammatory role [123,128]. It is worth noting that although TP is beneficial to health, it
should not be used excessively. For the general population, experts recommend that drink-
ing 10 cups of green tea a day is appropriate [129]. The experiments by Evans et al. [130]
suggest that the recurrence of Clostridium difficile infection may be associated with tea
consumption and that excess TP can also cause a decrease in normal microorganisms in the
intestine. Looking to the future, with increased publicity on the benefits of TP, more and
more people will adopt the habit of drinking tea in moderation daily, which will effectively
reduce the prevalence of IBD.

4.2. Prevention of Colorectal Cancer

With the continuous improvement of people’s living standards, the prevalence of CRC
is on the rise year by year worldwide. According to relevant reports, colon cancer is the
second leading cause of cancer-related deaths worldwide, and how to effectively treat CRC
is a problem we have to face [131]. The pathogenesis of CRC is complex and has not been
studied so far. Still, there have been several breakthroughs in research on treatment and
prevention in recent years.

Past studies have shown that intestinal flora and its metabolites play an important
role in protecting the intestinal mucosal barrier and maintaining the balance of the intesti-
nal environment, so it is not surprising to speculate that there is an association between
intestinal microbes and the development of CRC. It has been pointed out that the intestinal
flora composition of CRC patients is significantly different from that of normal people, as
shown by the decrease in beneficial bacteria such as Faecalibacterium, Bifidobacterium, and
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the increase in Mogibacterium, Porphyromonas [132]. This study provides a strong scientific
basis that the disturbance of intestinal flora is one of the causes of CRC; therefore, scientists
have started to treat and prevent CRC by changing the composition of intestinal flora.
Liu et al. [133] performed regulation by adding Clostridium butyricum during inflammation
induction in mice, and the experimental results showed that the microbial composition
of the intestine of mice was changed after regulation by Clostridium butyricum, and the
abundance of beneficial bacteria increased significantly, and the inflammatory response in
the intestine decreased, which effectively prevented the development of colon cancer. In
addition, scientists have also found a link between intestinal flora and the innate immune
sensor absent in melanoma 2 (AIM2). Studies have demonstrated that AIM2 prevents
microbial dysbiosis in the gut and inhibits the uncontrolled proliferation of intestinal stem
cells, effectively preventing the development of CRC [134,135]. Man et al. [135] found by
16S rRNA gene sequencing analysis that the composition of intestinal flora was significantly
different in wild-type (WT) and Aim2−/− mice reared alone, with significantly increased
levels of Akkermansia muciniphila and Anaeroplasma in Aim2−/− mice compared to WT mice,
and the levels of Anaerostipes, Bifidobacterium, Flexispira, Prevotella, and Paraprevotellaspecies
were decreased. Moreover, the experiments also used the propagation properties of the in-
testinal flora. They found that the number of tumors and cancer incidence was significantly
lower in the colon of Aim2−/− mice co-housed with WT mice compared to Aim2−/− mice
housed alone. This experiment provides strong evidence that intestinal flora can interact
with AMI2 to prevent CRC development.

Compared with traditional radiation therapy, the treatment and prevention of CRC by
regulating intestinal flora have the advantages of being more economical, more convenient,
and safer, but the effectiveness needs to be further studied. However, it certainly provides a
new possibility for CRC treatment and prevention, and this treatment method is also more
acceptable to people, which is of great significance to reduce the incidence of CRC.

5. Conclusions

As a natural antioxidant, TP can protect the intestinal mucosa, regulate intestinal flora,
and promote the production of beneficial metabolites by intestinal microorganisms. The
homeostasis of intestinal flora and the production of beneficial metabolites can effectively
protect the intestinal mucosal barrier, enhance the immune defense of the intestinal mucosal
barrier, and effectively prevent and treat IBD, CRC, and other related chronic diseases. The
therapeutic approach of regulating intestinal flora through the use of TP has been noted to
have several advantages over traditional treatments for IBD and CRC, but whether this
method can replace the traditional method and achieve the same therapeutic effect requires
more in-depth research.
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